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chine learning in Model Calibration

Main use case

|dentification of points in input parameter space which are physically
feasible and can be used as reliable training data for emulators

« Emulators are required for Bayesian calibration

« Taking training data over a hypercube defining the parameter
bounds is not helpful: many parameter combinations may be
infeasible or non-physical

* Goal: if not feasible, do not allow in the prior
— And don’t sample over them in MCMC

« One example where this is needed: turbulence model calibration
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he turbulence calibration problem

» Turbulence models for k-¢ Reynolds-Averaged Navier-Stokes
(RANS) equations contain parameters (C, C, 4, C, ,) etc. that
need to be calibrated, for the model to be predictive

KIZ

JCu(Ce2—Ce 1)
C, ») combinations are non-physical and

— Also have to obey some constraints e.g., o, =

— Also many (C, C
the code crashes

g1

* Clearly, the parameter space for inference is not a hyper-
rectangle

— One can sample the parameter space, crash one’s code
repeatedly to find valid and invalid points

— This occurs when we are trying to make emulators to be used in the
inverse problem

« Turbulent flow forward problems are computationally expensive & S
emulators are a must i) s
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Making an informative prior

* If we are to impose constraints Runs in the top 25th percentile
and stay out of non-physical
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To stay within R while sampling

over (Cu, C. 1, C,0 k), we need a O
binary function j’(CM, C. 1, C,o,
K)

— In other words, a classifier
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How is this done today?
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* In Guillas et al, 2014 where R was
relatively simple, they used a rather
complex MVN distribution that had R as
support

* In Ray et al, 2015, classification &
regression trees were used

* In Ray et al, 2016, they used a SVM
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What are the short-comings?

* The shortcoming has the same cause -
defining a complex R with few points

Runs in the top 25th percentile

— Ris defined by running an expensive
simulator repeatedly, and one can run that
only so many times

 Classification trees recursively decompose a
rectangular domain into disjoint boxes

— They resolve a non-rectangular R _
approximately by staircasing. Hard to do .
with few points

1.20 1.25 1.30 1.35 1.40 1.45 1.50 1.55
o
-+
+
-
-

« Complex MVN can become intractable unless R is rather simple

« SVMs are great, but they need a densely populated support vector to
resolve complex R

« So why not try a different approach — k-nearest neighbors?
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K-Nearest Neighbors

In this work, we use K-nearest neighbors instead of SVM

KNN takes a vector of features and predicts to which class it belongs,

based on a set of N training data points.

Each data point is described with a feature vector and a class

category.

The features may be categorical or numeric values. We assume the

classes are discrete.

The class membership of the new point is predicted by the majority

vote of the neighbors.

— Example: if k=5 and a new point has 3 nearest neighbors in class

A and 2 nearest neighbors in class B, the point would be classified
as belonging to class A.

Distance metrics are important. how do we determine “nearest’?
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KNN Weighting

« Weighting the points is often used when determining class membership

to overcome the “majority voting” problem

— If one class dominates the data, occurring more frequently, then that

class tends to dominate in prediction of a new point because that

class membership is most common among the k nearest neighbors.

— Weighting the classification allows for a fuller representation than

“majority rule” in prediction

— The weight is often proportional to the inverse of the distance (or

distance squared) from the new point, x,,.,,, to the KNN, x;,i = 1..k.
« The class prediction then involves applying the weights to the classes of

the k-nearest neighbors:

k
C(Xnew) = zwk C(xx)
=1
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Ing on distance only can be problematic!!

Do you want a
classifier with these
arms/spikes?

Clustered data tend to
propagate through
scattered data!!
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A
%/ing on distance only can be problematic!!

kNN, k = 5,
no weighting!

Increasing k without
weighting is a
TERRIBLE idea!
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A
%/ing on distance only can be problematic!!

kKNN, k =5,
+ weighting!

Adding weights
improved things a
bit yet still not much

(still worse than
KNN, k = 1!
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A
%/ing on distance only can be problematic!!

kNN, k = 20,
+ weighting!

Increasing k makes
the situation much
WORSE actually!
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% Proposed Approach

Instead of relying on distance only e T T
(nearest neighbors) e,

, we rely on distance and directions

() ("}

(significant Voronoi neighbors)!




il '
}‘ Our Voronoi Solution

9

Our local
piecewise
classifier
partition the
space using
Voronoi cells.




_ '
}‘ Computational Challenge

Explicit w ’
Voronoi
Meshing is
Intractable:
Number of
vertices grows
exponentially
with dimension!

- [A Curse of
dimensionality]




e Darts for implicit Voronoi Meshing

« Spoke-dart: sampling locally from hyper-annuli centered at prior point

samples, using lines, planes, or, more generally, hyperplanes.
* The main operation is line-Hyperplane trimming.

» Spoke-dart sampling is tractable in high dimensions yet it is not
cheap (each spoke needs to be trimmed by n hyperplanes).

(a) A random line samples a (b) A redundant point sampled (c) Local MC line sampling to  (d) Neighbors sharing relatively

point from a Voronoi facet. from the same facet. find Delaunay neighbors. small facets missed.

m
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(a) A random ray samples a (b) A point is identified as edge (c) A random ray samples a (d) A delaunay simplex around
point from a 2-d space. and neighbor witness. point from a 1-d edge. the retrieved vertex.

(e) Two line samples from ver- (f) Neighbor vertices and dual (g) More line samples to iden- (h) All vertices and their dual
tex along connected edges. simplices identified. tify other verteces. simplices identified.
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RSD Algorithm in 3-d

(a) Initial seed selection. (b) Random 3-d spoke identifies x. (c) Random 2-d spoke identifies x;.
(d) Random 1-d spoke identifies x3. (e) 3 lines identify neighbor vertices. (f) Further line propagation.
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Our Voronoi Classifier

Training Points

Neighbor
Training Points

Point to be classified




A 4
%k to our toy problem, using our Classifier!

10 Spokes
+ weighting!

Our Voronoi
classifier limited the
undesired
propagation of the
clustered data
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ther application (VPS)

Neighborhood Net SmHerbie Herbie



iIscontinuity Detection

Breaking Delaunay links across estimated
discontinuities.

(e) Test function.

Neighborhood Net Surrogate Neighborhood Net Surrogate
(H N = 50 evaluations. (@) N = 100 evaluations.
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Probability of failure

2d version of test function

Estimation the probability of failure

Adaptive sampling driven by failure isocontour

- (73T
%%g&g}gﬁ i°

POF-darts + VPS

POF-darts + GP

**Ebeida, M. S., Mitchell, S. A., Swiler, L. P., Romero, V. J., & Rushdi, A. A. (2016). Pof-darts: Geometric

adaptive sampling for probability of failure. Reliability Engineering & System Safety, 155, 64-77.



Global Optimization

Benchmark f dimension | DIRECT | Opt-darts | Speedup

- 6 56357 1320 4.3 X

2 7 20987 3276 6.4 X

5 7 8 71677 4814 14.9 X

5 9 257539 14258 18.1 X

10 837203 33852 24.7 X

o A 20 5639 1269 4.5 X
Z of -

>\ [ 40 25807 2633 9.8 X
< Mo

T N 60 63765 4345 14.7 X

GRS 30 122503 6246 19.6 X

| 100 208185 7802 20.7 X

Ebeida, Mohamed S., et al. "Spoke darts for efficient high dimensional blue noise sampling ." Arxiv,

TOG accepted (2018): 110-122.
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Thank You!
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Backup slides
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Use of Spoke-Darts

* |deas from computational geometry

— a bunch of “spokes” are thrown that go through an existing sample point.
The spokes are then “trimmed” so that the end of the spokes can be used to
find approximate Voronoi vertices surrounding an existing sample point and
efficiently find neighbors which are centroids of adjoining Voronoi cells.

« Spoke-dart performance better when the nearest neighbors
to a new testing point in feature space are clustered on

“one side” of the point.

—The standard algorithm would select only the close neighbors all in one
region or area.

— With spoke-darts, neighbors are gathered from all directions regardless of
their distance if the Voronoi cells for a training point x;,-4;,, and
Xnew iNtersect.

—The number of neighbors is determined by the number of Voronoi neighbors
of x,.w- NO k is specified in this case. This is an advantage because is it
not clear how to choose k a priori, and optimization methods to determine

the best k are computationally expensive. )
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oke-Dart Classification in UQ

We can use this Voronoi-based classification approach for UQ

If points in the feature space are labeled ‘infeasible’ or unphysical, we
can estimate the size based on the sum of the area of the infeasible
Voronoi cells. This quantity can be used as an estimate of the
probability of failure or infeasibility.

The classification can define the isocontours between failure and safe or
feasible regions.

We will build on previous work that used Voronoi cells to estimate
probability of failure [Ebeida et al. 2016]. In the case where the
“feasible” classification also has numerical quantities of interest, we can
use the Voronoi cells to construct local surrogate models for prediction
where we “automatically” get the infeasible points removed from
consideration. This is a big advantage in many computational
simulations.
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Target problem - jet-in-crossflow

B Bl ]
A canonical problem for spin- py -
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*Crossplane results for stream

*Computational results (SST) are too round; Kw98 doesn’t have the mushroom shape; non-
symmetric!

Less intense regions; boundary layer too weak
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The problem

| he model
—Devising a method to calibrate 3 k-¢ parameters C = {C , C,, C,} from expt. data

opk 0| i | ok
+ uk—| u+-—-|— |= P, —pe+S
ot Gxi_pl (,u O'kjﬁx} TP

l

ops 0 oc| ¢
+ e—| u+~—+|— |==(C,f,B, - C, f,pe)+S
o | @1 ]&J (CAE-Cofope)

k2
Cfp—
«Calibration parameters

-C ={C, C,, C,} C,: affects turbulent viscosity; C; & C,: affects dissipation of
TKE

«Calibration method
—Pose a statistical inverse problem using experimental data
—Estimate parameters using Markov chain Monte Carlo (MCMC)

*Once calibrated, address the problem of approximated physics (model-form

error) _—
m National
Laboratories




Making emulators - 1 R

" Training data
= Parameter space (:0.06 <Cu<0.12;1.7<C,<2.1;1.2<C;<1.7
= C..=10.09,1.93,1.43}
= Take 2744 samples in C using a space-filling quasi Monte Carlo pattern

nom

= Save the streamwise vorticity field o,(y; C)

= Choosing the “probes”
= Will try to create emulators for each grid cell on the crossplane
= Most grid cells have lots of numerical noise

= For a given run, choose the grid cells with vorticity the top 25%
percentile (56 grid cells)

= Take the union of such grid cells, union over the 2744 members of the
training set (comes to 108 grid cells)
= We will try to make emulators for these 108 grid cells with large vorticity

32
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Making emulators - 2 R

= Model o, in grid cell j as a function of Ci.e. ®®,_ = fi)(C)

= Approximate this dependence with a polynomial

(J)zao-|—a1C +a,C, +a,C +a,C,C,+a,C C+a,C,C+...

= But how to get (a,, a,, ....) for each of the probe locations to
complete the surrogate model for each probe?
= Divide training data in a Learning Set and Testing Set

= Fit a full cubic model for to the Learning Set via least-squares
regression; sparsify using AIC
= Estimate prediction RMSE for Learning & Testing sets; should be equal

® Final model tested using 100 rounds of cross-validation
= 10% error threshold was used to select models for the probes

33




Making emulators - 3

= Choosing R

emulators failed — we could not
model any surrogates to within
10% accuracy

= This is because many C = {Cy, C,,

C,} combination are nonphysical

We compute the RMSE vorticity
difference between the training
set RANS runs and experimental
observations

= We retain only the top 25

percentile of the runs (using
RMSE) as training data (‘'R)

&
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Making the informative prior UL

= Qur emulators are valid only inside ‘R in the parameter space

C

®= During the optimization (MCMC) we have to reject parameter
combinations outside R (this is our prior belief 7, (C))
= We define {(C) =1, for Cin R and {(C) = -1 for C outside R
= Then the level set {(C) = 0 is the boundary of R

" The training set of RANS runs is used to populate C(C)

= We have to “learn” the discriminating function {(C) =0

= We’ll do that using support vector machine (SVM) classifiers




What is a SVM classifier? ==

Xzﬂ

= Given a binary functiony =f(x) as a
set of points (y, x;), y,= (0, 1)
= Find the hyperplane y + Ax = 0 that

separates the x-space intoy=0andy =
1 parts

= Posed as an optimization problem
that maximizes the margin

v

o/ X

2 1
T

N

Ve

= |n case of a curved
discriminator, need a
transformation first
= Achieved using kernels

= \We use a cubic kernel
36




Check # 3 — mid-plane comparisons @&

x/Di=21 X/Di=21
15 or T 16
g ©  Experimental T o Experimental i
9 Ensemble mean “\ Ensemble mean
\ +  Bestcase b\ + Bestcase
121 B )
--------- Nominal
10
10
6_
5 -
4_
2 -
0 0
-0.1 -0.1
(U(x) - u)/U(x)
Streamwise velocity deficit at x/D = 21 Vertical velocity at x/D = 21

= Flow quantities on the mid-plane were not used in the

calibration
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