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Science and Diagnostics of Battery

Materials R&D

Non-flammable electrolytes

Electrolyte salts

Coated active materials

Thermally stable materials

Battery failure post mortem materials analysis

Testing

Diagnostics during battery failure (pictured right)
Gas analysis

Battery calorimetry, including during failure
Electrical, thermal, mechanical abuse testing
Failure propagation testing on batteries/systems
Large scale thermal and fire testing (TTC)

Simulations and Modeling

Multi-scale models for understanding thermal
runaway

Validating vehicle crash and failure propagation
models

Fire Simulations to predict the size, scope, and
consequences of battery fires

Procedure Development and Stakeholder Interface

USABC Abuse Testing Manual (SAND 2005-3123)

OE Energy Storage Safety Roadmap

R&D programs with NHTSA/DOT to inform best
practices, policies, and requirements

Hosted International Battery Safety Workshops and
Energy Storage Safety Workshop

Failure
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* Sandia is uniquely positioned to study
the entire life cycle of a technology,
from science based development, to
prototyping, to lifetime reliability and
destructive testing

. New technologies present new risks. A
high rigor environment at Sandia
allows those risks to be adequately
managed.

« Diagnostic tests can be performed
under extreme failure conditions to
understand the how and why of
battery failure, as well as the
consequences of energetic failures.




| Capabilities and Infrastructure
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Battery Abuse Testing Laboratory
(BATLab)

Cell Prototype Facility
Battery Calorimetry
Modeling and Simulations
Materials Development R&D
Thermal Test Complex (TTC)

.Thermal Test Comple



Battery Abuse Testing Laboratory (BATLab)

Comprehensive abuse testing platforms for safety and reliability of cells,
batteries and systems from mWh to kWh

Cell, module, and battery system hardware deliverables for testing

Mechanical abuse

o Penetration
o Crush

° Impact

o Immersion

Thermal abuse

° Over temperature
o Flammability measurements
o Thermal propagation

o Calorimetry

Electrical abuse

o Overvoltage/overcharge

o Short circuit

o Overdischarge/voltage reversal



| Burn Site

ilities

Fac

Full Scale Battery Testing
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Battery System Field Failures

Field failures could include:

= Latent manufacturing defects
| = Internal short circuits
= Unique use or abuse conditions

= Control failure (low voltage,
control systems, connectors,
boards, not battery initiated)

Any single point failure that propagates through a entire battery
system is an unacceptable scenario to ensure battery safety
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Characierizing Thermal Runaway
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Consistent cell behavior between thermal abuse and calorimetry experiments

Greater total temperature rise observed for the ARC experiment because it is in an adiabatic
environment

May be able to use these data to compare results obtained between the two types of
experiments
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Characterizing Thermal Runaway
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Data provide a quantitative measurement of the runaway enthalpy




Characterizing new materials
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Mechanical Failure Testing

Mechanical behavior under compression
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Analog “pole test” of a battery
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Determining baseline mechanical behavior of batteries during crush/impact testing
Testing support to validate mechanical models for batteries during a crash scenario




| Mechanical property determination
Crush testing and dynamic drop tower /impact tester development
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» Variation observed at higher rates — lower rates show little meaningful

« At higher rates some differences in both low rate data, some evidence of

difference

fracturing was observed in two of the three cases




Overcharge Effects to Cell Temperature
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and Voltage
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Four individual cells,
NMC1, NMC2, NMC3
and NMC4, were
overcharged to 120%,
140%, 160%, and 170%

SOC, respectively.

Initial T (°C) Max. T (°C) AT (°C)
NMC1-120% 13.5 17.7 4.2
NMC2-140% 21.7 39.8 18.1
NMC3-160% 15.9 71.9 56.0
NMC4-170% 23.0 83.5 60.5




13 | Diagnostics — In-operando EIS of overcharged cell

During OC - Active Load
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* The R, .. increased for higher states of charge above 120% SOC. The change 1s associated

with conductivity loss within the cell components.



14 | Diagnostics — In-operando EIS of overcharged cell
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" The Ry slightly increased after each level of overcharge as well as the Cgp;, which could

indicate a growth in the SEI layer.

" The R significantly increased after 140% SOC and subsequently decreased for high SOCs.

.



15 | Differential Capacity
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" The differential capacity calculated during the overcharge procedure identified a redox reaction

between 130-135% SOC.

" The calculations after the abused conditions were applied indicated that 120% SOC caused little

no effect to the redox processes.
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XRD cathode
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XRD diffractograms showed major changes after 120% SOC.



Failure Propagation Testing

Failures initiated by mechanical insult to edge cell of COTS LiCoO, packs (3Ah cells)

5 cell Battery TC layout

e Successful initiation at Cell #1
* Propagation to adjacent cells
e Cascading failure to entire battery over 60 s
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Observed complete propagation when cell are close packed with no thermal management
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Failure propagation —passive mitigation
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* Spacers 1/32” thick
* Failure of Cell 1 observed initially
* Pulsing propagating failure behavior observed over the next several minutes
» Entire pack consumed ~4 minutes after initial cell failure

e Similar behavior when using both aluminum and copper spacers




New Test Development

In hopes to reduce the oxygen exposure to hole being produced from laser, an IR
transparent slide was used as barrier during testing
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* Able to induce failure using laser through silica slide

* Final power setting of 350V, 20ms, 1Hz to induce thermal runaway
* More energy needed to induce runaway through silica slide

* Maintained seal between silica and pouch cell until full runaway
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