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Team Member Qualifications and Expertise

Kenneth Dunton (UT Austin); Ecologist with expertise in coastal ecosystem dynamics, food web relationships, and biogeochemical cycling in estuaries

(USGS); Integrating field studies and remote sensing data in permafrost, research campaigns along remote arctic coastlines, field
instrumentation and near-real time data transmissions

Jeremy Kasper (UAF); Physical oceanography of shallow ice covered continental shelves including observations and modeling

Benjamin M. Jones

(SNL); Computational solid mechanics, finite element analysis, numerical methods, constitutive models, large deformation, plasticity,

Alejandro Mota fracture and failure.

Matthew A. Thomas (USGS); Experience with slope stability assessment via stochastic Factor of Safety computation, and numerical simulation of coastal slope
) instability.

Supported by the Laboratory Directed Research and Development program at Sandia National Laboratories.

Close collaboration with USGS Pacific Coastal and Marine Science Center (Li Erikson, Ann Gibbs, Bruce Richmond, and Tom
Lorenson), and strong working relationship with Scott Dallimore at the Geological Survey of Canada
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= |ncreasingly Energetic Arctic Ocean =it

Arctic sea ice on September 10, 2016 (minimum)
Gold line marks the 36 year average minimum sea ice extent (1979-2014)

" 66 more open water days than in 1979 (skewed
towards fall)

= \Wind-seas =2 swell-seas s

= |ncrease in wave energy and storm surge levels
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= Permafrost

= Permafrost extends from the Brooks Range to the =
Continental Shelf and is up to 600m deep

retrogressive thaw slumping block failure

= |ce acts to bind unconsolidated material
= Thermal, chemical, and mechanical processes can
alter state of ice

o PredommantGeomorphoIogy ice-wedge

0 on nms
rough
—— — V"», y iy o S~ v
( — | Basin
* Active layer

= Permafrost V' Ice wedge

= State of the art erosion modeling active layer detachment

= Trend projection, empirical relationships, 1-D

steadx state heat flow, ...
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= |nfrastructure

= 6 active DOD sites along
northern coastline 19,2

EXPLANATION
T T ! Shoreline Change Rates (m/yr)
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= 30 coastal villages threatened 11 7,y

= Anticipated economic impact is
~1Billion 21,4

Jim -
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= Coastal food webs
= biogeochemical influx into ocean effects ecological stability of region
= Carbon-climate feedbacks

= Permafrost stores half of all terrestrial organic carbon (1,330-1,580Pg 1.2, twice the amount in the
atmosphere); degrading coastline mobilizes the carbon content
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This project will deliver a field-validated predictive model of thermo-chemical-
mechanical erosion for the permafrost Arctic coastline.

= The event-based projections will provide a quantitative tool
= for guiding military and civil infrastructure investments, and
= understanding coastal food webs and carbon-climate feedbacks.

= Redistributed eroded sediment in the environment enables
= prediction of deposition locations,
= tracing of toxic eroded materials, and = estimates of biogeochemical fluxes.

= Establish enduring relationships with Arctic invested parties
= University of Alaska Fairbanks, = Geological Survey of Canada (GSC), = USAF,
= UT Austin, = USGS, = Army Corp of Engineers,
= BLM, = CRREL L
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validated, single storm, tightly coupled thermo-chemical-mechanical model
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= Time-varying input variables over
the duration of a storm:
= Water level, temperature, & salinity

5m

=  Multi-physics finite element
model of coastline
=  Physics:
= Finite deformation plasticity model

= 3-D unsteady thermal flow and
chemical characteristics

= Multiple archetypes to capture Permafrost
. s . " 45 m
variability in coastline T pr—
= Validation campaign I I I \ 5m
MUK 8 -
M ice wedge ‘-_ ___________ ; 12:,“-.

O ice-rich sediment  degree of incision [m]  mean sealevel «—— 3m




Oceanography in Mechanistic Model

on Development of Wave set-up
wave field in the < conditions 2-way
Arctic to develop ; coupled with

; nearshore BC’s circulation

* high resolution near
shore environment

* capture set-up
(storm surge and
runup)

* wave energy
inclusive of induced
current effects

» surface winds
* jce cover

* temperature (surface
and ocean)

* solar radiation
* persistent currents

= Potential Key Advances

= |nclusion of ice coverage for fetch limited wave growth

= Knowledge of wave energy along broad coastline

= Set-up determination inclusive of bathymetry and wave energy
= Ability to accurately predict temperature at bluff face through

mixing of clines in the ocean

Sﬂm man ter o obenpling vomrid c
National LASK
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Circulation and
cn thermodynamic
&= mixing 2-way
“@ coupled with
() waves

20170701 00h

« ability to model
mixing of
temperature and
salinity clines

* capture induced
currents in
nearshore
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Sig. Wave Height (m)




Thermo-chemical-mechanical Finite

Element Mechanistic Model

Thermo-chemical

» Sediment type

* |lce volume

» Water volume

* Pore size

« Salinity

» Temperature field

)

Mechanical

« Strength relationships as a
function of thermo-chemical
state

» Morphology of coastline

» Stress-strain relationships of
permafrost and ice

ALBANY*

= Potential Key Advances

= Tightly coupled strength and thermo-chemical states
= Failure modes develop from constitutive relationships

in FEM model (no empirical relationships!)

= 3-D unsteady heat flow inclusive of the chemistry

*Albany is an implicit, unstructured grid, finite element code for the solution and analysis
of multiehxsics Eroblems develoged bx SNL and released in Eublic domain Distance from back (m)

200000-

Normal tensile stress along center of fop surface

150000-

Stress (Pa)
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Validation Data: Drew Point inteqal

Obtaining data at resolution needed to validate mechanistic model AT
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Parameterization enabling coastline view & historical validation
= Model Parameterizations

= |dentify the variable sensitivities that manifest distinct erosional behavior
= Coastline Parameterizations

= |dentify coastline stretches with characteristics that cause unique model parameterizations
= Multiple Archetype Runs

= Create a “catalog” of coastline archetypes and their overall response to a set of storms
= Historical Validation

= Using historical data for oceanographic conditions, coastline and model parameterizations, and
documented shoreline retreat rates, work to match aggregate shoreline retreat rates

Drew Point

Oliktok

4~200 miles
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Parameterizations combined with earth climate models to enable future predictions

= Using IPCC RCP8.5* project
oceanographic conditions into the
future

= Employ the statistical model and
coastline architecture in concert with
projected conditions to estimate
future levels of erosion

= Use estimates of future erosion
levels:
= infrastructure impact analysis
= nearshore ecological studies Ry

= tracing of eroded material

(eredit: B.‘Jones_,‘ U.S. Geological Survey)

*The RCP8.5 combines assumptions about high population and relatively slow income growth with modest rates of technological change and energy intensity

improvements, leading in the long term to high energy demand and GHG emissions in absence of climate change policies.
— ———————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————
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= Chief impacts of this model
= predicted erosion rates over time (given climatic input data or weather forecasts)
= designed to coupled with infrastructure impact models
= facilitates ecological impact studies key to understanding food-webs
= aidsin tracking eroded sediment for deposition or toxic tracing studies

= enables informed and sustainable risk management decisions with respect to infrastructure
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Arctic Coastal Erosion Model: Component Coupling
Earth

System . . prempltatmnsm(x,t)
d l ‘.. » evaporative flux : o Tatmo (%,0)
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Validation Data: Drew Point

Obtaining data at resolution needed to validate mechanistic model

e Oceanographic
* Wave Spectra (Significant wave height, direction and period); Water Temperature; Water
Salinity; Water Depth; Water Currents; Bathymetry; Ice Thickness and Velocity
* Atmospheric

 Air Temperature; Incident / reflected solar flux; Wind speed / direction @ 3 m above
ground; Snow depth; Atmospheric pressure; Ground temperature (10 depths: 5-120cm);
Soil Moisture; Rainfall
* Permafrost

* |ce content (cryostructure & unfrozen content); Salinity content; Grain size
characteristics; Silt / sand fraction; Stress-Strain Analysis (soil strength testing) as a
function of temperature (up to thawing); Permafrost Temperature; Active Layer Depth

e Coastal Morphology

* |Ice Wedge Geometry; Shoreline positions; 3-D bluff mapping; Niche Geometry



