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Fundamental Studies and Applied Challenges
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MoS, Coatings
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Recent Temperature Dependence in Literature
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ref: Zhao et al. Phys. Rev. Lett. 2009

Macro-scale tests by Hamilton only tested composites - not all results agreed with findings of increased

friction at reduced temperatures.

AFM studies by Zhao reported unusually high friction (u~ 0.8); very high contact pressures & sharp sili-
con tip may not be representative contact conditions
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High Temperature Tribometer Studies
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High Temperature Tribometer Studies
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. l"u"lc}S2 exhibits a thermal to athermal transition

in friction and wear at room temperature

« Hysteresis most likely due to high friction typi-

cally observed during run-in
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High Temperature Tribometer Studies
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« MoS, exhibits a thermal to athermal transition
in friction and wear at room temperature

« Hysteresis most likely due to high friction typi-
cally observed during run-in

« Return sliding does not appear to follow typi-
cal arrhenius behavior
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High Temperature Tribometer Studies

dead weight
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« MoS, exhibits a thermal to athermal transition
in friction and wear at room temperature

« Hysteresis most likely due to high friction typi-
cally observed during run-in

« Return sliding does not appear to follow typi-
cal arrhenius behavior, more so (1-exp) func-
tional form
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Molecular Dynamics Study of MoS, Temperature Dependence
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Molecular Dynamics Study of MoS, Temperature Dependence
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« MD simulations show higher levels of friction, yet

06



Molecular Dynamics Study of MoS, Temperature Dependence
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Molecular Dynamics Study of MoS, Temperature Dependence
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Molecular Dynamics Study of MoS, Temperature Dependence
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Molecular Dynamics Study of MoS, Temperature Dependence

friction coefficient, p
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Molecular Dynamics Study of MoS, Temperature Dependence
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Spiral Orbit MoS2: Endless Run-In and Role of Defects

Archimedean HES ' ' Y L
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« Friction remains high over meters of unidirectional sliding, useful
method in testing role of defects

» Sheds light on role of TF formation in reducing friction.
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Spiral Orbit MoS2: Endless Run-In and Role of Defects

0.20
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» Sheds light on role of TF formation in reducing friction.

intensity (a.u)

» Load dependence noticed at 100/1000 mN test cases. Increased loads

run-in faster, exhibit higher degree of re-orientation sooner, as con-
firmed by XRD
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Are Effects of Commensurate Contact Observed in MoSz?
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e | attice rotation (commensurability) plays an important role in
the interfacial shear strength of materials, leading to superlubric
conditions

¢ Molecular dynamics with nudged elastic band
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Are Effects of Commensurate Contact Observed in MoSz?
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e | attice rotation (commensurability) plays an important role in
the interfacial shear strength of materials, leading to superlubric
conditions

¢ Molecular dynamics with nudged elastic band
¢ Commensurate barrier ~10x incommensurate
e Activation energy from exp/sim = 1.3 kJ/mol, NEB = 0.66 kJ/mol
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Flake Rotation Energy Barriers

MD Simulations
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« Symmetry about 60% only takes a few degrees to
become incommensurate

» Local maxima occurs at 60° regardless of symmetry
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Flake Rotation Energy Barriers

0.35 S .
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« Symmetry about 60% only takes a few degrees to
become incommensurate

» Local maxima occurs at 60° regardless of symmetry

 Energy barrier to rotation converges at larger flake
sizes ~ kT at 290K
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MD Simulations

brief description here...
how it was done... pres-
sure... etc...

307 (60 atom)
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Thermokinetics Model of Friction
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temperature, T (K)

temperature dependent regimes

1) not encugh thermal energy to
translate & rotate, stress driven

2) energy barriers to incommensu-
rate translation are overcome and
thermal energy drives flake mobility
reducing friction

E v = 0.006 (eV [ atom)

kT @ 70K
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Thermokinetics Model of Friction

commensurability ‘ ‘ defect density
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temperature dependent regimes

1) not encugh thermal energy to
translate & rotate, stress driven

2) energy barriers to incommensu-
rate translation are overcome and
thermal energy drives flake mobility
reducing friction

E v = 0.006 (eV [ atom)

kT @ 70K

3) Overcome energy barrier to com-
mensurate sliding, excess thermal
energy enhances flake mobility and
leads to unstable interfaces

E_ . ~0.025 (eV /atom)
kT @ 290K

E ~0.027 (eV /atom)

O frans

kT @313K

- return to athermal behavior
- deviation from (1-exp) model fits

400 - instability allows for flakes to be

easily pushed out of contact, amplify-
ing wear
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Do Composites Help Pin MoS, Lamellae?
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Wear occurs at higher temperatures for pure MoS,
but not composites

Colbert has shown for MoS, composites that cold
temps produce small, flaky wear debris & high temps

produce a range of debris sizes. ref: Scharf et al. ACS Applied Materials&Interfaces 2013

May be a bi-product of crystallite mobility

() Sandia National Laboratories 11



Stop-Time Studies: The Link Between Run-In & Commensurability?
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Analysis

(1) longer wait times show higher p return.

(2) barring effects of trace amounts of water - increased
run-in friction may be structural in nature
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Stop-Time Studies: The Link Between Run-In & Commensurability?
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(1) longer wait times show higher p return.

(2) barring effects of trace amounts of water - increased
run-in friction may be structural in nature

(3) lower temps give higher steady state p and closer to
return at higher wait times, possibly by thermally limiting
flake rotation 12



UHV Fast-Entry; Extreme Temperature Tribometer

5K - 800K &
cryostat \ r )
d sample
M f transport
tnbometer k 2 g
J“

chamber - ‘ . W 3 entry
w = chamber

UHV System

- 5K - 800K temperature range cryostat

- Fast Entry Chamber with inert purging chamber

- Transportable sample rod to carry samples under
vacuum for short periods of time

- UV Bakeout Lamps

- Modular design to allow for additional equipment
in the future
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tribometer chamber

side view

UHV Rated Tribometer
- Cantilever flexure and capaci-
tance probe based load metering

- Linear servo drive stage recipro-
cation & full XY sample positioning

i50 view

Studies Enabled

- Lower temperature ramps to confirm temperature
dependence & compare to MD

- Clean environments with very near negligible level
of contaminants (and water)
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Concluding Remarks

- MoS, exhibits a thermal to athermal transition in friction and wear at room temperature
- Experiments and MD suggest there is a functional form to this temperature dependence

- Differences in energy barriers for commensurate vs incommensurate may be part of the explanation for
gap between temperature resolved experiemnts & MD results

-"Stop Time"studies provide experimental evidence that crystal relaxation may be occuring over time and in-
creasing friction due to commensurate contact
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Thank you

Questions?
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Commensurability Rule of Mixtures
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« Additional incommensurate flakes reduce friction

force

 Appears to follow a linear rule of mixtures, can be

used to refine model
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Commensurability or Water?
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—— (1) initial sliding
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= ) (2) no exposure inbetween
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| All tests run in same wear track in Dry N2, 10 minutes apart
{] 1 1 1 1 1
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cycle #
Method

(1) Initial sliding in dry N,

- In the 10 min wait between tests, exposed tribometer
to lab air via glovebox antechamber

(2) Resumed sliding in dry N, (after poisoning)

- Waited 10 min in dry N,

(3) Resumed sliding in dry N, (no poisoning)
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1. exposure during u. ~0.093
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Discussion

(1) What causes “re-run-in” - flake re-orientation or water?

(2) Poisoning surface in between showed no increase over
samples sitting in dry N,
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Commensurability or Water?
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(1) Initial sliding in dry N,

- In the 10 min wait between tests, exposed tribometer
to lab air via glovebox antechamber

(2) Resumed sliding in dry N, (after poisoning)

- Waited 10 min in dry N,

(3) Resumed sliding in dry N, (no poisoning)

() Sandia National Laboratories

1. exposure during u. ~0.093
walt time '
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0 - T
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wait time (min)
Discussion

(1) What causes “re-run-in” - flake re-orientation or water?

(2) Poisoning surface in between showed no increase over
samples sitting in dry N,

(3) Restricted by antechamber pump down times
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Assessing Running Film Formation: Spiral Orbit & XRD

r, r Archimedean
Spiral Orbit Testing

ri;=1mm
rpzmmm
o =100 pm

25 mm

Spiral Orbit XRD
- to enable XRD measurements, large worn spirals were made
XRD Parameters

- scanned on Panalytical Empyrean XRD; Cu Ka radiation

- Pixcel 3D detector; scanning line (1D) mode

- Bragg-Brentano HD incident beam optic

Analysis
- testing in 20 %RH N2 at TN showed no differences from dry N2
- orientation is not harmed, cannot comment on RF formation

- sample to sample unworn are similar (black and grey lines)
- high load caused increase in (002) peak and (100) peak
- indicative of more basal ordering at higher loads than 100 mN

Sandia National Laboratories
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