This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

SAND2016-12069C

Performance Portable Sparse Matrix-Matrix
Multiplication on Intel Knights Landing and
NVIDIA GPUs

Mehmet Deveci, Christian Trott, and Sivasankaran Rajamanickam
Sandia National Laboratories, Albuquerque, NM
{mndevec,crtrott,srajama } @sandia.gov

We consider the problem of writing performance portable
kernels targeting different architectures with the sparse matrix-
sparse matrix multiplication kernel (SpGEMM) as our bench-
mark. We approach the SpGEMM from the perspectives of
algorithm design and implementation, its practical usage and
a theoretical model for memory access. We design this kernel
to be portable and perform well on two recent, but differ-
ent massively-threaded architectures, namely Intel’s Knights
Landing processors (KNLs) and NVIDIA’s Graphic Processing
Units (GPUs). First, we design a hierarchical memory-efficient
SpGEMM algorithm and implement thread scalable data struc-
tures that enable us to develop a portable SpGEMM algorithm.
We demonstrate the decent performance of the performance-
portable implementation compared to vendor provided, spe-
cialized implementations on both architectures. Second, we
study the practical usage aspects of SPGEMM. We focus on
the reuse of the structure of input matrices, and show that our
kernel is significantly faster than specialized vendor kernel on
the KNLs when the structure of the matrices are reused. We
also study the performances of the algorithms on two different
types of memory in KNL. Furthermore, we implement three
other hierarchical SPGEMM methods using larger-memory
required data structures, and we demonstrate the superiority of
the memory-efficient method. Third, we develop a theoretical
hypergraph model to study the memory accesses of these
four variants, and study the performances on two different
memory spaces on KNL for various scenarios. We show that
the model serves as a guide to understand the performances
of the algorithms on various memory spaces.

I. INTRODUCTION

With modern supercomputer architectures moving simul-
taneously in two different paths, namely the Intel’s Knights
line of processors (most recently the Knights Landing or
KNLs) and NVIDIA’s Graphic Processing Units (GPUs), it has
become important to design algorithms and implementations
that can perform well on both platforms. The current focus
on this problem has been mostly around programming models
that will allow users to implement an algorithm for multiple
architectures [1]. We approach this problem from an algorith-
mic perspective to design a “performance-portable algorithm”
— an algorithm and its implementation that perform well on
multiple architectures. Another options is to write different,

architecture specific (“native”) implementations for every key
kernel. The question then becomes how much performance
will be sacrificed for performance-portablity ?

It is important to study this problem with a kernel that is
reasonably difficult, uses standard patterns that allows us to
reason about designing other kernels based on the knowl-
edge gained. We choose the sparse matrix-matrix multiply
(SpGEMM) kernel as our benchmark for this study. SpGEMM
is a fundamental kernel that is used in various applications
such as graph analytics and in scientific computing especially
in the setup phase of multigrid solvers. The kernel has been
studied extensively in the contexts of sequential [2], shared
memory parallel [3], [4] and GPUs [5], [6], [7], [8]. There are
native kernels available in different architectures [4], [5], [6],
[8], [9] providing us good comparison points.

We try to answer the following questions for the SpGEMM
kernel from the perspectives of algorithm design and imple-
mentation, practical usage of the kernel, and theoretical model
for memory accesses.

e What are the design choices that are crucial for the
performance of SpGEMM in different architectures and
how do these choices affect/enable an algorithm to map
to the differences in both architectures (thousands of
threads vs hundreds of threads, streaming multiprocessors
vs traditional but lightweight cores, small shared memory
vs on-package High Bandwidth Memory) ?

o« How will the kernel serve the practical needs of real
applications. When applications has a reuse of the sym-
bolic structure, or when the architecture has limited high
bandwidth memory (HBM)?

o Can we design a theoretical model for memory accesses
to understand the performance of the kernel in different
architectures on various memory spaces?

In addressing these questions we make the following con-
tributions

o We design thread scalable data structures to handle mul-
tilevel hashmap, memory pool. We design a graph com-
pression technique to speedup symbolic phase SPGEMM.

e We design and implement a hierarchical, memory-
efficient SpGEMM algorithm, using the thread-scalable
data structures and show its performance in comparison
to both vendor provided and third party native implemn-

Sandia National Laboratories is amultimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, awholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

tations.

o We also implement three other variants of the Sp GEMM
algorithm with different design trade-offs and compare
their performance to the memory-efficient version on
various scenarios.

o We develop a theoretical hypergraph model for measuring
memory accesses in both architectures and study its
relationship to measured performance.

o We study practical usage of this algorithm when the HBM
space is limited or when the structure can be reused
compared to other implementations

The rest of the paper is organized as follows. Section II
covers the background for SpGEMM, especially the important
differences between the different native implementations. Our
algorithmic variants and implementation of the data structures
are described in Section III. The theoretical model for memory
accesses is given in Section IV. Finally, the performance
comparisons that demonstrate the efficacy of our approach is
given in Section V.

II. BACKGROUND

In this work, we study scalable and memory efficient
SpGEMM methods for multi-core and many-core architec-
tures. This kernel is widely used in the literature for various
graph analytic problems. Multigrid solvers uses triple products
in the setup phase, which is in the form of A.ourse =
RxAfime x P(R= PTif A fine 1S Symmetric), to coarsen
the matrices.

In the literature, most parallel SPMM methods follow Gus-
tavson’s algorithm [2] given in Algorithm 1. This algorithm
schedules the computations in 1D row-wise fashion (line 1),
and multiplication results for all entries in a row are found
simultaneously. Each iteration of the second loop (line 2)
accumulates the intermediate values for multiple columns
within of the row. Different data structures can be used as
accumulators. The result for the whole row ¢ is found at the
end of this loop.

Algorithm 1 1D rowwise SPGEMM for C' = A x B.

Require: Matrices A, B
1: for i < 0 to numRows(A) — 1 do
2. for j € A(i,:) do
3: C(i:) < Cliy,:) + A(i,5) x B(j,:)

There are various memory constraints with SPGEMM. For
example, the size and structure of C is unknown at the
beginning of SPMM operation. Finding the structure is usually
as expensive as performing actual floating point operations.
Although, there exist studies to predict the size of C' [10],
they still do not provide a robust upper bound for the memory
requirements. In the literature, this problem is addressed
using various approaches. One approach is to calculate the
upper bound for the size of C, and allocate this memory
prior to computation. However, the upper bound becomes the
number of floating-point operations (FLOPS), which can be

significantly larger than the actual size of C. Another approach
is to dynamically reallocate the size of C' as the computation
progresses. However, this approach might also be problematic
in the modern architectures with massive number of threads,
as memory re-allocations can become bottlenecks in parallel
regions. In addition, such re-allocations are not feasible for
GPUs. Another approach is to perform a symbolic SPMM
operation before the numeric computations to compute the
accurate size of C' [5]. Although, this approach doubles the
overall number of operations, it allows SPMM to run with
minimal memory usage. Symbolic phase needs to be run only
once for matrices in which only the numeric values change
while the symbolic structures are preserved. In this work, we
follow this approach, and we aim to speedup the symbolic
phase by performing matrix compression.

Another memory constraint with the parallel Gustavson
algorithm is the data structure to use for the accumulators.
The sequential algorithm uses dense data structures that have
the size of the number of columns in B (numCols(B)),
in order to accumulate the result rows. However, having
such thread private arrays is costly on massively threaded
architectures. Moreover, random accesses to such large arrays
might harm the overall performance because of the memory
bandwidth issues. Therefore, sparse accumulators such as
heaps or hashmaps are usually preferred in parallel implemen-
tations. In this work, we use multi-level hashmaps as sparse
accumulators.

There are various works that consider distributed paralliza-
tion of SPGEMM. Tpetra package of Trilinos [11] performs
1D row-wise partitioning that bases on the Gustavson’s algo-
rithm. In a 1D algorithm the result matrix is 1D partitioned
and each row is calculated by a single computation unit. On
the other hand, SUMMA algorithm that partitions the result
matrix into 2D space is adopted in Combinatorial BLAS [12].
This algorithm is extended to 3D, via parallelization over
calculation of single entry in [13]. Hypergraph models and
algorithms that use hypergraph partitioning for sparse matrix-
matrix outer-product multiplications and 3D computation par-
titioning are studied in [14] and in [15], respectively.

Most of the sparse matrix matrix multiplication studies for
multi-threaded architectures bases on Gustavson’s algorithm.
They study efficient parallelization of Gustavson’s method, and
usually differ in the data structure used fo row accumulation.
One option is to use dense accumulators [3], which have
the size of columns of the result matrix. Another approach
is the use of sparse accumulators. Azad et. al. [13] uses
heaps as accumulators in their shared memory implemention.
This bases on the assumption that the rows of B have sorted
column indices. Similarly, ViennaCL [9] provides SPGEMM
implementations written with CUDA, OpenCL and OpenMP,
and it implements row merges [7] that bases on merge sort of
the columns of B. MKL [4] also provides a multi-threaded
implementation that uses sparse accumulators without any
assumption on the order of the columns of B. As a differ-
ent approach than all, Patwary et. al. [3] also studies 2D
partitioning of the result matrix. At their preprocessing step,

they partition B based on the columns, however the gain only
amortizes the cost of preprocessing on certain conditions, for
which they have a heuristic for partitioning decision.

Extensive parallelism of GPUs are exploited for SPGEMM
in the literature, and most of the algorithms uses multiple
levels of partitioning in the literature. CUSP [8] has a 3D
algorithm that bases on expand and sort methods (ESC).
Each multiplication is performed by a single thread and they
are accumulated at the end with a sort operation. However,
accumulation is performed globabaly, therefore the memory
requirements of this method is usually high. cuSPARSE [5]
follows a hierarchical Gustavson algorithm. In a hierarchical
algorithm, rows are first assigned to first level of parallelism
(blocks or warps), and the calculations within the row are
calculated using the lower level parallelisms. In cuSPARSE’s
case, each row is calculated by a single warp, and multiplica-
tions within a row is done by different threads of the warp.
They use 2 level hash map accumulators, and do not make
any assumption base on order of the column indices. On the
other hand, row merge algorithm [7] and its implementation in
ViennaCL [9] uses merge sorts for accumulations of the sorted
rows. Similarly, bhSPARSE [6] exploits this assumption on
GPUs. It has methods to predict the size of the result matrix.
It performs binning based on the size of the result rows, and
performs accumulation for the multiplication of the row using
heap accumulators, ESC or row merge based on the size of
the row.

Table I lists the summary of the literature. The last line
list our library, KokkosKernels (KK), and the decisions we
follow in this work. Among these algorithms, the ones that
uses merge sorts and heaps, requires the columns of B to be
sorted. ViennaCL and cuSPARSE (and KK) follows 2-phase
approach where they first calculate the input structure, and
then perform the actual flops. bhSPARSE follows somewhat
similar approach, however, it estimates the size of the result
matrix, while CUSP over allocates the memory. Other multi-
threaded methods usually follow 1-phase approach with by
dynamically adjusting the result matrix size.

A different approach to SPGEMM method is studied by
Mccourt et. al [16]. In the symbolic phase, they find the
structure of the matrix. Using this structure they perform a
distance-2 graph coloring on the C to find the rows that
do not share any column. In the numeric phase, then in the
numeric phase, the rows with the same color are compressed
to dense matrix, and sparse matrix-dense matrix multiplication
is performed. The result is projected back to the sparse matrix.
However, this method requires the conversion from sparse
matrix to dense matrix for all numeric steps. In Section III
we also study distance-2 graph coloring, however we use this
to share dense accumulators by multiple threads.

A. Kokkos

Kokkos [1] is a C++ library that provides an abstract thread
parallel programming environment and enables performance
portability for common multi- and many-core architectures. It
provides a single programming interface but enables different

TABLE I: Summary of the SPGEMM work in the literature
that bases on the partitioning scheme, paralellism and accu-
mulator they use. HM and MS denotes Hashmap and Merge
Sort, respectively.

Partitioning Parallelism Accumulator
Gustavson 1D Sequential Dense
Trilinos [11] 1D Dist. Dense
ComBlass [12] 2D Dist. Heap
Azad et. al. [13] 3D Dist./Multicore Heap
MKL [4] 1D Multicore
Patwary et. al. [3] 1D/2D Multicore Dense
ViennaCL - OMP [9] 1D Multicore MS
CUSP [8] 3D GPU ESC
cuSPARSE [5] Hier. GPU HM
ViennaCL-Cuda [9] ;
Gremse et. al. [7] Eex GFU. ME
bhSPARSE [6] Hier. GPU Heap/MS/ESC
KokkosKernels Hier. Multicore/GPU HM

TABLE II: Kokkos Hierarchy mapping to GPUs and CPUs

GPUs CPUs
Team Block Work assigned to group of hyperthreads
Kokkos Thread | (half, quarter...) Warp Work assigned to a single Thread
Vector Lane Threads within a warp Vectorization Units

optimizations for backends such as OpenMP and CUDA. We
used only a subset of Kokkos’ features, mainly parallel_for,
parallel_scan, atomics, and views (arrays), as well as the
Kokkos thread hierarchy. Using Kokkos allows us to run the
same code on Xeon Phi and GPU just with different compile
options.

The kokkos-parallel hierarchy consists of teams, threads
and vector lanes. Table II shows how we map these terms
to computation units on GPUs and CPUs. A team in kokkos
refers to independent bunch of work that is assigned to group
of threads that can share resources. This refers to thread blocks
on GPUs, where threads have shared memory spaces. On
the other hand on CPUs, a team can be more flexible. It
can consists of all threads sharing the DDR memory, or the
threads sharing L2 or L1 cache. To our experience, the best
performance with teams is achieved by using the hyperthreads
that share L1 cache. Work-sharing of the threads within the
team is achived by assignment of the consecutive indices to
consecutive threads. This allows coalesced memory accesses
on GPUs, while on CPUs, this allows better cache reuse if
threads within the team are chosen as hyperthreads that run on
the same core. Note that, if a team on CPU consists of threads
that shares DDR memory, this causes false sharing. Note that,
there is not one-to-one mapping from kokkos-teams to the used
number of computational units. That is the number of teams on
CPU are much higher than the number of computation units.
A computation unit is assigned various number of teams. A
kokkos-thread within a team consists of vector lanes. It can
map to a warp (half, quarter warp, or so on.) on GPUs, while it
on the CPU side it corresponds to vectorization units. We will
use the terms, teams, kokkos-threads and vector lanes for the
rest of the paper, which refers to the explained computational
units on CPUs and GPUs.

thread-1

eam-1|

thread-2

team-2|

team-3|

team-5|

Fig. 1: SpGEMM kokkos thread hierarchy. Team-1 consists of
2 kokkos-threads, and each kokkos-thread has 4 vector lanes
as shown with v[1-4]. Thread-1 is assigned to the first row. It
does a vector read (and multiply) of the first row of B, then it
continues with the second row of B (shown with different
tones of blue). As a result of this accumulation, thread-1
simultaneously computes the result of the entries in the first
row of C.

B. GPUs and KNL architectures
III. ALGORITHMS

We consider a 2-phase approach for our matrix-matrix mul-
tiplication method. In the first (symbolic) phase, the number
of nonzeros in each row is calculated, while in the second
(numeric) phase, the actual flops are performed. We choose
this approach over 1-phase approaches for the below reasons:

- l-phase methods either over-allocate memory for the
result matrix or dynamically increase its size throughout the
computation. The former approach can require significantly
larger memory than the actual result size, while the latter is
not portable, i.e., they are not suitable for GPUs. Methods
also exist to estimate the structure of the result matrix [10],
however, they do not provide an upperbound. Moreover, since
they perform a sparse matrix-dense matrix multiplication, they
are not significantly cheaper than a symbolic phase.

- It is a common use case of SpGEMM in scientific
computing to repeat multiplication of matrices that maintain
the symbolic structure, as the numerical values evolve. For
such cases, the first-phase only needs to be executed once, and
can then be reused for the rest of the numerical multiplications.

- 1-phase aproaches allocate and return memory using their
own memory management systems. This is not desirable in a
practical use-case for applications using these service-kernels.

2-phase methods double the work done, since the first and
second phases perform a similar amount of work, with the
additional flops in the second phase. We aim to improve
the performance of symbolic phase with some compression
methods as explained below.

A. Core SpGEMM Kernel

Both symbolic and numeric phases follow a hierarchical
row-wise algorithm. The structure of the core SpGEMM kernel
is given in Algorithm 2, and a simple scenario is shown in Fig-
ure 1. Kokkos-teams are assigned to a set of rows, and kokkos-
threads within the teams are assigned to a subset of these
rows. The result of one row is computed by a single kokkos-
thread. For example, the first row in Figure 1 is assigned to
thread-1 (highlighted in blue). Kokkos-threads allocate some

Algorithm 2 SpGEMM Kernel for C = A x B

Require: Matrices A, B

1: for each thread € thread_team € C'(x,:) do

2 i < GETMYROW(thread_team, thread)

3: allocate the first level accumulator Acc_L1
4. for col € A(i,:) do
5
6
7

cols,vals < VECTORREAD(B(col,))
vals < VECTORMULT(vals, A(i, col))

if FULL = Acc_L1.VECTORINSERT(cols,vals)
then

8: if L2 not_allocated then

9: allocate the second level accumulator Acc L2

10: L2 _allocated <+ True

11 Acc_L2.VECTORINSERT(cols, vals)

12: if SyMBOLIC then

13: rowSize(i) < total L1/L2 hashMap sizes

14: else

15: C(i,:) < values from L1/L2 hashmaps

16: if L2_allocated then

17: release Acc_L2

scratch memory for their private level-1 (L1) accumulator.
This scratch space is located at the shared memory of GPUs.
It is at the default memory (i.e., DDR4 or high bandwitdh
memory) on CPUs, but it is usually small enough to fit in L1
or L2 cache. Then, the kokkos-threads read the columns in
A(i,:) sequentially, perform a vectorized read and multiply
on the corresponding row of B. Multiplication results are
inserted into L1 accumulators. If the L1 accumulator runs out
of space, some global memory is allocated (explained later)
for a private L2 accumulator, and this L2 accumulator is used
for failed insertions. Once all insertions to the accumulators
are completed, the size of the accumulation is stored as the
row size in the symbolic phase, while result column indices
and their values are written to the corresponding rows of C' in
the numeric phase. L2 accumulators are released, if allocated.

Kokkos-threads consist of extra level of parallelism, i.e.,
vector lanes (Figure 1). The length of vector lanes is a runtime
parameter, and it is fixed for all threads in a parallel kernel.
It is calculated by rounding the average number of nonzeroes
in a row of B (dp) to the closest power of 2 on GPUs. It is
left to the compiler and underlying Kokkos framework based
on the architecture specifications on the CPU side.

The size of L1 accumulators depends on the available shared
memory of GPUs. If L1 runs out of memory, L2 accumulator
is allocated. The size of L2 accumulator is chosen as the
maximum row size so that it is guaranteed to have enough
space for the rest of the accumulations. Before the symbolic
phase, maximum size of a row is predicted as its upperbound,
which is the max flops in a row. This is more accurately chosen
as the maximum of the actual row sizes in the numeric phase,
as the actual sizes are known. On the other hand, both L1 and
L2 accumulators are located in the same memory space on
CPUs. Moreover, since there are more resources per thread on

CPUs, we skip L1 accumulator, and only use L2 accumulators
to hold all required entries. Yet, L2 accumulator is usually
small enough to fit into L1 or L2 caches.

Note that we do not deal with the floating point values
in the symbolic phase. Therefore, there is no read, multiply
and accumulation of the floating points. However, in order to
speed up this phase and reduce the memory requirements by
accumulators, we compress B and introduce new values, a
process which is explained below.

1) Compression: The row-wise algorithm in Algorithm 2
performs a single scan of A and multiple scans of B. That is,
a nonzero value in B is read multiple times, and total accesses
to B is as many as FLOPS. Specifically, row ¢ of B, B(i,:),
is read as many times as the number of nonzeroes in A(:,). If
we assume that the structure of A is uniform, that is, there are
0 4 nonzeroes within each column and row, each row of B is
accessed 04 times. Thus, the FLOPs become O(d4 X nnzpg).
If a compression method with linear time complexity reduces
the size of B by some ratio C'omp, the amount of work in the
symbolic phase can be reduced by O(Comp X 04 X nnzg),
with a compression price of O(nnzg).

Symbolic structure refers to the underlying graph structure
with binary relations, which can be represented using single
bits. We compress the rows of B such that 32 (64) columns
are represented using a single integer (long integer) similar to
the color compression we used in [17]. In this scheme, each
column is represented with 2 integers (or possibly with long
integer). The first integer refers to “column set” (C'S) in which
the set bit indices denote the indices of existing columns. That
is, if the i*" bit in C'S is 1, the row has a nonzero entry
at the i'" column. The second integer refers to the column
set index (CST) to represent more than 32 columns. The
reduction on the size of nonzeros of B can be up to 32x. The
compression is more successful if the column indices in each
row are packed close to each other. This reduces the problem
size, allows faster row-union operations using BITWISEOR,
and makes the symbolic phase more efficient. It also reduces
the calculated row max flops, as a result of the reduction in
the row lengths of B. This reduces the memory requirements
of the symbolic phase. For example, the size of the dense

accumulators are reduced from numCols(B) to %@.

B. SpGEMM Variants

We implemented 4 SpGEMM methods that follow Algo-
rithm 2, but differ in the used accumulator type. First variant is
referred as KKMEM. It uses sparse hashmap accumulators and
memory pools that allow it to be portable and thread scalable.
The second variant, KKDENSE, adopts dense accumulators
per thread. This method works only on CPUs since the mem-
ory requirement is not feasible on GPUs. The other 2 variants,
KKMCR and KKMCW, base on distance-2 graph coloring so
that threads share a dense accumulators. KKMEM is our main
method in this paper, while the others are implemented for
comparison and analysis reasons.

1) KKMEM: Uses sparse hash map accumulators to accu-
mulate floating point values in numeric, and “column sets” in

symbolic. It also makes use of a “portable memory pool” to
allocate memory for L2 accumulators.

Memory Pool: A portable memory pool is used in Al-
gorithm 2 to allocate memory for L2 accumulators. It is
allocated and initialized before the kernel call, and it consists
of num_chunks many memory chunks, where each has
fixed size of chunk_size. chunk_size is chosen based on
the max (compressed) FLOPS in a row, and max length
of a row of C in the symbolic phase and numeric phases,
respectively. num_chunks is chosen based on the available
concurrency. It is the number of threads on CPUs, while
it is the maximum number of kokkos-threads that can run
on GPUs (% on K80). We use an upper bound
for the maximum allocated memory for the pool (such as
O(nnz(C))), we reduce the num_chunks if the memory
allocation becomes too expensive on GPUs. The memory
pool has 2 modes such as ONETHREAD2ONECHUNK and
MANYTHREAD2MANYCHUNK. On CPUs, the mode of the
memory pool is set to be one to one, while on GPUs we set
it to many to one.

Allocate function of the memory pool requires thread in-
dices. These indices assists the look up for a free chunk.
Pool returns the chunk with the given thread index on CPUs,
while, on GPUs, it starts a scan from the given thread-index
until an available chunk is found. This allows CPU threads to
reuse local numa memory regions. It also helps the scan of
GPU threads as they start their scan from different indices.
Allocate function locks the returned memory chunk, and this
lock is released when the thread calls the release function of
the memory pool.

HashMap Accumulator: The hashmap accumulator fol-
lows the parallel version of the hashmap we used in [18].
It consists of 4 parallel arrays as shown in Figure 2, which
shows an example of a hashmap that has a capacity of 8
hash entries and 5 (key, value) pairs. Hashmap is stored in
linked list structure. Ids and Values stores the (key, value)
pairs. Begins holds the beginning indices of the linked lists
corresponding to the hash values, and Nexts holds the indices
of the next elements within the linked list. For example, in
the figure, the set of keys that have hash value of 4 are stored
with a linked list. The beginning index of this linked list is
stored at Begins[4]. We use this index to retrieve (key,value)
pairs (Ids[0], Values[0]). Then, link list is traversed using the
Nexts arrays. An index value —1 corresponds to the end of the
linked list for the hash value. We choose the size of Begins
to be power of 2, therefore hash values can be calculated
using BITWISEAND, instead of slow modular (%) operation.
The insertions to the hashmap is done via a vectorInsert
operation. Each vector lane calculates the hash values, and
travels through their linked lists. If a key already exists in the
hashmap, values are accumulated with “add” and BITWISEOR
in numeric, and symbolic phases, respectively. We exploit the
fact that vector insertions at a time are duplicate-free. That
is, vectorlanes read a single row of B, and the rows of a
matrix always have different columns (keys). Thus, atomic
operations are not needed for accumulation. If the key does

0 1 2 3 4 5 6 7

Begins |—ll—1|1|—1|0|—1|—1|—1|

o [Ele[s]
e BRI

Fig. 2: Structure of the hashmap accumulator with 5 entries
and 8 hash values.

not exist in the hashmap, vectorlanes reserve the next available
index in Ids and Values with an atomic counter. They set the
Begins of the correspond hash value to their insertion index
with atomic_compare_and_swap, and the Next of the inserted
index is set to old beginning index. If hashmap runs out of
memory, it returns “FULL” and the failed vector lanes insert
their values to the next level hashmap.

The hashmap accumulator guarantees compact/packed in-
sertions to Ids and Values arrays. L2 accumulator uses the
actual column and value arrays of C' for Ids and Values in
numeric phase. Thus, we avoid copies of L2 hashmap values,
and reduce the memory requirement. The size L2 hash map
in the symbolic phase can be at most mcf x 5 (1 for Nexts,
Ids, Values, and at most 2 for Begins) for symbolic phase,
where mcf denotes the maximum number of flops for a row.
We need at most 2x size for Begins since we round the
size of Begins to powers of 2. Numeric phase L2 hashmap
accumulator requires Begins and Next with a sizes at most
2 X maxRow, maxRow. It uses the result matrices column
and value arrays for Ids and Values. chunk_size for the
memory pool is chosen based on these computations.

2) KKDENSE: Algorithm follows the same thread-
partitioning with KKMEM. Instead of hashmap accumulators,
it uses single level dense accumulators per thread. It requires
3 parallel arrays, each has size of O(cols(C)). First one is
used for floating point values, and they are initialized with
0’s. Another parallel array is used to hold the indices that are
inserted to dense accumulator. We also use another boolean
array as a marker array whether a column index is inserted
before or not. Because of the high memory requirements
KKDENSE is not suitable for GPUs, thus it is not portable.
This method is similar to [3] without 2D partitioning.

3) KKMCR and KKMCW: The major issue with KKMEM
is the use of the sparse accumulators, which increases the
comparison operations. Hashmaps reduce the number of com-
parisons, however they do not guarantee a constant access
time. KKDENSE does not have this issue, however it demands
very high amount of memory. Instead, in order to allow the
shared usage of dense accumulators, we perform distance-
2 graph coloring on C' in the symbolic phase as shown in
Figure 3. We find set of the rows of C' that do not share any
column. To do this, we calculate not only the size of the result
matrix, but also the structure and nonzeroes of C' (using the
compressed B) in symbolic phase. Then, a dense accumulator

F

L] L1 [T

Fig. 3: Distance-2 graph coloring of C' with 6 colors. The rows
with the same colors do not share any columns.

TABLE III: Summary of the KK SpGEMM methods. All
variants does hierarchical partitioning and compression. They
use different type of accumulators.

Hier. | Comp. | Symbolic | Accumulator | # Comparison | # reads | #writes
KKMEM v v #nnz Sparse > 1 per flop ok low
Dense per .
KKDENSE | v « #nnz el 1 per flop ok high
KKMCR v ¢ | fanzand | Denseiper 0 high | highest
structure color e
KKMCW v v fanzand, | Dense:per 0 higher | higher
structure color

can be shared among the threads by processing the rows with
the same color at a time.

Coloring on C' is more restrictive coloring than A. That is, a
row of C' is found by merging the rows of B that correspond
to the columns of A for that row. As a result, a distance-2
coloring on C' is also a distance-2 coloring on A as shown in
the figure. Similarly, the rows that have the same color do not
share any columns on A, and they do not share any row of B
during their accumulations. This reduces the data locality for
B accesses, as each row of B is accessed at most once for the
set of rows with the same color. We perform multiplications
for multiple colors (as many as num_multi_color) at a time
to improve this data locality. This requires num_multi_color
many dense accumulator. We choose as num_multi_color as
Zgz(gg so that we do not use more than the output size for the
accumulators. Then, the first variant, M C'R, permutes the rows
that are in the same multi_color step, therefore, consecutive
rows might have different colors. This will improve the reuse
of B, however, consecutive rows with different colors will
require the use different dense accumulator. Therefore, write
locality is not preserved for this variant. The second variant,
MCW, permutes the rows within the same color. Consecutive
rows have the same color, and same accumulator is used for
them. This case is similar to single color case with reduced
synchronization cost..

Coloring variants calculate the structure of C' in the sym-
bolic phase. As a result, they do not require parallel accumula-
tor arrays and comparison operations in their numeric phases.
We use a sequential distance-2 coloring, we only study the
numeric part for these algorithms. Table III gives the overall
summary of the KK SpGEMM variants.

IV. HYPERGRAH MODEL TO EVALUATE MEMORY
ACCESSES

In this section we extend the hypergraph model for dis-
tributed matrix-matrix multiplication proposed in [15] with the

muiiuM S5
=

(a) Simple Matrix Multiplication

(b) Hypergraph Model

(c) Directed Hypergraph Model for Shared Memory

Fig. 4: Hypergraph Models for the SpGEMM computation.
Yellow vertices correspond to the nonzeroes of the input/output
matrices where the row and

directed hypergraph model from [19] for shared memories. A
hypergraph H = (V,N) is defined as a set of vertices V'
and a set of nets (hyperedges) N among those vertices. A
net n € N is a subset of vertices and represents multiway
dependency between them. Vertices can be associated with
computation weights and nets can be associated with com-
munication costs (refer to section 2 of [19] for hypergraph
details and communication metrics). Figure 4a shows a simple
matrix multiplication example, and Figure 4b presents the
hypergraph model of this matrix from [15]. The hypergraph
model represents each multiplication of SpGEMM with a
vertex (red circles). Nonzeroes of the input/output matrices are
represented with a net (squares) and a vertex (yellow circles).
Nets corresponding to the nonzeroes of A and B are connected

to the multiplications that require them, while nets for the
nonzeroes of C' are connected to the multiplications that con-
tributes to its value. Each red vertex is associated with a weight
that represents the computation costs wi(vyeq) = 1, while
each yellow vertex is associated with a weight to represent its
memory requirement wg(vye”ow) = 1. Then, a multi-criteria
partitioning that reduces overall communication is performed
using PaToH [20]. Multi-criteria partitioning balances both
computation (red vertices) and memory requirements (yellow
vertices). In this example, we have 3 parts, where each
part is assigned 2 computation vertices and 4 data vertices.
Overall communication volume is 4, because of the cut-nets
{C11,C14, A12, A14}.

In this work, we slightly extend this hypergraph model
with the directed hypergraph model. Directed hypergraphs also
model the flow of the data within the nets, i.e., nets have
senders and receivers. In the first step, we add directions to the
nets. A and B vertices are the senders of their corresponding
nets, and multiplications are the receivers (not shown). On
the other hand, multiplications are the senders of the C'
nets, while C' vertices are the receivers of them. With this
hypergraph model and a directed hypergraph partitioner such
as UMPa [19], one can model and reduce not only overall com-
munication volume, but also other communication overheads
such as the number of messages exchanged, or maximum
communication volume. For example, with the addition of
the directions as described, first part has a receive volume
of 2 because of nets {C42, A12}, second part has send volume
of 2 because of nets {Cja, A12} and receive volume of 2
because of nets {C14, A14}, and third part has send volume of
2. Moreover, first and second part receives a single message,
while second and third part sends a single message.

We further modify the model for shared memory systems.
On a shared memory partitioning, there is not a real “data”
partitioning, we only partition the computations, since com-
putation units do not own data. We do not have point to point
communications between processors, and insetead of the com-
munication metrics such as Send/Receive, we have metrics
that correspond to Write/Read to memory. Moreover, mem-
ory systems pack multiple data into single cache line. That is,
when a data is accessed, the whole cache line is read (written)
from the memory on CPUs so that the consecutive memory
reads become cheaper. Similarly, the memory accesses on
GPUs simultanously load multiple data that lie within the
coalesced access range. Therefore, in Figure 4c, we pack the
nets for the consecutive data elements that fall into a cache-
line or a coalesced memory accesses (2 elements are packed in
the example). Moreover, the data elements are not partitioned
anymore, they are fixed in the memory (to a virtual part £+ 1).
One can assign different cost for Reads/Writes nets of A,
B and C if they are in different memory spaces. UMPa can
be used to reduce the Read/Write costs of each thread with
some modifications. However, this paper uses this model to
evaluate the read/write costs of the SpPGEMM methods rather
than finding and optimized partitioning. Given an execution
order, we stream the nets of this hypergraph into a cache, and

TABLE IV: Multigrid Matrices used in the experiments

#row #col #nnz
Laglhes A | 15,625,000 | 15,625,000 | 109,000,000
P | 15,625,000 1,969, 824 57,354,176
Brick A | 15,625,000 | 15,625,000 | 418,508,992
P | 15,625,000 592,704 71,991, 296
Bmpizs A 2,160,000 2,160,000 | 303,264,000
P 2,160,000 8,800 8,572,251

simulate the read/write cache misses.

V. EXPERIMENTS

a) Architecture:: We evaluate the performance of the
proposed SpGEMM kernels on single nodes of the Bowman
and Shannon clusters at Sandia. Each node in Bowman has a
KNL processor with 68 1.40GHz cores with 4 hyper-threads
per core. Each node has 16 GB MCDRAM with 460 GB/s
peak bandwidth and 96 GB DDR4 memory with 102 GB/s
peak bandwidth. The nodes can have various modes. In our
experiments we use “Quadrant” mode, that has uniform mem-
ory accesses between the cores without any NUMA effects.
Shannon is a GPUs cluster with two NVIDIA Tesla K80 GPUs
in a node with compute capability 3.7 and 11.25 GB of global
memory. Our SpGEMM variants are implemented using the
Kokkos library, and compiled using the version within the
Trilinos 12.2 release, with icc 17.0.042 on Bowman, gcc 4.7.2
with Cuda 7.5.7 on Shannon. Each run reported in this paper
is the average of 5 executions. We used double precision for
the floating points, and 32 bit integers for the index types.

We evaluate matrix multiplications in the forms of PT x
A x P and A x A depending on the application domain.
The experiments use matrices from various multigrid problems
(Table IV) and UF sparse matrices [21] used in the literature
for A x A from [6], [13] (Table V). The experiments are
organized in three parts. First, we compare KKMEM with
SpGEMM implementations in cuSPARSE [5], CUSP [8],
bhSPARSE [6], and ViennaCL (CUDA Implementation) [9]
on GPUs (Section V-A). Second, we compare KKMEM to
Intel Math Kernel Library (MKL) [4] and ViennaCL on KNLs
(Section V-B) and study the practical use case of reusing the
symbolic structure. Finally, Section V-C analyzes the memory
accesses of the four KK variants based on our model and
evaluates the performance of the numeric phases in MCDRAM
vs DDR memory.

A. GPU Experiments

Table V shows the achieved GFLOPs/sec for each method
on 23 different matrix multiplications. cuSPARSE and
KKMEM are the most robust methods than can multiply all
the matrices. However, cuSPARSE is the slowest of all the
methods compared here. ViennaCL, bhSPARSE and CUSP run
out of memory for 4, 8 and 18 multiplications, respectively.
The bottom 4 rows in the table show the speedup of the
algorithms w.r.t cuSPARSE for the matrices the method could
run on. KKMEM, bhSPARSE and ViennaCL obtain the best
performance on 19, 3, and 1 matrices, respectively. In general

TABLE V: GFLOPs/second of SpGEMM variants in K80
GPUs. Best method for each multiply is in bold. The (#rows,
#non-zeros) of the UFL matrices are given in parenthesis.
Blank space indicate the method ran out of memory.

cusp bh vienna | cusparse | kkmem
2cubes_sphere
(102K,1.6M) 0.347 | 0.627 | 0.693 | 0.208 1.059
cagel2 (130K, 2M) 0.338 | 0.759 0.623 0.191 0.881
filter3Dp (106 K,2.7M) | 0.459 | 1.175 | 1.013 0.246 1.165
offshore (259K ,4.2M) | 0.343 | 0.868 0.849 | 0.130 1.266
webbase (1M, 3M) 0.346 | 0.385 | 0.040 | 0.120 0.265
cant (62K ,4M) 2.382 1.542 2.268 3.071
hood (221 K,10M) 3.249 1.557 1.127 3.509
Idoor (952K ,42M) 3.207 1.499 1.169 3.662
pwtk (106 K,11M) 3.191 1.668 1.641 4.080
laplace_RA 0.916 | 0.634 0.159 0.877
laplace_RA_P 0.400 | 0.774 | 0.158 0.683
laplace_AP 0.789 1.377 | 0.101 1.529
laplace_R_AP 0.681 0.789 | 0.231 1.490
empire_RA 1.312 1.039 1.628 2.086
empire_RA_P 0.344 1.413 | 0.527 0.927
empire_AP 2.062 0.661 2.408
empire_R_AP 1.844 0.730 1.957
brick_AP 1.939 | 0.296 2.310
brick_R_AP 1.024 | 0.445 1.810
brick_RA 0.322 1.904
brick_RA_P 0.394 0.888
audi (943K,77M) 1.270 3.318
bump (2.9M,127M) 1.211 2.988
Speedup[1-5]: 2.112 | 4.149 2.507 1.000 4.746
Speedup[1-15]: 2.730 2.247 1.000 3.753
Speedup[1-19]: 2.436 1.000 3.841
Speedup[1-23]: 1.000 3.689

the fastest algorithm is KKMEM, which is on average 3.689,
1.577, 1.375 and 2.247 faster than cuSPARSE, ViennaCL,
BhSPARSE, and CUSP, respectively on the sets each method
could complete. The speedups of KKMEM w.r.t. cuSPARSE
ranges from 1.28 to 15.103. KKMEM achieves the best
performance without sacrificing robustness mainly due to the
hierarchical algorithm that maps well to the GPUs and the
thread scalable data structures that can effectively use the GPU
hardware features.

B. KNL experiments

In this subsection, we compare KKMEM against ViennaCL
(OpenMP implementation) and Intel MKL on KNLs. We use
mk1l_sparse_spmm routine in MKL’s inspector-executor
sparse BLAS. The runtime for this method takes up to 2 — 3z
more time when it is called for the first time within an
executable than the following calls. Even though an application
using MKL will observe this poor performance, we exclude
the first run, and report the following runs for this function.
As a result, it should be noted the speedup numbers compared
to MKL in this section are conservative. The test dataset
includes 12 multigrid multiplications from Table IV, and 2
A x A multiplications for the biggest two matrices from
our dataset - Audi and Bump. For these experiments, we
only used 64 of 68 cores in the KNL node, with 2 and 4
hyperthreads on 128 and 256 threads. Figure 5a shows the
geometric mean of the normalized speedups (w.r.t. sequential
KKMEM on DDR4) of three methods for 14 multiplications

EIKKMEM

|
DDR4 MCDRAM DDR4 ‘

MCDRAM

(a) Speedups for NoReuse case (b) Speedups for Reuse case

Fig. 5: Strong scaling speedups on DDR4 and MCDRAM
for geometric mean of 14 multiplications w.r.t. sequential
KKMEM on DDR4. The numbers above the bars correspond
to KKMEM speedups.

of NoReuse case. MKL fails (does not complete in 1000
seconds) for 4/14 instances with 256 threads, for which we
proportionally scale the speedup of the dataset that it runs so
we can find a geometric mean (assuming that Ipeedup(14,266) .

& i Speedup(mylzg) -
eedu 5 5 ¢
oPecdiiP(10.250) y «NoReuse” refers to the case where the matrix
Speedup(10,128)

multiplication requires both symbolic and numeric. We also
run the experiments with all three matrices stored in either of
the two different memory spaces DDR4 or MCDRAM. This
is the first such experiment to compare the performance of on-
chip vs off-chip memory for a complex kernel like Sp GEMM
in this latest architecture.

First, it is easy to see MKL does not scale on 256 threads
and it fails for 4 instances, however, its performance is better
than KKMEM upto 128 thread on DDR4 memory. On average,
MKL is 69% faster than KKMEM on single thread, as the
number of threads increase the difference reduces to 17%
on 128 threads, and then KKMEM becomes faster on 256
threads for matrices MKL can complete. On MCDRAM, the
performances curves are similar to DDR4 on smaller number
of threads. However, KKMEM becomes 7% faster than MKL
on 128 threads. The performance of ViennaCL is lower than
both KKMEM and MKL. KKMEM is up to 78% and 2.51x
faster than ViennaCL on DDR4 and MCDRAM, respectively.
KKMEM scales close to linear up to 64 threads, for which it
obtains 49.28 (56.27) speedup on DDR4 (MCDRAM). It also
scales well with the addition of hyperthreads. The addition
of 2 (4) hyperthreads speedups the KKMEM by 21% and
46% (18% and 61%) w.r.t. its performance with 64 threads on
DDR4 and MCDRAM, respectively. Storing matrices in the
MCDRAM paying good dividends for larger thread counts
as the larger bandwidth can be effectively utilized. This is
reflected in the 90x speedup for MCDRAM as opposed to the
58z speedup for the DDR4 when using 256 threads. However,
when the bandwidth is not saturated on lower number of
threads, DDR4 is slightly faster.

a) Symbolic Reuse and Compression: The other use case
that is common in applications is the reuse of the symbolic
structure of the matrices for several SpGEMM operations.
This is not supported in MKL. KKMEM allows the symbolic

9.00 =
~N

8.00

wL

18
£8'8

7.00

«
i]
g 600 ESIKKMEM =@=MKL =“=ViennaCL ~ & ©

2

v 5.00
<

- 4
g 4.00
e

& 3.00

£

2.00 =
o P o
1.00 fr" :

0.00 -

kiikEzer

©
0
~

NoReuse

‘ NoReuse

Audi AxA Laplace AxP \

Fig. 6: Strong scaling for Audi and Laplace on MCDRAM

phase to be reused and run just the numeric phase in the
“Reuse” case. Figure 5b compares the performance of the three
codes for this case. When there is a reuse of the symbolic
structure, MKL. and KKMEM have similar performances on
single thread. As the number of threads increase to 128
(256), KKMEM gets upto 2z(3x) faster than MKL. Note that,
ViennaCL also runs in two phases, similar to KKMEM. First it
calculates the memory requirements than it performs the actual
flops. However, the public interface does not support the 2-
phase usage. Hence we do not reuse the symbolic structure
when running ViennaCL. It is slower than both MKL and
KKMEM. Note that the effect MCDRAM can be best observed
here where we see an impressive 90x geometric mean speedup
on 128 threads for a memory bound kernel such as SpGEMM.

Figure 5 shows significant performance differences between
NoReuse and Reuse because in most of the multiplications,
symbolic phase is as expensive as numeric phase. This is
because the compression scheme was not successful at com-
pressing the matrices to smaller sizes on multigrid matrices
that dominate the dateset. It is more successful on the ma-
trices from UF matrix collection for A x A, since they the
columns of those matrices are usually packed. To demonstrate
this difference we compare two matrices that have different
compression ratios. Figure 6 gives the strong scaling results
with the achieved GFLOPs/second for Audi A x A and Laplace
A x P multiplications. MKL fails to complete in 1000 seconds
on Laplace with 256 threads, therefore it is excluded. The
compression on Audi reduces the size of the matrix by 88%.
Therefore symbolic phase becomes significantly cheaper than
numeric phase, and the performance difference between Reuse
and NoReuse case is not as significant. On the other hand, the
compression is not successful on Laplace A x P. It reduces
the size of P on Laplace A x P multiplication only by 7%.
As a result, the performance difference between the Reuse
vs NoReuse case is high for Laplace AP. Different ordering
schemes can be applied to improve packing. We leave the
study of the ordering methods that would pack columns as
future work.

Figure 7 gives the best GFLOPs/sec achieved by each
method among all thread counts. Best GFLOPs/sec ratios are
achieved with 128 threads for MKL, and 128 and 256 for
KKMEM and ViennaCL. KKMEM-Reuse lists the perfor-

10.00 - KKMEM

= MKL

8.00 “=ViennaCL

’\\ N\ =»=KKMEM-Reuse

[

GFLOPS/sec

4.00

2.00 -

0.00 -

empire

DDR4

empire

MCDRAM

Fig. 7: Best GFLOPs achieved by each method for a given problem. The number of threads differ for different methods.

u
)
8

GFlops/sec
>
s
8
Flops/Double

w
S
8

X . 03 T 034 |

KKMCR

KKMEM
KKDENSE
KkMmcw
KKMEM
KKDENSE
KKMCW
KKMEM
KKDENSE
KKMCR
KKMCwW
KKMEM
KKDENSE
® KKMCR
KKDENSE
KKDENSE

@
2

g =

2 B KM
N~
b
a

Fig. 8: The number of floating point operations performed per
double access and GFLOPs/sec achieved by the methods. The
numbers highlights the FLOP/Double ratios.

mance of KKMEM when the symbolic structure is reused.
It obtains the best performance compared to any other method
in all multiplications. ViennaCL performs worse than other
methods. For the NoReuse case, MKL and KKMEM obtains
best performances on 10 and 4 multiplications on DDR4.
However, on MCDRAM, KKMEM is better than MKL on 11
matrices, while for 3 of them MKL achieves higher GFLOPs.
The geometric mean of the best flops achieved by MKL 16%
better than KKMEM on DDR4, while it is 16% worse on
MCDRAM. Again the above discussed numbers are with “No
Reuse” case. KKMEM clearly wins when “Reuse” is needed.
On Average, KKMEM obtains 2.22z better performance than
MKL with Reuse on MCDRAM.

Another mode of KNL is to use MCDRAM as cache. We
have experimented the performance of SPGEMM methods on
the Cache mode as well, however, since all experiments fit
into MCDRAM, we obtain the same performance results as
running them on MCDRAM in that case.

C. Performance analysis using the model for memory accesses

In this set of experiments, we use the hypergraph model to
evaluate the memory accesses of each KK variant algorithm
(KKMEM, KKDENSE, KKMCR, KKMCW), and compare
their performances on the numeric phase. Exeuction time for
symbolic phase or the time for preprocessing such as distance-
2 coloring is excluded as we are interested in studying the

numeric kernel. We simulate the cache behavior using the
streamed execution order and the hypergraph model. We use
cache size as 32K B which is the size of L1 cache in KNL,
and cache line size as 8 doubles. For each variant, using the
hypergraph model and given cache size, we calculated the
number of memory reads and writes based on the L1 cache
misses. The simulation primarily uses the execution order and
the data structure used for “writes” which is either sparse or
dense accumulators.

Figure 8 lists the calculated floating point operation per
memory access and the performances for each algorithm on
Laplace A x P multiplication. As before, the z axis is first
divided based on the memory used, and then the number of
threads ranging from 64 to 256. We only study the case where
all cores are used, since memory bandwidth is not saturated
when number of threads is less than 64. The green line refers
to how many floating point operation is performed per double
read, for which the y axis is given on the right side. The flops
is the actual flops in the kernel and the memory access for
the double is found using the model. This number is expected
to be high for a method that exploits locality, while it would
be lower for methods with more random memory accesses.
This ratio drops for all methods as the number of hyperthreads
increase within a core. Hyperthreads share L1 cache, therefore
this reduces the amount of L1 cache per thread. KKMEM has
better FLOP/Double ratios than KKDENSE. This is because
KKMEM uses sparse accumulators which exploits the data
locality since the the sparse accumulator is a compact data
structure. Coloring variants have the worst FLOP/Double ra-
tios, since they also have minimal reuse of B reads. Moreover,
even though they use dense accumulators (as KKSPEED), they
do more writes than KKDENSE since the consecutive rows are
unlikely to share any columns (due to different colors).

Figure 8 also shows the GFLOPS for the four variants
measured in two ways stacked on one another. Note that the
numeric phase itself has two main parts. In the first part, it
allocates and initializes the accumulators, and in the second
part it performs the actual multiplication kernel. In the figure,
we list GFLOPS in two separate bars. “Numeric flops” is
the flops calculated based on both steps of numeric phase,
while “Kernel flops” are calculated based only on the time of

ESSIMCDRAM == Write-DDR4 Flop/Write [

FLOPs/Write

128

Laplace AP | Laplace RA

Fig. 9: The number of floating point operations performed per
double write and GFLOPs/sec achieved by the methods on
Laplace A x P and Laplace R x A matrices. The numbers
highlights the FLOP/Double Write ratios.

the multiplication kernel, excluding the time of allocation and
initialization of the accumulators. This is chosen since alloca-
tion/initialization becomes expensive for dense accumulators,
and it interferes with the analysis, as our model’s memory/read
write analysis only includes the multiplication kernel. That
is, KKMEM becomes usually faster than the other variants
because of the low initialization cost, but for the rest of
this section, we only consider the time for the multiplication
kernels.

When the methods run on the DDR4, lower bandwidth
memory, the performance of the multiplication kernels follows
similar trends with the FLOP/double. KKMEM is usually the
fastest among the kernels, even though it has extra comparison
operations. On 64 threads, KKDENSE is the fastest, for which
the bandwidth of DDR4 is enough to deliver the data needed
by 64 threads. However, as the number of threads increase, the
memory accesses become more significant and the methods
with dense accumulator do not scale. This is despite the extra
comparison operations required by KKMEM. On the other
hand, when they are run on high bandwidth memory, memory
is less likely to become bottleneck. KKDENSE has the fastest
kernel in all thread counts in MCDRAM. KKMEM is still
faster than coloring variants as they demand much higher
memory access than KKDENSE. The performance difference
of the algorithm between MCDRAM and DDR4 memory is
much lower for KKMEM, since it is more robust to bandwidth
related overheads.

Figure 9 shows the performances of the KK variants (mul-
tiplication kernel only) for 2 different multiplications. In this
kernel, accumulated bars correspond to the performancess
when all the matrices and accumulators lies in MCDRAM.
The blue bars show the performance of the algorithms when
the result matrix and accumulators (memory writes) lies in
DDR4 while A and B are located in MCDRAM. Green line
shows the number of flops performed per write access. As it
uses sparse accumulators, KKMEM has the best FLOP/write
ratio. KKDENSE has better writes then the coloring variants,
and KKMCW has slightly better writes than KKMCR.

On Laplace A x P, KKDENSE has the best performance
when the writes are to MCDRAM despite having more writes
and poor FLOPS/write ratio than KKMEM. However, its
performance drops dramatically when the accumulators are
allocated in DDR4. KKMCR and KKMCW are also affected
significantly, but they do poorly than KKMEM even in MC-
DRAM. KKMEM is the most robust to where the writes
are as predicted by its FLOP/write ratio. The fastest method
KKDENSE is outperformed by KKMEM when only writes are
placed to DDR4, since KKMEM exploits data reuse thanks to
its sparse accumulators. Similarly, right side of Figure 9 shows
the performance changes on Laplace R x A multiplications.
KKDENSE does not run on higher number of threads, since
it runs out of memory. KKMCR and KKMCW is faster than
KKMEM in this multiplication, however, they are significantly
affected by the memory that writes are performed, and they
are outperformed by KKMEM when writes are placed to slow
memory. These results demonstate the accuracy of our models
in predicting the performance of different SpPGEMM variants
in different memories and the robustness of KKMEM both in
terms of lower memory usage and as a consequence of that a
lower impact on using either MCDRAM or DDR4.

VI. CONCLUSION AND FUTURE WORK

In this work, we have studied portable implementation of
SPGEMM kernel for massively threaded architectures. We
have designed a hieararchical, memory-efficient algorithm, and
portable thread-scalable data structures. We have demonstrated
the superior performance of our method against 4 existing
methods on GPUs, and 2 existing methods on KNLs. We
have proposed a compression method that compresses the
input matrices and speedups the structure prediction part of
SPGEMM. We have also studied the practical usage of the
SPGEMM kernel, where the our method exploits the reuse of
the symbolic structure and obtains significant speedups w.r.t.
existing methods. We have also developed a hypergraph model
in order to measure the memory accesses of the algorithms,
and shown the relationship of the measured performance with
the expected performance on various memory spaces.

There are various branches we would like to extend the
current work. Firstly, packing methods that would reorder the
columns of a matrix is planned to be studied. This is different
than bandwidth-minimization algorithms since the target is to
reduce the pairwise distances of the columns within a row,
so that the compression ratio can be increased. Moreover this
packing can be usefull for common problems such as sparse
matrix-vector multiplications, in which column indices are
packed within a cache line on CPUs or in a range of coalesced
memory access on GPUs. Secondly, we would like to study
the ordering methods that will reorder the rows of A, so that
the reuse for second matrix B is maximized. There exists
ordering methods in the literature based on (hyper) graph
partitioning, however they are usually expensive and the cost
of them usually does not amortize the cost. We would like
to study fast ordering methods that exploits the data reuse.
Thirdly, we would like to extend the parallelism within the

calculation of a row. That is, current hierarchical algorithm
that assigns rows to kokkos-threads will be extended to assign
rows to kokkos-teams. An analytical study to compare both
approaches is planned to be studied.

Acknowledgements: We thank Erik Boman, Karen Devine,
Grey Ballard, and Carter Edwards for helpful discussions, and
test bed program at Sandia National Laboratories for supplying
the hardware used in this paper. Sandia National Laboratories
is a multi-program laboratory managed and operated by Sandia
Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Dept. of Energy’s National Nuclear
Security Administration (NNSA) under contract DE-AC04-
94AL85000. This work is supported by the U.S. Dept. of
Energy, Office of Science, Office of Advanced Scientific
Computing Research, Scientific Discovery through Advanced
Computing (SciDAC) program, and by the NNSA’s Advanced
Simulation and Computing (ASC) program.

REFERENCES

[1] H. C. Edwards, C. R. Trott, and D. Sunderland, “Kokkos: Enabling
manycore performance portability through polymorphic memory access
patterns,” J Parallel Distrib Comp, vol. 74, no. 12, pp. 3202-3216, 2014.

[2] F. G. Gustavson, “Two fast algorithms for sparse matrices: Multiplica-
tion and permuted transposition,” ACM Transactions on Mathematical
Software (TOMS), vol. 4, no. 3, pp. 250-269, 1978.

[3] M. M. A. Patwary, N. R. Satish, N. Sundaram, J. Park, M. J. Anderson,
S. G. Vadlamudi, D. Das, S. G. Pudov, V. O. Pirogov, and P. Dubey,
“Parallel efficient sparse matrix-matrix multiplication on multicore plat-
forms,” in High Performance Computing. Springer, 2015, pp. 48-57.

[4] Intel, “Intel math kernel library,” 2007.

[5] J. Demouth, “Sparse matrix-matrix multiplication on the gpu,” in Pro-
ceedings of the GPU Technology Conference, 2012.

[6] W. Liu and B. Vinter, “An efficient gpu general sparse matrix-matrix
multiplication for irregular data,” in Parallel and Distributed Processing
Symposium, 2014 IEEE 28th International. 1EEE, 2014, pp. 370-381.

[7]1 F. Gremse, A. Hofter, L. O. Schwen, F. Kiessling, and U. Naumann,
“Gpu-accelerated sparse matrix-matrix multiplication by iterative row
merging,” SIAM Journal on Scientific Computing, vol. 37, no. 1, pp.
C54-C71, 2015.

[8] S. Dalton, L. Olson, and N. Bell, “Optimizing sparse matrixmatrix mul-
tiplication for the GPU,” ACM Transactions on Mathematical Software
(TOMS), vol. 41, no. 4, p. 25, 2015.

[9] K. Rupp, F. Rudolf, and J. Weinbub, “ViennaCL - A High Level Linear

Algebra Library for GPUs and Multi-Core CPUS,” in Intl. Workshop on

GPUs and Scientific Applications, 2010, pp. 51-56.

E. Cohen, “Structure prediction and computation of sparse matrix

products,” Journal of Combinatorial Optimization, vol. 2, no. 4, pp.

307-332, 1998.

M. A. Heroux, R. A. Bartlett, V. E. Howle, R. J. Hoekstra, J. J. Hu,

T. G. Kolda, R. B. Lehoucq, K. R. Long, R. P. Pawlowski, E. T. Phipps

et al., “An overview of the trilinos project,” ACM Transactions on

Mathematical Software (TOMS), vol. 31, no. 3, pp. 397423, 2005.

A. Bulug and J. R. Gilbert, “The combinatorial blas: Design, implemen-

tation, and applications,” International Journal of High Performance

Computing Applications, p. 1094342011403516, 2011.

A. Azad, G. Ballard, A. Buluc, J. Demmel, L. Grigori, O. Schwartz,

S. Toledo, and S. Williams, “Exploiting multiple levels of parallelism in

sparse matrix-matrix multiplication,” arXiv preprint arXiv:1510.00844,

2015.

K. Akbudak and C. Aykanat, “Simultaneous input and output matrix par-

titioning for outer-product—parallel sparse matrix-matrix multiplication,”

SIAM Journal on Scientific Computing, vol. 36, no. 5, pp. C568-C590,

2014.

G. Ballard, A. Druinsky, N. Knight, and O. Schwartz, “Hypergraph

partitioning for sparse matrix-matrix multiplication,” arXiv preprint

arXiv:1603.05627, 2016.

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

M. MCCOURT, B. SMITH, and H. ZHANG, “Efficient sparse matrix-
matrix products using colorings,” SIAM Journal on Matrix Analysis and
Applications, 2013.

M. Deveci, E. G. Boman, K. D. Devine, and S. Rajamanickam, “Parallel
graph coloring for manycore architectures,” in 2016 IEEE International
Parallel and Distributed Processing Symposium (IPDPS), May 2016,
pp. 892-901.

M. Deveci, K. Kaya, and U. V. Catalyurek, “Hypergraph sparsification
and its application to partitioning,” in Parallel Processing (ICPP), 2013
42nd International Conference on. IEEE, 2013, pp. 200-209.

M. Deveci, K. Kaya, B. Ucar, and U. V. Catalyiirek, “Hypergraph parti-
tioning for multiple communication cost metrics: Model and methods,”
Journal of Parallel and Distributed Computing, vol. 77, pp. 69-83, 2015.
U. Catalyiirek and C. Aykanat, “Patoh (partitioning tool for hyper-
graphs),” in Encyclopedia of Parallel Computing. Springer, 2011, pp.
1479-1487.

T. A. Davis and Y. Hu, “The university of florida sparse matrix collec-
tion,” ACM Transactions on Mathematical Software (TOMS), vol. 38,
no. 1, p. 1, 2011.

