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Machine learning in Model Calibration

Main use case
Identification of points in input parameter space which are physically

feasible and can be used as reliable training data for emulators

• Emulators are required for Bayesian calibration

• Taking training data over a hypercube defining the parameter

bounds is not helpful: many parameter combinations may be

infeasible or non-physical

• Goal: if not feasible, do not allow in the prior

— And don't sample over them in MCMC

• One example where this is needed: turbulence model calibration
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The turbulence calibration problem

• Turbulence models for k-c Reynolds-Averaged Navier-Stokes

(RANS) equations contain parameters (Cw Co, Cc,2) etc. that

need to be calibrated, for the model to be predictive

— Also have to obey some constraints e.g., a, = vcp (CE,2 -CE,1)

— Also many (Cw Co, Cc,2) combinations are non-physical and

the code crashes

K 2

• Clearly, the parameter space for inference is not a hyper-

rectangle

— One can sample the parameter space, crash one's code

repeatedly to find valid and invalid points

— This occurs when we are trying to make emulators to be used in the

inverse problem

• Turbulent flow forward problems are computationally expensive &

emulators are a must
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Making an informative prior

• If we are to impose constraints

and stay out of non-physical

parameter space, we'll need an

informative prior

— So what does the "good" part of
the parameter space R look
like?

— Complex. Can't be analytically

defined

• To stay within R while sampling

over (Rt, Cci , Cc,2, K), we need a

binary function F(Rt, Cci , Cc,2,

K)

— In other words, a classifier

c,!
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How is this done today?
Projections of partitions
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• In Guillas et al, 2014 where R was

relatively simple, they used a rather

complex MVN distribution that had R as

support

• In Ray et al, 2015, classification &

regression trees were used

• In Ray et al, 2016, they used a SVM
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What are the short-comings?

• The shortcoming has the same cause -

defining a complex R with few points

— R is defined by running an expensive

simulator repeatedly, and one can run that

only so many times

• Classification trees recursively decompose a

rectangular domain into disjoint boxes

— They resolve a non-rectangular R

approximately by staircasing. Hard to do

with few points

d

Runs in the top 25th percentile
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• Complex MVN can become intractable unless R is rather simple

• SVMs are great, but they need a densely populated support vector to

resolve complex R

• So why not try a different approach — k-nearest neighbors?

2.1 cs,
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K-Nearest Neighbors

• In this work, we use K-nearest neighbors instead of SVM

• KNN takes a vector of features and predicts to which class it belongs,
based on a set of N training data points.

• Each data point is described with a feature vector and a class
category.

• The features may be categorical or numeric values. We assume the
classes are discrete.

• The class membership of the new point is predicted by the majority
vote of the neighbors.

— Example: if k=5 and a new point has 3 nearest neighbors in class
A and 2 nearest neighbors in class B, the point would be classified
as belonging to class A.

• Distance metrics are important: how do we determine "nearest"?
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KNN Weighting

• Weighting the points is often used when determining class membership
to overcome the "majority voting" problem

— If one class dominates the data, occurring more frequently, then that
class tends to dominate in prediction of a new point because that
class membership is most common among the k nearest neighbors.

— Weighting the classification allows for a fuller representation than
"majority rule" in prediction

— The weight is often proportional to the inverse of the distance (or
distance squared) from the new point, xnew, to the KNN, xi, i= 1.. k.

• The class prediction then involves applying the weights to the classes of
the k-nearest neighbors:

k

C(xnew) 1 Wk C(Xk)
1=1
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Relying on distance only can be problematic!!

kNN, k = 1

Do you want a
classifier with these
arms/spikes?

Clustered data tend to
propagate through
scattered data!!
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Relying on distance only can be problematic!!

kNN, k = 5,
no weighting!

Increasing k without
weighting is a
TERRIBLE idea!
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Relying on distance only can be problematic!!

kNN, k = 5,
+ weighting!

Adding weights
improved things a
bit yet still not much
(still worse than
kNN, k = 1!
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Relying on distance only can be problematic!!

kNN, k = 20,
+ weighting!

Increasing k makes
the situation much
WORSE actually!
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Proposed Approach
4.0

Instead of relying on distance only

(nearest neighbors)

, we rely on distance and directions
480

(significant Voronoi neighbors)!
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Our Voronoi Solution

4
Our local
piecewise
classifier
partition the
space using
Voronoi cells.
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-*/•e* Computational Challenge

Explicit
Voronoi
Meshing is
intractable:
Number of
vertices grows
exponentially
with dimension!
4 [A Curse of
dimensionality]
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Spoke Darts for implicit Voronoi Meshing

• Spoke-dart: sampling locally from hyper-annuli centered at prior point
samples, using lines, planes, or, more generally, hyperplanes.

• The main operation is line-Hyperplane trimming.

• Spoke-dart sampling is tractable in high dimensions yet it is not
cheap (each spoke needs to be trimmed by n hyperplanes).

(a) A random line samples a (b) A redundant point sampled (c) Local MC line sampling to (d) Neighbors sharing relatively
point from a Voronoi facet. from the same facet. find Delaunay neighbors. small facets missed.
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75 2.

Wir Recursive Spoke darts

(a) A random ray samples a (b) A point is identified as edge (c) A random ray samples a (d) A delaunay simplex around
point from a 2-d space. and neighbor witness. point from a 1-d edge. the retrieved vertex.

(e) Two line samples from ver- (f) Neighbor vertices and dual (g) More line samples to iden- (h) All vertices and their dual
tex along connected edges. simplices identified. tify other verteces. simplices identified.
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w- i

i°r-• RSD Algorithm in 3-d

(a) Initial seed selection.

(d) Random 1-d spoke identifies x3.

(b) Random 3-d spoke identifies xi .

(e) 3 lines identify neighbor vertices.

(c) Random 2-d spoke identifies x2.

(f) Further line propagation.
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Our Voronoi Classifier

f--

Training Points

•

• •

Point to be classified

Neighbor
Training Points

•

•
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Back to our toy problem, using our Classifier!

10 Spokes
+ weighting!

Our Voronoi
classifier limited the
undesired
propagation of the
clustered data
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Discontinuity Detection 

Breaking Delaunay links across estimated
discontinuities.

(e) Test function.

Neighborhood Net Surrogate

(f) N = 50 evaluations.

Neighborhood Net Surrogate

(g) N = 100 evaluatiom

ELI) NationalLaboratories
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Global Optimization

Benchmark f dimension DIRECT Opt-darts Speedup

6 5657 1320 4.3 X

' 7 20987 3276 6.4 X
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cd
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, 50

m 100
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Ebeida, Mohamed S., et al. "Spoke darts for efficient high dimensional blue noise sampling ." Arxiv,
TOG accepted (2018): 110-122.
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Thank You!

Acknowledgment: This material is based upon work supported by the U.S. Department of Energy, Office of
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Backup slides

Sandia
National
Laboratories



Use of Spoke-Darts
• Ideas from computational geometry

— a bunch of "spokes" are thrown that go through an existing sample point.
The spokes are then "trimmed" so that the end of the spokes can be used to
find approximate Voronoi vertices surrounding an existing sample point and
efficiently find neighbors which are centroids of adjoining Voronoi cells.

• Spoke-dart performance better when the nearest neighbors
to a new testing point in feature space are clustered on
"one side" of the point.
—The standard algorithm would select only the close neighbors all in one
region or area.

— With spoke-darts, neighbors are gathered from all directions regardless of
their distance if the Voronoi cells for a training point Xtrain and
Xnew intersect.

—The number of neighbors is determined by the number of Voronoi neighbors
of xnew. No k is specified in this case. This is an advantage because is it
not clear how to choose k a priori, and optimization methods to determine
the best k are computationally expensive. Sandia
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Spoke-Dart Classification in UQ
• We can use this Voronoi-based classification approach for UQ

• If points in the feature space are labeled Infeasible' or unphysical, we
can estimate the size based on the sum of the area of the infeasible
Voronoi cells. This quantity can be used as an estimate of the
probability of failure or infeasibility.

• The classification can define the isocontours between failure and safe or
feasible regions.

• We will build on previous work that used Voronoi cells to estimate
probability of failure [Ebeida et al. 2016]. In the case where the
"feasible" classification also has numerical quantities of interest, we can
use the Voronoi cells to construct local surrogate models for prediction
where we "automatically" get the infeasible points removed from
consideration. This is a big advantage in many computational
simulations.
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Target problem - jet-in-crossflow

•A canonical problem for spin-
rocket maneuvering, fuel-air
mixing etc.

•We have experimental data
(PIV measurements) on the
cross- and mid-plane

•Will calibrate to vorticity on the
crossplane and test against
mid-plane

jet exit shock

CrOs.sor;o:
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5

RANS (k-w) simulations - crossplane
results 

s.
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1 5

•Crossplane results for stream

•Computational results (SST) are too round; Kw98 doesn't have the mushroom shape; non-
symmetric!

•Less intense regions; boundary layer too weak

10
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The problem

•The model

—Devising a method to calibrate 3 k-c parameters C = {Cw C2, C1} from expt. data

pk ± 0 
puik -
( 
p + '

u
T 

Ok
= Pk — pc+ Sk

Ot k _

—

+PT  puic
0 pc +  0 

Ot axi
k2

= cf,do

as _= (C1fPk- C2f2ps)+ S,

•Calibration parameters

—C = {C1.1, C2, CO ; affects turbulent viscosity; C1 & C2: affects dissipation of
TKE

•Calibration method

—Pose a statistical inverse problem using experimental data

—Estimate parameters using Markov chain Monte Carlo (MCMC)

•Once calibrated, address the problem of approximated physics (model-form
error) Sandia

National
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Making emulators - 1
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• Training data

• Parameter space C: 0.06 < CIA, < 0.12; 1.7 < c2 < 2.1; 1.2 < Cl < 1.7

• Cnom = {0.09, 1.93, 1.43}

• Take 2744 samples in C using a space-filling quasi Monte Carlo pattern

Save the streamwise vorticity field cox(y; C)

• Choosing the "probes"

• Will try to create emulators for each grid cell on the crossplane
• Most grid cells have lots of numerical noise

• For a given run, choose the grid cells with vorticity the top 25%

percentile (56 grid cells)

• Take the union of such grid cells, union over the 2744 members of the

training set (comes to 108 grid cells)

We will try to make emulators for these 108 grid cells with large vorticity

32



Making emulators - 2
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• Model cox in grid cell j as a function of C i.e. co(Dx = f(i)(C)
• Approximate this dependence with a polynomial

W(j) ao a1,u C+a2 C2 + a3C1 a4c1c2 + a 5 Cif Cl + a 6 c2

• But how to get (a0, a1, ....) for each of the probe locations to
complete the surrogate model for each probe?
• Divide training data in a Learning Set and Testing Set

• Fit a full cubic model for to the Learning Set via least-squares

regression; sparsify using AIC

• Estimate prediction RMSE for Learning & Testing sets; should be equal

• Final model tested using 100 rounds of cross-validation

• 10% error threshold was used to select models for the probes

33



Making emulators - 3

• Choosing R,

• emulators failed — we could not
model any surrogates to within

10% accuracy

• This is because many C = {Cf.11 C2,
C1} combination are nonphysical

• We compute the RMSE vorticity
difference between the training

set RANS runs and experimental
observations

We retain only the top 25

percentile of the runs (using
RMSE) as training data (R)

Runs in the top 25th percentile

+ t
+4+++ t+

tv.1±F OF+

0.06 0.07 0.08 0.09 0.10 0.11 0.12

c,
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Making the informative prior
Sandia
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• Our emulators are valid only inside R in the parameter space
C

• During the optimization (MCMC) we have to reject parameter
combinations outside R (this is our prior belief 7r (C))- prior% -,,

• We define (C) = 1, for C in R and (C) = -1 for C outside R.

• Then the level set (C) = 0 is the boundary of R.

• The training set of RANS runs is used to populate (C)

• We have to "learn" the discriminating function (C) = 0
• We'll do that using support vector machine (SVM) classifiers
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What is a SVM classifier?

• Given a binary function y = f(x) as a
set of points (yi, xi), yi = (0, 1)

• Find the hyperplane y + Ax = 0 that

separates the x-space into y = 0 and y =
1 parts

• Posed as an optimization problem
that maximizes the margin
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• In case of a curved
discriminator, need a
transformation first

• Achieved using kernels

• We use a cubic kernel
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Check # 3 mid-plane comparisons
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Streamwise velocity deficit at x/D = 21
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Vertical velocity at x/D = 21

• Flow quantities on the mid-plane were not used in the

calibration
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