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Both algorithmic and computational
techniques are stressed in Z power
flow and load PIC simulation

• Volumes are large and sheaths are small.

• Plasma densities range from near vacuum to above solid

density.

• Characteristic plasma frequencies are high pulses can be long.

• Pulsed power, power flow and load dynamics are closely

coupled.

Here we discuss methodologies being employed in the new code CHICAGO.



jlIVI‘. Voss Scientific Problem: Typical MHD is fast but
approximate, PIC is accurate but slow

• Traditional plasma simulation programs make use of fluid continuum, magneto hydrodynamics (MHD) approximations
which are computationally fast, but inadequate in many situations, and its assumptions can be invalid;
Electromagnetic Particle-in-Cell (PIC) simulation is adequate for more situations, but is much slower;

• Techniques to bridge the divide between MHD and PIC have been slow to develop;

• Existing physics simulation codes, magneto hydrodynamics (MHD) and Electromagnetic Particle-in-Cell
(PIC codes) lack:

- Advances in high-level physics, material data bases,
- Parallel algorithms,
- Use of modern HPC computing technology required for adequate solutions;

The pitfalls of these codes have several negative quantitative impacts, including:

Typical MHD Code:
• Assumes velocity distribution.
• Assumes small MFP, no mix.
• Transport coefficients break down

at critical phases, temperatures, and
time scales in plasma evolution;

• Many knobs.

Typical PIC Code:
• Limited to low density,

energetic plasmas in order
to resolve Debye length.

• Requires many particles
per cell.

• Slow to obtain results.



CHICAGO developed to bridge gap between PIC and MHD for high
power fusion, Z power flow, and diode plasmas.

PIC methods are applied to particles using several different descriptions or equations of motion.
• Kinetic, multi inertial fluids, quasi-neutral MHD-like fluid with increasing level of approximation.

• Because all species are particles, migration from one EOM to another is seamless.

• Interactions between all particle descriptions can be treated with fluid-like or binary methods.

• Charge-conserving EOS/radiation physics.

• The particle number per cell of all descriptions is controlled with Adaptive Particle Management technique.

Advanced Monte Carlo treatments for gas breakdown, ionization.
• PICMC including excitation, ionization, attachment, recombination

• Energetic electron interactions in gas/solids (ITS).

• Photon transport including molecular photo ionization and emission.
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Advanced partial-cell method yields second-order accuracy for curved conducting boundaries
including charged particles.

Combines both MHD and PIC codes and adds advanced physics, state-of- the-art hardware,
accelerators (such as GPUs and Intel Xeon Phi), and algorithms;
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Novel hybrid/implicit algorithms developed to
reduce computational time when physics valid

- Advanced Direct Implicit Method for kinetic/multi-fluid PIC.
o E
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- PIC fluids have equations of motion and energy. Macroparticles carry internal energy, EOS, radiation..

- Advanced Multi-Ion Quasi-Neutral PIC algorithm includes effects from kinetic and multi-fluid particles.
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PIC Multi-Fluids are treated similarly to kinetic
with the exception of additional EOM and energy
equation terms*

The momenta of electron and ion macroparticles are

advanced by the Lagrangian force equations
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1. PIC fluid position and velocities are advanced on the grid.
2. Currents, charges, susceptibilities, densities, energies, pressures, etc.

are scattering to the grid where temperatures, pressure gradients, and
momentum exchange between species are calculated and fields
advanced.

3. Change in temperatures, internal energies, momentum, as well as
Lorentz force, are gathered back to particles.
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*D. R. Welch, et al., Phys. Plasmas 16, 123102 (2009); C. Thorna, et al., Phys. Plasmas 18, 103507 (2011).



Adding 2nd order Cloud-in-Cell shape* to
existing trapezoidal shaped particle

New 1D density form factor Original 1D density form factor
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• In both shapes, the charge conservation is obtained by integrating the continuity equation.

• E field forces from the natural cell positions with linear weighting in the E direction and using form

factors in the other two directions.

• The 2nd order shape can have a 1 to 2 orders of magnitude smaller energy error than the Wep shape.

• Rewrote all current, charge, susceptibility and collapse algorithms to accommodate new shape.

• With significant scattering, numerical cooling can only be controlled by more particles.

*T. Zh. Esirkepov, Comp. Phys. Comm. 135, 133 (2001); T. D. Pointon, Comp. Phys. Comm. 179, 535 (2008).



CHICAGO algorithms are being benchmarked on
relevant plasma problems:

Z Convolute

Electrode plasma simulations showing

enhance current loss measured on Z.
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High Power Z Convolute Modeling:

• The coupled Magnetically Insulated Transmission Line  and Post-Hole Convolute 

on Z is a complex 3D structure in which charged particle emission and electrode

plasmas dynamically evolve, leading to current loss

• Over the past 20+ years, 3D EM PIC simulations have been used to aid in the

design and analysis of this MITL/Convolute system.

• The time-dependent evolution of dense electrode plasmas is currently believed

to be a significant component of the overall current losses on Z.

• New computational modeling developments in Chicago are already leading to

new understanding of the various current loss mechanisms.

Require — 0.002 cm resolution in
> 10000 cm3volume.

Must resolve coce At < 10 in 10-100
MA current device. j
"Halfolute" model

a) 6

4

E
c_.)
2

INI

0

2

b) 3

E

Load

0 5 10 15
r (cm)

20

2-

d down

6 8
x (cm)

10 11

25



The Reduced Bertha Circuit Model is in Excellent
Agreement With the Chicago EM Cold Test Simulation
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Final MITL
inductance
and load
model

The final transmission line of the EM simulation is terminated by an equivalent transmission line model to give an

accurate representation of the final MITL driving the MAGLIF load.

The circuit model uses 4 input voltage waveforms as inputs and these are provided by

the full Bertha Z model.

In the reduced Bertha model (Hutsel), the EM simulation volume is replaced by an

equivalent circuit description with (optional) loss model functions. 10



The 3D EM CHICAGO simulations indicate the evolution of dense
plasma that fills the AK gap on the downstream side of the post:
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Am/

being used to model individual Z
shots (validation): 70-mm SS
wire array load.
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Direct comparisons between a physics-based circuit model of Z (Hutsel)
and the Chicago simulations are being used to tune the circuit model loss
mechanisms (Electron-ion simulation, dynamic load)

The load current peak and stagnation values from Chicago and Bertha agree to within 2%.
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Initial conditions were approximately
that of a typical DPF plasma sheath

Simulations were initialized with a preformed

plasma sheath.

The drive current rose fast to a constant value.

Current was scaled keeping the initial radius and

4
drive parameter constant (

n0R 
= 5.25x105

/2
 
A ).

MRT seed was applied by adding a random speckle

to the density in the sheath region (±6%)

Simulations largely explain turnover in 14 neutron

yields in DPFs, Gas Pinches

D.T. Offermann, et al., PRL, 116, 195001 (2016).
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Advances Model Intense Electric
Fields that drive ion beams in DPF and
Zpinches —> realistic neutron yield

• CHICAGO captures the induced
electromagnetic fields which have
the effect of producing high-
energy ion beams;

• The ion beams contribute to as
much as half of the total nuclear
fusion in such plasma pinches;
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The intense electric fields seen in this simulation are responsible for a
substantial contribution to fusion in plasma pinches. The ability of
CHICAGO to capture this physics and the high speed with which it solves
them made it possible to settle a nearly 50 year old debate explaining why
some pinches perform better than others. The results have been
published in: D.T. Offermann et al, Phys. Rev. Lett. 116, 195001, (2016). 25



New Particle Form-Factor improves
Wass scientific conservation by factor of 2 (< 10% of 13 kJ)
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Perturbed Al liner was imploded by a 20 MA
current drive for MRT study.*

An Al can with a wall thickness of 2.92 mm and OD of 6.32 mm Circuit was applied to provide a linear ramp to 20 MA in 80 ns
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*D.B. Sinars, et al., Phys. Plasmas, 18, 056301 (2011)



Quasi-Neutral Simulations exhibit agreement
with experiments and other code results*
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Simulations of a supersonic
sphere in a hydrogen plasma
were performed
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Shadowgraph image of a 9/16 inch sphere traveling in air at
Mach 3.

Photograph from U.S. Army Ballistic Research Laboratory, reprinted in M. Van

Dyke, An Album of Fluid Motion.

M. Van Dyke, An Album of Fluid Motion, The Parabolic Press, Stanford,

California(1982)
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Simulations of the Riemann shock
tube were performed

t = 0.0 ps
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Chicago simulations compared with published
LSP and Hydra results

Comparison of LSP and Hydra shock tube simulation

(C. Bellei et al.) Chicago simulation using parameters in C. Bellei et al.
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FIG. 3. Comparison of Hydra solution vs. (fluid) Lsp solution of the Rie-
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Memory Management is key issue in code
performance

• Particle and grid quantity loads frequently are

not uniform within volume. So a strictly volume

decomposition can have severe bottle necks.

• Memory conflicts in shared memory with

multiple threads can slow down processes.

• GPU threads are even more memory limited.

• Voss is developing an OpenMP library THRIL for

agile task and data sharing.

THRIL Library Description
➢ Tile: A cache-line or GPU-memory sized construct

containing all writable data for a subdomain.
■ Each MPI rank is assigned a distributed-memory

domain.
■ Each domain is assigned a set of shared-memory tiles.
■ Multiple tiles per OpenMP thread are created to

enable task sharing.
■ Data structures within each tile are blocked to include

structures and included arrays and substructures in
one data block. Each block is cache-aligned to avoid
false sharing.

■ Blocking also optimizes data copying for GPU use.
➢ Tiles and threads are created at initialization, and persist

through the entire simulation.
■ Effectively, an MPI-like execution model with agile

data sharing.
■ This reduces fork-join overhead.
■ Data is shared by the allocation of data structures

before entering the parallel section. All local variables
are created within the parallel section.



Decomposition Scheme with Threads/Tiles:

Simulation Volume is broken into Regions/Domains

z

MPI Rank

Domain Boundary
Region Boundary (1 domain = 1 MPI Rank)

OpenMP or GPU threads process
both particle and field calculations within available Tiles.

Grid cells

 i  1

Tiles will have a fixed size determined by size of
efficient memory transfer. (likely 2x2x2 or 3x3x3). Threads
attached to domain will grab tiles based on their load.

Load Balancing can be accomplished by adjusting domain volumes and number
of threads per MPI Rank according to computational load.



THRIL outperforms MPI in CHICAGO

• For the model shown below, the particles were distributed along the entire y axis, but only one cell
wide, providing maximal and no parallelism except as the particles move for the fixed MPI
decomposition.

• The ability of the shared-memory tiling method to adapt to different particle distributions is its

greatest advantage over fixed-rank decompositions.
• Similar results are seen for the models with nonzero drift velocity, i.e., a heavy communication load.

,
8

7

6

a_
z 5
-o
w
w
a_ 4
v)

3

2

1
0

Speedup Norm, 64x1, no drift, Model B Speedup Norm, 1x64, no drift, Model A

10

9

s ..
•••••••• .•..••• .••

.....11: ... .. .. ......... 
.....

i....:

0 2

.•••••
.••

.••••• 

8.•

..... 
........... .. .. .. .. .. 

............ .. .. .... 
........

.. 
.....

........1............................. .. .. 
....... 

...... ...... 
..............

.••••

.••• 7

a 6
.•••• 

,........
-az
w 5

*

aw
cn 4

6 8 10 12 14 16 18

Number of processors

MPI can ideally balance

3

2

1

%I

........
......................................

......**1 

•
• 

...................

im. 
..............

8 a • •

•

.•• . ••••...„... .... •

0  

0 2 4 6 8 10 12 14 16 18

Number of processors

MPI cannot balance at all.



Many challenges left in Z simulation

• Problem size, duration, resolution requirements are challenging.

• Fast fluid modeling, both quasi-neutral and multi-fluid, is extremely

useful when the assumptions are valid.

• Shear number of plasma periods to simulate requires improved

accuracy in implicit kinetic mode.

• Efficient and task and memory management critical for speed with PIC.


