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Outline of today's discussion

■ Sandia's Z Machine and the MagLIF concept

■ Pre-magnetizing the fusion fuel with the Applied B on Z (ABZ) system

■ Making a more efficient inefficient coil: Designing an electromagnet for Low-L

■ The path forward to 20 — 25 T
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SANDIA'S Z MACHINE AND THE MAGLIF CONCEPT



Sandia's Z Machine uses large currents (>25MA) to generate 100-MBar

pressures for HEDP experiments
II

  r

-0441 1 10 
4 

-NI 6,

751111 ari a t

‘.1

33 m
diameter

80

60
5

1(5 40

ci 20

Marx generators

pulse-forming lines

insulator stack 67 TW

20TW

0.5 1 1.5
time (vs)

2.5

Sandia
National
Laboratories

Magnetically-Driven Implosion

MBar

drive
current

Implosion time —50 ns; stagnation —0.1-1 ns 100 MBar at 26 MA and 1 mm



Magnetized Liner Inertial Fusion (MagLIF) combines three stages that
reduce fuel compression requirements to achieve fusion conditions
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Pre-Magnetization relaxes implosion convergence
requirements by helping confine heated fuel

Without Magnetic Field

With Magnetic Field

Time-integrated x-ray
self-emission seen in

radiographs
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When magnetized, MagLIF Liners have reduced x-ray
self emission (left) and particles are confined within

fuel on cyclotron orbits (right)
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Fusion yield trends for various fuel density, laser preheat
energy benefit from increased magnetic flux density

• A highly magnetized fuel inhibits loss by trapping
electrons to axial field lines and reducing radial
thermal conduction to cold liner wall

• The usual azimuthal MRT instability becomes
helical; initial B-field may stabilize the liner during
compression to improve fusion conditions
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PRE-MAGNETIZING THE FUSION FUEL WITH THE

APPLIED B ON Z (ABZ) SYSTEM



The Applied B on Z (ABZ) capacitor and coil system

designed to provide 10 30 T within liner volume
• Two 4-mF, 15-kV capacitor banks store 900kJ total.

• Paralleling diodes, 125mQ overcurrent protection per bank.

• Switchyard dummy load inductor available for system checks.

• 0.8 — 3mH coils ensure 2-6ms risetimes for magnetic diffusion

• Vacuum feedthrough utilizes encapsulated transition

between coaxial cable drive and coil loads
/ 
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Integrating electromagnets onto the target
geometry requires changes in Z power flow

• Initial guidance was to prioritize radial diagnostic access and
• field uniformity in liner1 Top Coil

X-ray
diagnostics

I r-
Bottom
L Coil
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L
—17MA Drive Current

r=2.5cm • We designed coil pairs with 1-2.5cm axial spacing

• An Extended Power Feed was needed to raise target above
the bottom coil of a split pair into uniform field region

• ABZ coil pairs consist of an 80-turn top coil and either a 60- or
80-turn bottom coil
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• Helmholtz-like pairs provide <1% field uniformity

• 5cm-bore coils magnetize —75cm3 region to 10 — 20 T
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The Extended Power Feed platform was designed
with three coil configurations in mind

Full-Access Spacinq (60-80)
• 10-T Operating point
• —25-30mm coil spacing for

radial diagnostic access
• 90+ shots on Z since 2013

Limited-Access Spacinq (80-80) 
15-T Operating point
—10-14mm coil spacing for radial
diagnostic access
15+ shots on Z since 2013

No-Access Spacinq (230-turn) 
20-25-T Operating point
No radial diagnostic access
Never shot on Z in this
configuration ...
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The Extended Power Feed limits achievable drive
press

Q
ures from the Z current pulse
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• Each additional nH of initial feed inductance reduces
deliverable machine current by -0.8 MA

• Higher power feed voltage drives nonlinear loss mechanisms

• Z's magnetic drive pressure should increase in step with ABZ
field and laser preheat energy to maintain liner convergence

• We are also already near the Z Facility's peak charge voltage

The extended power feed results in
initial load inductance of 7.2nH
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Fusion yield increases with magnetic field and drive current 11



By reducing feed inductance, Z can deliver
more current to a Ma • LIF liner
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The " 5 . 1 n H Low-Inductance (Low-L) platform uses

230-turn coil to magnetize MagLIF liner
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It is remarkably inefficient to utilize the
external field of the 230-turn coil like this
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Coil was designed to produce 25-T at coil midplane for No Access
configuration

Not enough headroom in bank voltage for Bz_ayg > 12-T

By reducing coil height by 50% (230 4 115 turns), average Bz at
target drops by only 6%!

Adding 2 outer radial layers would increase field by 18%!

We can design a better coil for this application.
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MAKING A MORE EFFICIENT INEFFICIENT COIL:

DESIGNING AN ELECTROMAGNET FOR LOW-L



Program guidelines dictate ABZ coil design path

The MagLIF program looks to increase constituent parameters in lockstep

• Integration by September 2018:

• ABZ field between 15 — 20 T

• Z Machine delivering 19 — 20 MA

• Laser preheat of 1 — 2 kJ

• Integrated by September 2020:

• ABZ field between 20 — 25 T

• Z Machine delivering 20 — 22 MA

• Laser preheat of 2 — 4 kJ
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Coil Design Requirements
• Flux Density:

• Low-L Coil shall be able to magnetize target to 15-T average across the liner.

• Low-L Coil should be able to magnetize target to 20-T average field across the liner.

• Liner Uniformity: Equal or lower than existing Low-L platform: —32% across 1.0mm target.

• This is a lower priority than flux density.

• Bank Dynamics:

• Rise time should be < 6.1 ms

• Low-L Coil shall achieve requirements with one-bank operation at 13.5kV max (limits coil inductance)

• Lifetime and pulsed behavior:

• Low-L Coil should achieve required field strengths using —10kA current

Enables coupling to 60- and 80-turn coils

• Demonstrate coil lifetime of n=10 shots at required field strengths

Sandia
National
Laboratories
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Loosely constrained parameter space required staged analysis Sandia
National

approach to "optimize" output design 
Laboratories

Parameters 

• Initial coil diameter

• Axial layers (how
"tall" is it)

• # of zylon internal
reinforcement shells

• Thickness of zylon
reinforcement shells

• Outer coil radius

r
MATLAB field calculations
- Calculate Bz(0, z)
- Calculate Rpc, Lijc

- Turn geometries (r,z)

RDC, LDC

l
Geometries,

Shell pressures

. 
 .

Drive V, I

MATLAB ABZ bank modeler
- Time of peak current (Tpk)
- Vchg required
- Ohmic heating of coil
- Emag, Ealec, and efficiency

1000s of runs

Maxwell 2D Magnetostatic Geometries

- Confirm Lijc

- Verify Bz (0, z)
- Bulk Lorentz forces (r,z)

Surveyed parameter space yielded
-3400 design variants

Distributed Lorentz Forces

lOs of runs

t- Maxwell 2D Time-harmonic
  - Confirm Rpc

Estimate RAc

\
ANSYS Mechanical Static Structural 

Utilizing nonlinear solver, nonlinear Cu alloy model, orthotropic zylon model
- Stress as a function of radius
- Elastic, plastic strains as a function of radius
- Bulk Lorentz forces (r,z)

1 f ,,
1 o vi 1 uno



3- and 4-shell variants of 13-axial-layer coil advanced to detailed design
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Z hardware imposes unique winding requirements to enable
novel internal reinforcement, coil connection scheme

•
.

3-shell Low-L Coil

111".1.!!!!timiniasieshwr

e"-

4-shell Low-L Coil

• Designs minimize material below coil

• Inter-coil connections made via crimps
above coil in lower-field regions

• Requires a "down-wind" and "up-
wind" to get wire out of way for zylon
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3-shell Low-L Coil

Delrin flange captures coil• Allows for internal reinforcement transitions and leads for final

around clean breaks in conductor wind epoxy encapsulation process
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3-Shell and 4-Shell Low-L Coils perform similarly in simulation

Parameter 3-Shell 4-Shell

Coil Inductance

DC Resistance

Drive current to achieve 15-T avg.

1-Bank Voltage Vchg for Bavg = 15-T

Field Uniformity for lOmm liner

2.14mH

143mQ

9.05kA

9.9kV

30%

2.27mH

153mQ

9.3kA

10.5kV

29%

Shell 1 Zylon Peak Stress 1.15 GPa 1.16 GPa

Shell 2 Zylon Peak Stress

Shell 3 Zylon Peak Stress

Bavg linearly scaled to 13.5kV max Vchg

Shell 1 Zylon Peak Stress at 13.5kV Vchg

Shell 2 Zylon Peak Stress at 13.5kV Vchg

Shell 3 Zylon Peak Stress at 13.5kV Vchg

1.12 GPa

1.10 GPa

20.5 T

2.14 GPa

2.08 GPa

2.04 GPa

1.10 GPa

1.04 GPa

19.3 T

1.66 GPa

1.57 GPa

1.48 GPa

Shell 4
0.62 GPa

Shell 4
0.88 GPa

Zylon fibers measured to have 3.3 GPa ultimate tensile strength for 77.5% fill fraction [Y.K.
Huang et al / Composites: Part B 33 (2002)]. We assume we have less than this fill fraction.
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Zylon shell

Zylon shell

Zylon she I

3-shell sectioned prototype shows well-
filled zylon reinforcement shells, tightly-

packed winding journals



3-Shell Low-L coil seems superior to 4-shell in
theory, but ...
• Passing orthotropic "thick-shell" zylon

ultimate tensile strength calculations is
necessary for "good" designs
• But not sufficient to predict coil failure.

• We've never failed a zylon shell.

• 3rd coil conductors are observed to move.

• Observed failures always occur at wire-
to-wire interfaces
• Predicting lifetime would require 3D

modeling based on local wire loading

• Also need to consider 3D effects on layer-
to-layer transition, lead-to-wire
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• A third internal reinforcement shell:

• Reduces field 5% (1T out of 20T)

• Increases inductance (lower I pk at 13.5kV)

• More complex to produce per unit

• But it also:
• Reduces calculated peak wire strain by 67%

• Reduces compliance in winding journal and
resultant deformation

• Is likely necessary for higher-field shots (>15-T)

First 3-shell coil prototype (Delrin flange removed) after 10 shots at 17-T average B-field. r
 22



Prototype 3-shell coils have demonstrated n"10 for Bavg > 15-T

• 15-T Bavg 100% design stress

• Test coil 1:

• 1 shot each at 50%, 70%, 80%, 100%, 120%

• 10 shots at 133%

• (Dissected after 10th shot)

• Test coil 2:

• lea. at 50%, 3ea. at 67%, lea. 85%, 100%

• 14 shots at 120%

• Soft failure of 14th shot

• Test coil 3:

• lea. at 50%, 67%, 85%, 100%

• 9ea. at 120%

• Soft failure on 9th shot (after peak current)

Sandia
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Prototype 1 pulsed ten times at 10.4kA (Bavg — 17T) before post-mortem

MMI

45 90 (rnm)

Coils tested in surrogate geometry that mimics Z hardware 23



Observed failures have been "soft"; result from conductor
movement shorting between layers during pulse

■ 3-shell Low-L coil is observed to accumulate large radial
displacement in outer coil

■ This trend is observable in coil inductance (Leg oc d)

■ The two nested 2-layer coils see no change throughout testing

■ This movement eventually shorts out turns during pulse

■ Typically occurs after peak current (peak mechanical strain)

■ Does not destroy the coil (it remains intact for post-mortem)

Shot
inner Coil Middle Coil Outer Coil Full Assembly

21.6 uH 33.9 uH 1.554 mH 1.98 mH

1 100.0% 100.0% 100.0% 100.0%

2 99.7% 100.0% 100.3% 100.2%

100.4% 100.3% 100.6% 100.4%

4 100.2% 100.2% 100.9% 100.6%

5 100.1% 100.0% 101.1% 100.7%

6 100.3% 100.2% 101.3% 100.9%

7 99.7% 100.2% 101.6% 101.1%

8 99.4% 100.1% 101.7% 101.2%

9 99.8% 100.2% 101.9% 101.3%

10 99.5% 100.2% 102.0% 101.4%
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Rogowski probe (di/dt diagnostic) shows gentle short after Ipk on shot 9

Test coil is nested and total coil inductance change per shot Turn movement (left arrow) and increase in inner diameter (right arrow) 4



The 3-Shell Low-L coil has been fielded for 10-T
Z experiments, ready for 15-T Bavg

Experiment Z3207 (05Feb2018) utilizing 3-Shell
coil on Low-L platform for MagLIF experiment
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• We have fielded these coils on Low-L
platform Z experiments at 10-T

• Experiments performed in February 2018

• 15-T average field experiments currently
scheduled for July 2018

• The lifetime data with the 3-shell prototypes

gives us confidence in our readiness

• We can increase pre-magnetization field
level in standard feed experiments

• Replacing 80-turn coil with 3-Shell Low-L coil

to increase from 15 to 20T
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THE PATH FORWARD TO 20 25 T



Low-L coil provides three configurations for MagLIF scaling studies
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Low-L Coil on Low-L Platforms
15 - 20T avg. field

with 19-20MA feed designs
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Design underway to complement Low-L coil with new

bottom coil "Cheyenne" for 20-30 T operation
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Superposition of calculated coil fields look encouraging
for "25T experiments in 2020
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X: 35.75
 LY: 26.72

X: 25.£Y: 23.6

. . •

• Conceptual coil pair can generate 25.2-T
average field at the same operating current
(10kA) as the existing Low-L coil

• Need to evaluate transient coil self-forces,
coil attraction, and repulsion from anode



Cheyenne concept requires new winding capability, fabrication
process, and detailed analysis to converge on design

........

NIMINSON
NM MUNN.

0 40

Conceptual coil design with support flange and
notional internal reinforcement shells

• Tight geometric constraints prevent coil-coil
transitions like in Low-L coil

• Coil cross-section must follow power flow contour

• Minimize Z power feed inductance

• Maximize field strength per turn

• Power feed and bottom coil must be designed in
tandem to achieve optimized performance for both

Sandia
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Machine with orbital winding functionality currently in
fabrication by collaborators at Milhous Company

• Space constraints require the ability to wind zylon
while maintaining conductor feed under tension

• Zylon winding heads must "orbit" stationary coil
mandrel while wire feed remains unbroken

• Orbiting heads must be preloaded with zylon

• Hoping for Cheyenne prototypes by February 2019
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Summary of today's discussion Sandia
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Laboratories

■ Sandia's MagLIF program on Z requires electromagnets to pre-magnetize the fusion fuel

■ The magnetic field reduces thermal conduction losses in fuel, relaxes convergence requirements

■ The ABZ subsystem on Z regularly delivers 10 — 15 T to Z experiments with —16-17 MA machine current.

The ABZ team works to meet program goals for integrated MagLIF experiments:

■ 19-20 MA machine current, 15 — 20T pre-magnetization, 1-2kJ laser preheat

■ The Low-L platform increases machine current by dropping extended power feed, reducing load inductance

■ We have designed an internally reinforced magnet that can deliver 15 — 17 T average field in MagLIF liner

■ Coil prototypes have demonstrated acceptable lifetime and are ready for Z experiments

■ Our first 15-T experiments are scheduled for July 2018 on Z

■ 20-22 MA machine current, 20 30T pre-magnetization, 2-4kJ laser preheat

■ Our team is designing a coil pair to meet this field requirement also while providing radial diagnostic access

■ A coupled design effort for the Z power feed and bottom ABZ coil is required to optimize performance

■ A new winding methodology is currently in development to enable production of Cheyenne prototypes
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Questions?


