
New Insights about the Fundamental Mechanisms of
Friction in MoS2

John F. Curry', Adam K. Hinkle, Tomas Babuska1,21 Michael Chandross1, Michael T. Dugger,
Brendan L. Nation', Nicolas Argibay', Brandon A. Krick'

'Materials Science and Engineering Center
Sandia National Laboratories
Albuquerque, NM

'Department of Mechanical Engineering
Lehigh University
Bethlehem, PA

Sandia
National
Laboratories

U.s_ DEPARTMENT OF SA I .W otriekCtli

E N E RGY /1/IFÅT P-"ilNational Nucfear Securiiy Administration

LEHIGH
UNIVERSTTY

Sondra Natrona; Laborarories is a multi-mission laboratory managed and operated by National' Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell linterna-
tionat har the U. S. Deparrrnent of Energy National Nuclear Security Administration under compact DE-N.40003525.

SAND2018-3273C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.



Fundamental Studies and Applied Challenges
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MoS2 Coatings

molybdenum disulphide
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(A) Depiction of the layered structure of MoS2 larnellae stacked upon one
another. (B) Hexagonal stack lattice structure of MoS2 with atomic spacing
and sequencing.
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Recent Temperature Dependence in Literature
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Macro-scale tests by Hamilton only tested composites - not all results agreed with findings of increased
friction at reduced temperatures.

AFM studies by Zhao reported unusually high friction (p- 0.8); very high contact pressures & sharp sili-
con tip may not be representative contact conditions
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High Temperature Tribometer Studies
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High Temperature Tribometer Studies
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• MoS2 exhibits a thermal to athermal transition
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• Hysteresis most likely due to high friction typi-
cally observed during run-in
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High Temperature Tribometer Studies
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High Temperature Tribometer Studies
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Molecular Dynamics Study of MoS2 Temperature Dependence
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Molecular Dynamics Study of MoS2 Temperature Dependence
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Molecular Dynamics Study of MoS2 Temperature Dependence
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Molecular Dynamics Study of MoS2 Temperature Dependence
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Molecular Dynamics Study of MoS2 Temperature Dependence
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Molecular Dynamics Study of MoS2 Temperature Dependence

0.25

0.20

.8 • 0.15 •

e

0.10 -

:t

0.05-

0.00

0
0 °co

O 
0

= O. 046

E = 1.25 kifino1

top toyer., 1 kin/s
rigid layer

rnobile layer

nan o-platelets

rnobile layer

rigid layer

..1)11}1.11.11111.113,11111113.1111111 .ril.

.1

- *IL 11.6- all -0- - ht.  - - 4.0 .4,11, -

..-Vii.1,1„.4.0.11 lig, ieitIFFW" tr.iclig

• •

,ur.ra= 0.169

E.= .1.37

side view

o exp
o Dunckle
• MD defects

(1-exp)

= 0.130

E
a 
= 1.1 5 ki6ro?

ocr2b
o cep __Y_ _

%%zoo?'
Iftrzummommmummic

0 50 100 150 200 250 300

temperature, T {IQ

Sandia National Laboratories

Mind the Gap

I nm

• Noticeable difference between simulations and ex-
periments is defect density

• Simulations had many defects in order to maintain
stoiclr-iiornetry:

06



Molecular Dynamics Study of MoS2 Temperature Dependence
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Spiral Orbit MoS2: Endless Run-ln and Role of Defects
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Spiral Orbit MoS2: Endless Run-ln and Role of Defects
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Are Effects of Commensurate Contact Observed in MoS2?
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• Lattice rotation (commensurability) plays an important role in
the interfacial shear 5trength of materials, leading to superlubric
conditions

• Molecular dynamics with nudged elastic band
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Are Effects of Commensurate Contact Observed in Mo52?
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• Lattice rotation (commensurability) plays an important role in
the interfacial shear 5trength of materials, leading to superlubric
conditions

• Molecular dynamics with nudged elastic band
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Flake Rotation Energy Barriers
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Flake Rotation Energy Barriers
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MD Simulations
brief description here...
how it was done... pres-
sure... etc...
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Thermokinetics Model of Friction
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temperature, T(K)
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temperature dependent regimes

1) not enough thermal energy to
translate & rotate, stress driven

2) energy barriers to incommensu-
rate translation are overcome and
thermal energy drives flake mobility
reducing friction

iriTAL
11006 (eV/atom)

kT @70K
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temperature dependent regimes

1) not enough thermal energy to
translate & rotate, stress driven

2) energy barriers to incommensu-
rate translation are overcome and
thermal energy drives flake mobil4
reducing friction

(eV l ato m)

kT@70K

3) Overcome energy barrier to com-
mensurate sliding, excess thermal
energy enhances flake mobility and
leads to unstable interfaces

Er., R30.025 (eV I atom)

kT@290K

E 
,traP3X 

RI 0.027 (eV / atom)

kT@313K

- return to athermal behavior
- deviation from (1-exp) model fits

250 300 3 50 400 - instability allows for flakes to be
easily pushed out of contact, amplify-
ing wear
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Do Composites Help pin MoS2 Lamellae?

10-3

pure Mo52

fit
0

MoSISb203/Au
0

•

10-' 
-200 -150 -100 -50 0 SO 100 150

temperature CC)

Wear occurs at higher temperatures for pure MoS2
but not composites

Colbert has shown for MoS2 composites that cold
temps produce small, flaky wear debris & high temps
produce a range of debris sizes.

May be a bi-product of crystallite mobility

(a) iir^‘%

RT 474/"b.& countetface

(c) a-C

J4/ 
51i rface

6 nnl

ref:Scharf et at AC5 Applied Material's& interfaces 2013

Sandia National Laboratories 1 1



Stop-Time Studies: The Link Between Run-ln & Commensurability?

0.15

1 min

0.15

D.1

d) 0.05

0
0

50 /00 150 200 250 0

Zip — 0.035
twice steady store p -`)

cycle #

2 h r

Dry Nitrogen; °Oink 20°C 0.10

min hold]

0.08

o

0.06

0.04

0.02

50 100 150 200 250

0.00

Alt tests run in same wear track in Dry N2

50 100 150 200

aid

2hr hold

.10•1•••••••

250 0

cycle #

50 100 150 200 25D

-

_

- Room Temp (20 cC)

—Ili— pi return

steady state

10' 1 03 104

stop tirne (s)

Stop times: l Os; 30s; 1 min; 5rnin; 30min; 2hr
Environment: Dry Nitrogen
Test Type: Reciporacting Pin on Flat

Load: 10OmN

Sample: N2 Sprayed MoS2

Analysis

(1 ) longer wait times show higher 11 return.

(2) barring effects of trace amounts of water - increased
run-in friction may be structural in nature

n Sandia National taboratories 1 2



Stop-Time Studies: The Link Between Run-ln & Commensurability?

0.15 Dry Nitrogen; 00mN; 20°C

0.15

0
0 50 100 150 200 250 0 50 100 150 200 25D

cycle #

ri Sandia National taboratories

1 -min

min hold]

•

50 /00 150 200 250 0 50 100 150 200 250

Zip — 0.035
twice steady state p

cycle #

2 h r

NI tests run in same wear track in Dry N2

2hr hold

0.10

0.02 - Temp (-50 cr) Room Temp (20 ''C)

return —41-11 return

- steady state steady state

0.00
101

stop tinie (s)

Stop times: l Os; 30s; 1 min; Smin; 30min; 2hr
Environment: Dry Nitrogen
Test Type: Reciporacting Pin on Flat
Load: 1 00mN
Sample: N2 Sprayed MoS2

Analysis

(1) longer wait times show higher 11 return.

(2) barring effects of trace amounts of water - increased
run-in friction may be structural in nature

(3) lower temps give higher steady state 'land closer to 11
return at higher wait times, possibly by thermally limiting
flake rotation 12



UHV Fast-Entry; Extreme Temperature Tribometer

5K-800K
cryostat

V' 4

tribometer
ChaMber

chamber

sample

ftransport

UHV System
- 5K - 800K temperature range cryostat
- Fast Entry Chamber with inert purging chamber
-Transportable sample rod to carry samples under
vacuum for short periods of time
- UV Bakeout Lamps
- Modular design to allow for additional equipment
in the future

Sandia National Laboratories

tribometer chamber

UHV Rated Tribometer
- Cantilever flexure and capaci-
tance probe based load metering

- Linear servo drive stage recipro-
cation & full XY sampie positioning

Studies Enabled
- Lower temperature ramps to confirm temperature
dependence & compare to MD
- Clean environments with very near negligible level
of contaminants (and water)

1 3



Concluding Remarks

- MoS2 exhibits a thermal to athermal transition in friction and wear at room temperature

- Experiments and M D suggest there is a functional form to this temperature dependence

- Differences in energy barriers for commensurate vs incommensurate may be part of the explanation for
gap between temperature resolved experiemnts & MD results

-"StopTime"studies provide experimental evidence that crystal relaxation may be occuring overtime and in-
creasing friction due to commensurate contact
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Thank you
Questions?
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Commensurability Rule of Mixtures
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Commensurability Rule of Mixtures
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Analysis

• Additional incommensurate flakes reduce friction
force
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force
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Commensurability Rule of Mixtures

av
e 
fo
rc
e 
(k
ca
l/
mo
l-
A)
 

14000

•
12000 11-

10000

8000

6000

4000

2000

0
o 1

•

2

y=-2913x+11182
R2=0.9461 -

3

number of incommensurate flakes

4

Analysis

• Additional incommensurate flakes reduce friction
force

• Appears to follow a linear rule of mixtures, can be
used to refine model
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Commensurability or Water?
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— {2) 10s air exposure inbetween

(3) no exposure in between

All tests run in some woor track in Dry N2,10 minutes opart
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cycle

Method

200 250

(1) initial sliding in dry N2
- ln the 10 min wait between tests, exposed tribometer
to lab air via glovebox antechamber
(2) Resumed sliding in dry N2 (after poisoning)
- Waited 10 min in dry N2
(3) Resumed sliding in dry N2 (no poisoning)
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(1) What causes"re-run-in"- flake re-orientation or water?

(2) Poisoning surface in between showed no increase over
samples sitting in dry N2
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Commensurability or Water?
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(1) initial sliding in dry N2
- ln the 10 min wait between tests, exposed tribometer
to lab air via glovebox antechamber
(2) Resumed sliding in dry N2 (after poisoning)
- Waited 10 min in dry N2
(3) Resumed sliding in dry N2 (no poisoning)
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Discussion

(1) What causes"re-run-in"- flake re-orientation or water?

(2) Poisoning surface in between showed no increase over
samples sitting in dry N2

(3) Restricted by antechamber pump down times
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Assessing Running Film Formation: Spiral Orbit & XRD
r.

25 mm

Spiral Orbit XRD
- to enable XRD measurements, large worn spirals were made
XRD Parameters
- scanned on Panalytical Empyrean XRD; Cu Ka radiation
- Pixcel 3D detector; scanning line (1D) mode
- Bragg-Brentano HD incident beam optic

ro Archirneclean

S pi ra l Orbit Testing

r. = 1 mm

r = 10 mmo 

=100 pm

V = 1 mrrils

Analysis
- testing in 20 %RH N2 at 1N showed no differences from dry N2
- orientation is not harmed, cannot comment on RF formation

- sample to sample unworn are similar (black and grey lines)
- high load caused increase in (002) peak and (100) peak
- indicative of more basal ordering at higher loads than 100 mN

Sandia National Laboratories

sputtered MoS2 spiral orbit 0 N)

— unworn
— dry N2
— 20%RH N2

10 12 14 16 18
20 (d eg ree 5}

10 20 30 40 SO 60

20 (degrees)

sputter sample quality check

1 0

In
te
ns
it
y 
(a

.u
.)

 

10 12 14 16
20 (degrees)

18

— unworn 1

- unworn 2

— 1N

- 1CIOnIN

. . . 
20 30 40 SO 60

20 (degrees)
A03


