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2 I Outline

" Introduction and motivation — Can plastic parts be metallized effectively and
cheaply?
= 3D printed Big Area Additive Manufacturing (BAAM)
" Thermal Spray Metallization techniques — Twin Wire Arc (TWA)

"Prospective Materials

" Top coat layers

" Bond coat layers

"Residual Stresses for adhesion
u In—situ substrate curvature measurements

= Stress profile calculations

*"Indentation
" Vickers hardness of layers

= Brinell /Taber-like method of indentation



3 ‘ 3D printed Polymer BAAM

Manufacturmg Demonstratlon Fac1l1ty (MDF) High Bay at the Hardm Valley Campus
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“Big Area Additive Manufacturing
(BAAM) focuses on systems that are
greater than 200 ft3 but less than 1000
ft3 in build volume with production
rates from 10 to 100 lb/hr”

Polymer BAAM printing head
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Submerged Arc Welding - MultiArc
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BAAM Plastic at a volumetric printing
rate of ~1000 in3/hr

From ORNL’s MDF Strategic plan 2016-2021




4l Thermal Spray Metallization

Twin Wire Arc (TWA) thermal spray Veibsgn
= a_t R e Air
*Advantages o N Spray Straam
. . Comprassed Alr : x
* Cheap, effective way to cover large areas quickly a
(10s of lbs per hour) N ggﬁ ———

* Low, Medium, and High melting temperature metals WA -
(e.g., Zinc/Al, Ni/ Fe based alloys, Mo) process schematic

(Image from Oerlikon-Metco)
* Transportable, large areas demonstrated (e.g., Bridges)

*Disadvantages
* Brittle, Porous deposits

* Tensile stresses during deposition

The Wuhan Junshan Bridge over the Yangtze Porous, defect-laden microstructure Low melting temperature materials
River is covered with 35,000 m? (~8.5 acres) of able to be deposited on polymers,
thermal sprayed zinc coating flammable substrates
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Prospective Materials

Solid Ced

Hard, high compression strength metalized surface desired

Hard
A\ Phase

* Several Fe-based hard-facing alloys on market — Solid and/or Cored Wite
* Reported hardness range from 20-67 HRC (O1 Tool Steel HRC ~61-63)

* TWA applications typically desioned for wear resistance and/or restoration
pp y g

* Medium melting temperatures, stiffness
— Higher local deposition temperature, quenching stress

Fe-Based hard-facing alloy: severe cracking and
=== delamination when applied directly to polymer BAAM

Low melting temperature bond coat
* Potential intermediate layer between hard-facing layer and BAAM

* Zinc, Aluminum, Copper

o A, A AT AT O~ N = "‘2;;_"

; Zinc on BAAM: Continuous coating, no visible defects

W Wy, -
[ T s T s ey

o ey Aluminum on BAAM: Several large microcracks observed




6 I Micrographs — Bond Coat and Substrate

e _ «Zinc bond coat on Polymer BAAM (20%

: ﬁ CF-ABS and 50% CF-PPS)

‘ *“%: * Porous Zinc bond coat

* Macroscopic roughness of Polymer surface
.. thought to aid in adhesion

“ - ¢ Zinc spray readily infiltrates troughs in polymer
: surface




71 Micrographs — Top Coats

* “WC Amorphous” — Cored wire with WC and TiC particles in Fe-Cr-N1

amorphous matrix

* “Amorphous Alloy” — Cored wire with Fe-Cr-Ni-Mo amorphous matrix

WC Amorphous
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Amorphous
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Residual Stresses in TWA Coatings

*TWA 1s a melt-deposition technology, therefore a maximum quenching stress of
o = oy AT E, exists

*Multiple stress relief mechanisms — material yielding, micro-cracking, interfacial

sliding/delamination etc.

*Further stresses induced by thermal expansion mismatch between coating and
substrate

*Bonding to substrate 1s primarily mechanical

before quenching T 4+ aT unrelaxed T
s

*Several ways to measure residual stress within TWA DT T
coatings i £ o
* X-ray diffraction (sin?¥ method) J___) .
* Neutron diffraction icgihiness silfiog.  isaeicial iding

edge relaxation

* Layer removal w/strain measurement
* Substrate curvature

5 . Kuroda, S., and T. W. Clyne. "The quenching stress
Air Plasma Sprayed Al203 on Aluminum substrate in thermally sprayed coatings.” Thin solid films
with different processing conditions 200.1 (1991): 49-66.




In-situ Substrate Curvature Measurements

Image from ReliaCoat Technologies

*Real time substrate bending and back side thermocouple
measurements during coating deposition and
post-deposition cooling using In-situ Coating
Property (ICP) sensor (ReliaCoat Technologies I.LC.)

*Analysis of data gives residual stress and coating stiffness

CEsK A 5, _ 6E JEhH(h+ H)AGAT &
Trim = g H E2h* +4E,E h°H +6E E h>H> +4E,E hH + E2H*

TWA Zinc + Fe-alloy Top Coat sprayed

TWA Zinc sprayed on Aluminum 6061 Substrate ,
on Aluminum 6061 Substrate
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*assumes bulk CTE



Stress [MPa]

Residual Stress Profiles using Tsui-Clyne analytical model®

Delamination with thin
bond coat (1 pass)

*Tsui, Y. C., and T. W. Clyne. "An analytical model for

10
*Both Zn and Fe-Alloy add little stress to substrate but vary in film stress; larger
interfacial force
*A composite Al-sprayed Zn beam (with adequate Zn thickness) acts as a stress
buffer for the Fe-Alloy, reduces interfacial force
120
| — zinc(1L
18903 Zinc §5 Liﬁ?s) o
: Fe-Alloy
80 Fe-Alloy on Al-Zn Composite Beam
60 ]
] °
40 4
20 ]
o] 8668686
40 ] :
] Substrate Coating
-60 +— -t rrrrroooo oo
25 20 15 10 05 00 05 1.0

Position [mm]

1.5

predicting residual stresses in progressively deposited
coatings Part 1: Planar geometry." Thin solid films 306. 1
(1997): 23-33.




11 I Multi-layer TWA coatings on polymer BAAM

*Applying Zinc stress buffer layer to reduce interfacial forces makes multi-layer
metallization onto BAAM possible

No Zinc

Thin layer
of Zinc

Thick layer
of Zinc

” “ T "”"”‘””J”\”I”\’“1H|H|H}‘lmw*n|n|n|*n T AT

| | 9 100 110 120 130 140 |
_m‘,u_\ il \m! i \ Il I bt ?.u}?ll-/ v

*Machining of Zinc surface
before top coat application BEess=
allows for macroscopically

smooth surface End milled
Zinc
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Vickers Hardness (Cross Section)

Zinc Bond Coat (on BAAM Substrate)
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13 1 Vickers Indentation (Top surface)

*Significant scatter in hardness data fir both top coat materials
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14 I Brinell Indentation

*500kg load with 10mm diameter ball on top surface of as-sprayed stack-ups:

Comparison between Aluminum and BAAM substrates

Amorphous alloy on Zinc on BAAM

T

Zinc on Aluminum Indent

Through craékin
on select BAAM |
substrates
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BAAM Substrate Indent

{

l




15 | Tabor Method®

*Uses Brinell type indentation to determine inelastic stress-strain behavior over a series of
indentation loads — Demonstrated for thermal spray coatings ™

a

* Representative Strain (eg) based on contact (a) and indenter (R) radit er = 0.2 R
* Mean Pressure (pm) based on indentation load (P) and contact area pm = P [na’
* Flow Stress (og,,,) empirically determined R/ |p S
flow — ﬁ

*NiAl: Process dependence on indentation behavior
2a

*Cold Sprayed Al: Work hardening from coating consolidation, softening with heat treatment

%%
T WC-Co
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0 0.05 0.1 0.15 0.2 g
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* Tabor, D. "The Hardness of Metals Oxford University Press.” New York (1951).
T Choi, W. B., et al. "Indentation of metallic and cermet thermal spray coatings.” Journal of thermal spray technology 18.1 (2009): 58-64.
** Choi, W. B., et al. "Integrated characterization of cold sprayed aluminum coatings." Acta Materialia 55.3 (2007): 857-866.




Metallized BAAM compared to other materials through Tabor
16 I indentation

*Zinc bond coat shows highest indention strain and lowest mean pressure

*Zinc + top coat shows lower indention strain, higher mean pressure than un-coated

BAAM

*Cold Spray Aluminum in as-sprayed state may offer higher compressive strength
than TWA coated BAAM — may be alternative pathway for stack up

700 -
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500 56 B 0 2 %
L @ Coated BAAM

400 A . ¢
i * ® ¢ Jch
300 1§ E‘Q ¢ : 5 % %
» ; % % 0] Spherical As-sprayed
200 1% A % O Spherical Annealed in air

O Globular As-sprayed

O Globular Annealed in air

A Spherical Annealed in Argon
& Bulk Al 1100 H14

Indentation Pressure (MPa)

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

Indentation Strain
** Choi, W. B., et al. "Integrated characterization of cold sprayed aluminum coatings." Acta Materialia 55.3 (2007): 857-866.
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Conclusions

*Metallization of Polymer BAAM possible through the use of low melting
temperature and low stress bond coats (Zinc)

*Hard facing top coats able to be deposited onto Zinc bond coats, providing higher
surface hardness than un-coated polymer BAAM

*Coating porosity and stresses limit mechanical strength and have adhesion limits,
respectively

*Alternative high throughput spray processes and materials may provide harder
surfaces as a top coat (e.g., cold spray)

Amorphous Alloy top coat Amorphous Alloy
(as sprayed) top coat
(polished)

‘Machined Zn Base layer
.(u,nderne_ath)

s

Assprayed Zn Ba §ela
Gt _(underneath)
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19 I Interface Indentation

Knoop indentation at Zn and Al interface up to 2kgf load did not result in de-
bonding

295

29.5 HK 0,5
Diagonal 1: 270.2 ym
Diagonal 2: 491.1 um




20 I Test sample synthesis? j
Zinc Zinc Layer Top Coat Top Coat

/.inc _ _ ‘

o ‘
Zinc + Amorphous 5 360 ’ 100
Alloy
inc +
Zine -+ WE 5 850 1 100
Amorphous
Coarse Bead BAAM - - _ _
inc +
Zinc + Amorphous 20 | <3.5mm ) c 500
Alloy (milled after deposition)
Zinc + WE 20 o en 5 ~500
Amorphous (milled after deposition)

Update with

Brinell

Aluminum Substrate hardness #

BAAM Substrate




21 1 ICP on HDPE

*Non-uniform curvature due to slower heat transfer through substrate

TWA Zn on HDPE
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