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Abstract—One of the biggest challenges for leading-edge
supercomputers is power usage. Looking forward, power is
expected to become an increasingly limited resource, so it is
critical to understand the runtime behaviors of applications
in this constrained environment in order to use power wisely.
Within this context, we explore the tradeoffs between power
and performance specifically for visualization algorithms. With
respect to execution behavior under a power limit, visualization
algorithms differ from traditional HPC applications, like scien-
tific simulations, because visualization is more data intensive. This
data intensive characteristic lends itself to alternative strategies
regarding power usage. In this study, we focus on a representative
set of visualization algorithms, and explore their power and
performance characteristics as a power bound is applied. The
result is a study that identifies how future research efforts can
exploit the execution characteristics of visualization applications
in order to optimize performance under a power bound.

Index Terms—Power/energy; scientific visualization; high per-
formance computing

I. INTRODUCTION

Power is one of the major challenges in reaching the next
generation of supercomputers. Scaling current technologies to
exascale may result in untenable power costs. Thus, the entire
HPC ecosystem, including hardware and software, is being
re-designed with power efficiency in mind.

The premise of this research is that simulations and visu-
alization routines (and other components of the HPC ecosys-
tem) will operate in a power-limited environment (see Sec-
tion III-A). The Tokyo Institute of Technology in Japan is
one example of a facility that has deployed power-limited
production systems [1]. Two of their systems — TSUBAME?2
and TSUBAME3 — must share the facility-level power budget
(i.e., inter-system power capping). Additionally, due to ex-
treme heat during the summer months, the resource manager
may dynamically turn off nodes to stay under a specified power
cap.

At exascale, it is expected that visualization routines will be
run simultaneously with simulations (i.e., in situ processing),
due to decreasing I/O performance relative to floating point
operations. Further, power-limited environments will greatly
impact the overall time-to-solution. Efforts to optimize per-
formance under a power bound has typically focused on
traditional HPC workloads rather than visualization, which
can be a significant portion of the overall execution time.
Furter, visualization applications are more data intensive than
traditional HPC workloads.

For any simulation, the amount of time dedicated to in situ
visualization can vary. It is dependent on a myriad of factors
including the type of analysis to be completed and the number
of operations in the visualization pipeline. From experience,
visualization may account for 10-20% of the overall execution
time spent running the simulation and the visualization.

The main contribution of this work is providing the foun-
dation for future research in this area, which has very few
efforts exploring the performance behaviors of visualization
algorithms in a power-limited environment. We believe a
study focusing on visualization applications is needed for
three main reasons. First, visualization is a key phase in
the scientific discovery process, transforming abstract data
into a comprehensible image useful for communication and
exploration. Second, the time to do visualization is often
a significant portion of the overall execution time. Third,
visualization algorithms are more data intensive than HPC
applications.

We selected eight common visualization algorithms, which
we believe are representative of the execution behaviors of the
hundreds of existing visualization algorithms. We also selected
four data set sizes and varied the processor-level power cap
to understand how the changes affect power and performance
properties.

The results of this study identify two classes of algorithms.
The first class contains compute-bound algorithms (power
sensitive). The performance of these algorithms is sensitive to
the processor-level power cap, so limiting its available power
significantly degrades the performance. The second class
contains memory-bound algorithms, which provide a unique
opportunity for power savings without sacrificing execution
time (power opportunity). Our findings may be integrated
into a runtime system that assigns power between a simulation
and visualization application running concurrently under a
power budget, such that overall performance is maximized.

The rest of this paper is organized as follows. Section II
discusses previous work. Section III provides an overview
of power in HPC and the algorithms explored. The details
of the experimental setup and methodology are presented
in Section IV. We define the metrics and variables used in
Section V. Results are discussed in Section VI. We summarize
our findings in Section VII and identify ideas for future work
in Section VIII.
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Fig. 1. Renderings of the eight visualization algorithms explored in this study. We believe this set of algorithms is representative of the execution behaviors of
the hundreds of existing visualization algorithms. The images show the energy field at the 200th time step of the CloverLeaf hydrodynamics proxy application.

II. RELATED WORK

Relatively few works have explored the power and perfor-
mance tradeoffs for visualization algorithms on supercomput-
ers. One prominent work by Gamell et al. [2] investigated
the relationship between power and performance for in situ
data visualization and analytics at large scale. One of the
benefits of moving from a traditional post hoc visualization
workflow to an in situ workflow is to mitigate the costs and
overheads due to data movement of large volumes of data and
I/O bandwidth. As such, other works investigate the power
costs of storing data for subsequent visualization operations, in
particular focusing on how data is moved through the storage
hierarchy [3], [4]. There has also been work on incorporating
performance prediction of visualization algorithms (e.g., ren-
dering) into dynamically reallocating power in a multi-node
job [5].

The most relevant prior work to this study comes from
Labasan et al. [6], where the authors studied a single visual-
ization algorithm (isosurfacing) and considered explicit setting
of the CPU frequency (which is less favorable for managing
power usage on exascale systems than more recent power
capping technologies such as Intel’s Running Average Power
Limit (RAPL) [7], AMD’s TDP PowerCap [8], and IBM’s
EnergyScale [9]). In our current study, we consider eight
algorithms — chosen to be representative of most visualization
algorithms — and use the more current technique of power
capping. Therefore, while the initial study [6] showed that
a visualization algorithm has unique power and performance
tradeoffs, the current study is considerably more compre-
hensive and also more relevant to exascale computing (i.e.,
power capping versus setting CPU frequencies). Further, this

study contains a series of findings that allow us to extrapolate
behavior to other visualization algorithms.

III. OVERVIEW OF POWER AND ALGORITHMS
A. HPC Power Overview

Today’s supercomputers are designed assuming every node
in the system will run at their thermal design power (TDP)
simultaneously. However, very few power-hungry applications
are capable of consuming this theoretical maximum (due
to bottlenecks), and most applications only consume 60%
of peak [10]. Thus, designing supercomputers as if most
applications consume peak power wastes power capacity and
limits computational capacity (i.e., nodes).

One solution to increase power utilization (and decrease
trapped capacity [11]) is to design a hardware overprovisioned
system (overprovisioned, for short), where more nodes are
procured than can be fully powered simultaneously [12]-[14].
An adequately overprovisioned system will not exceed the
system-wide power bound by implementing strategies to limit
the power usage of the nodes. A naive strategy is to apply a
uniform power cap to all nodes. The effect of applying a power
cap is that the CPU operating frequency is reduced. The effects
of reducing the CPU operating frequency will vary across
applications. Those dominated by compute instructions will
slow down proportionally, while those dominated by memory
accesses may be unaffected.

Uniform power capping across all nodes in the system has
two limitations when considering a distributed application.
First, such a strategy does not adapt to applications contain-
ing non-uniform workload distribution across nodes (causing
static or dynamic computational imbalances). Further, uniform



power caps translate to variations in performance across oth-
erwise identical processors due to processor manufacturing
variations [15].

Given a distributed application, nodes with lots of work to
do (or less efficient nodes) determine the overall performance
of the application, while nodes with little work to do (or
more efficient nodes) finish early and sit idle until the other
nodes have completed execution. A better strategy to optimize
performance is to assign power to the nodes where it is needed
most.

One of the key challenges with overprovisioning is un-
derstanding how different applications will behave under a
power cap. With this study, we focus specifically on scientific
visualization algorithms, which merit special attention since
they behave differently (i.e., more memory-bound) than tradi-
tional HPC applications, like simulations. Our findings begin
to inform performance model input parameters in predicting
the work distribution for scientific visualization applications.

B. Overview of Visualization Algorithms

We explored eight algorithms for this study. We believe this
set of algorithms is representative of the behaviors and charac-
teristics commonly found across all visualization algorithms.
We provide a brief description of each of the eight algorithms
in the following subsections (see Fig. 1 for a rendered image
of each algorithm).

1) Contour: For a three-dimensional scalar volume, the
output of a contour is a surface representing points of a
constant value (i.e., isovalue). For this study, the data set con-
sisted of hexahedrons and the algorithm used was Marching
Cubes [16]. The contour algorithm iterates over each cell in the
data set, identifying cells that contain the constant value. The
algorithm uses pre-computed lookup tables in combination
with interpolation to generate triangles that represent the
surface, and the resulting geometry is combined into the
output data set. We used 10 different isovalues for a single
visualization cycle.

2) Threshold: The threshold algorithm iterates over every
cell in the data set and compares it to a specified value or
range of values. Cells containing the value are included in
the output data set, while cells not containing the value are
removed.

3) Spherical Clip: Spherical clip culls geometry within a
sphere specified by an origin and a radius. The algorithm
iterates over each cell and finds the distance of that cell from
the center of the sphere. Cells completely inside the sphere
are omitted from the output data set, while cells completely
outside the sphere are retained in entirety, and passed directly
to the output. If the cell contains the surface of the sphere,
then the cell is subdivided into two parts, with one part inside
the sphere and the other part outside the sphere, and each part
is handled as before.

4) Isovolume: Isovolume and clip are similar algorithms.
Instead of an implicit function (e.g., sphere), an isovolume
evaluates each cell within a scalar range. Cells completely
inside the scalar range are passed directly to the output, and

cells completely outside the scalar range are removed from the
output. If the cell lies partially inside and outside the scalar
range, the cell is subdivided and the part outside the range is
removed.

5) Slice: A slice cuts the data set on a plane, resulting in
a two-dimensional data set. In order to create the slice, a new
field is created on the data set representing the signed distance
field from the plane (e.g., if the signed distance is O, then the
point is on the plane). Then, the contour algorithm evaluates
the field at an isovalue of 0, resulting in a topologically two-
dimensional plane. In this study, we evaluated three slices on
the z-y, y-z, and z-z planes, resulting in a three-dimensional
data set.

6) Particle Advection: The particle advection algorithm
advects massless particles through a vector field. Particles
are seeded throughout the data set, and advected for a user-
specified number of steps. For this study, we advected the
particles through a steady state (i.e., a single time step). The
algorithm outputs a data set representing the path of each
particle through the number of steps in the form of lines (i.e.,
streamlines).

7) Ray Tracing: Ray tracing is a rendering method that
iterates over pixels in the image. Rays are intersected with
the data set to find the nearest intersection. Ray tracing uses
a spatial acceleration structure to minimize the amount of
intersection tests that are performed on the data set. If an
intersection is found, then a color is determined by the scalar
field. The output of the ray tracing algorithm is an image.
For this study, we created an image database consisting of 50
images per visualization cycle generated from different camera
positions around the data set.

8) Volume Rendering: Volume rendering is another ren-
dering method that iterates over pixels in the image. Rays
step through the volume and sample scalar values at regular
intervals. Each sample is mapped to a color containing a
transparency component, and all samples along the ray are
blended together to form the final color. For this study,
we created an image database consisting of 50 images per
visualization cycle generated from different camera positions
around the data set.

IV. EXPERIMENTAL OVERVIEW

In the following subsections, we discuss the study overview
and methodology for our experiments.

A. Software Framework

Our software infrastructure included VTK-m and Ascent.
VTK-m [17] is an open-source library of scientific visualiza-
tion algorithms designed for shared-memory parallelism. Its
algorithms are implemented using a layer of abstraction en-
abling portable performance across different architectures. It is
an extension of the Visualization ToolKit (VTK) [18], a well-
established open-source library of visualization algorithms that
form the basis of Vislt [19] and ParaView [20]. For this study,
we configured VTK-m with Intel’s Thread Building Blocks
(TBB) [21] for thread-level parallelism.



The Ascent [22], [23] in situ framework is part of the multi-
institutional project known as ALPINE. Ascent is a flyweight,
open-source in situ visualization framework designed to sup-
port VisIt’s LibSim [24] and ParaView’s Catalyst [25]. Of
the three included multi-physics proxy applications, we used
CloverLeaf [26], [27], a hydrodynamics simulation, tightly
coupled with the visualization. That is to say, the simulation
and visualization alternate while using the same resources.

B. Hardware Architecture

We used the RZTopaz supercomputer at Lawrence Liver-
more National Laboratory to conduct our experiments. Each
node contains 128 GB of memory and two Intel Xeon E5-2695
v4 dual-socket processors executing at a base clock frequency
of 2.1 GHz (120W thermal design power, or TDP). The Turbo
Boost clock frequencies range from 2.6 GHz to 3.3 GHz. Each
hyper-threaded processor has 18 physical cores.

On LLNL systems, the msr-safe [28] driver provides
an interface for sampling and controlling processor power
usage, among other performance counters, via 64-bit model-
specific registers. On this Broadwell processor, the power can
be capped from 120W (TDP) down to 40W using Intel’s
Running Average Power Limit technology (RAPL) [7]. Then,
the processor adjusts the operating frequency to guarantee the
desired power cap.

C. Study Factors

Our study consisted of three phases and 288 total test
configurations. Each test was launched using a single node
and a single MPI process for maximum memory allocation.
Shared-memory parallelism was enabled with VTK-m. We
varied the following parameters for this study:

o Processor power cap (9 options): Enforce a processor-
level (cores, cache) power cap ranging from 120W (TDP)
down to 40W in increments of 10W using Intel’s RAPL.

« Visualization algorithm (8 options): The representative
set of algorithms explored are contour, threshold, spheri-
cal clip, isovolume, slice, particle advection, ray tracing,
and volume rendering.

« Data set size (4 options): The CloverLeaf data set sizes
used per node are 323, 643, 1283, and 2563. The total
number of cells ranged from 32, 768 to 16,777, 216.

D. Methodology

This study consisted of three phases. Phase 1 studied a base
case, and subsequent phases studied the impacts of varying one
of the study factors listed in Subsection IV-C.

Phase 1. Processor-Level Power Cap: Phase 1 varied the
processor-level power caps and studied the behavior of the
contour algorithm implemented in VTK-m. With this phase,
we extended a previous finding [6], which determined base-
line performance for isosurfacing by explicitly setting CPU
frequencies. This phase consisted of nine tests.

Test Configuration: (Contour algorithm, 1283 data set size) x
9 processor power caps

Phase 2. Visualization Algorithm: In this phase, we contin-
ued varying processor-level power caps, and added variation in
visualization algorithm. It consisted of 72 tests, nine of which
were studied in Phase 1.

Test Configuration: (1283 data set size) x 9 processor power
caps x 8 visualization algorithms

Phase 3. Data Set Size: In this phase, we add variation in
data set size. It consisted of 288 tests, of which nine were
studied in Phase 1 and 63 were studied in Phase 2.

Test Configuration: 9 processor power caps x 8 visualization
algorithms X 4 data set sizes

V. DEFINITION OF METRICS

This section defines the variables and metrics that will be
used in the following results section.

A. Abstract Case

Assume a visualization algorithm takes Tp seconds to run
at the default power (TDP) of Pp watts. As the power cap
is reduced, the same visualization algorithm now takes T
seconds to run with a power cap of Pr watts. The following
derived terms are used to explain our results:

e P.uti0o = Pp/Pr: This is the ratio of power caps. If the
processor-level power cap is reduced by a factor of 2,
then Prgt0 = 2.

o Tratio = Tr/Tp: This is the ratio of execution times. If
the algorithm takes twice as long to run, then T.4z;0 = 2.

e Frutio = Fp/Fgr: This is the ratio of CPU frequencies. If
the frequency was twice as slow, then Fj.gz0 = 2.

These terms have been defined such that all ratios will be
greater than 1. To accomplish this, P,.qt;, and Fi,0 have
the default value in the numerator and the reduced value in
the denominator, while 7'.,4;, has them reversed. Inverting the
ratio simplifies our comparisons.

Using our three ratios, we can make the following conclu-
sions. First, if Ti.4¢0 1s less than P,,4;0, then the algorithm
was sufficiently data intensive to avoid a slowdown equal to
the reduction in power cap. In addition, users can make a
tradeoff between running their algorithm 7}.,¢;, times slower
and using P,ui, less times power. Alternatively, this ratio
enables us to optimize performance under a given power cap.
Second, the relationships between F)..t;, and Pyqti0 and Thqti0
and F,4, Wwill be architecture-specific. Enforcing a power
cap will lower the CPU frequency, however, the reduction
in frequency will be determined by the processor itself. The
reduction in clock frequency may slowdown the application
proportionally (if the application is compute-bound) or not
at all (if the application is memory-bound). The results in
Section VI present the ratios for a particular Intel processor
(i.e., Broadwell), but this relationship may change across other
architectures.

B. Performance Measurements

To collect power usage information, the energy usage of
each processor in the node is sampled every 100 ms throughout
the application (i.e., simulation and visualization) execution.



The power usage for each processor is calculated by dividing
the energy usage (contained in a 64-bit register) by the
elapsed time between samples. In addition to energy and power
counters, we also sample fixed counters, frequency-related
counters, and two programmable counters — last level cache
misses and references. The following metrics can be derived
using the Intel-specific performance counter event names [29],
where applicable.

o Effective CPU frequency =
APERF/MPERF

« Instructions per cycle (IPC) =
INST_RET.ANY/CPU_CLK_UNHALT.REF_TSC

o Last level cache miss rate =
LONG_LAT_CACHE.MISS/LONG_LAT_CACHE.REF

C. Efficiency Metric

For comparing the efficiency of one visualization algorithm
to another, a rate defined in terms of the size of the input
(i.e., data set size) is used rather than speedup. If the speedup
of a parallel algorithm is defined as ;ﬂ;, then one must
know the serial execution time of the algorithm. This is
challenging with increasingly complex simulations running at
higher concurrency levels. Instead, we assess speedup using
a rate originally proposed by Moreland and Oldfield [30],
[31]. They express the rate in terms of the data set size, n, as
follows: ﬁp

The higher the resulting rate, the more efficient the algo-
rithm. Because the rate is computed using the size of the data
set, we only compare those algorithms that iterate over each
cell in the data set (e.g., contour, spherical clip, isovolume,
threshold, and slice). At higher concurrencies, an algorithm
with good scaling will show an upward incline, then will

gradually flatten from the perfect efficiency curve.

VI. RESULTS

This section describes the results from the phases detailed
in Section IV-D.

A. Phase 1: Processor-Level Power Cap

In this phase, we fix all study factors while varying the
power cap in order to achieve a baseline performance for
subsequent phases. Specifically, we use the following config-
uration: contour algorithm and a data set size of 1283. We
present the results in Table I.

When the default power cap of 120W is applied to each
processor, the simulation spends a total of 33.477 seconds
executing a contour filter and the total power usage of both
processors is 120W (88% of total node power). As we gradu-
ally reduce the processor-level power cap, the execution time
remains constant (e.g., Ti-qtio 18 1X). Since the algorithm is
data intensive, it does not use a lot of power. Applying a more
stringent power cap does not affect the overall performance as
it is not using power equivalent to the desired power cap, so
the underlying frequency does not need to slowdown.

Once the power cap is reduced by a factor of 3X (from
120W down to 40W), there is a change in the execution

Contour
P P’r'atio T T7'atio F F’r'atio
120W 1.0X 33.477s 1.00X | 2.55GHz 1.00X
110W 11X 33.543s 1.00X | 2.41GHz 1.06X
100W 1.2X 33.579s 1.00X | 2.55GHz 1.00X
90W 1.3X 33.519s 1.00X | 2.55GHz 1.00X
80W 1.5X 33.617s 1.00X | 2.54GHz 1.01X
T0W 1.7X 30.371s | 091X | 2.54GHz 1.00X
60W 2.0X 30.394s | 091X | 2.50GHz 1.02X
S50W 24X 31.066s | 0.93X 2.52GHz 1.01X
40W 3.0X 39.198s 1.17X | 2.07GHz 1.23X

TABLE T

THE SLOWDOWN FOR THE CONTOUR ALGORITHM AS THE PROCESSOR
POWER CAP IS REDUCED. THE CONFIGURATION USED FOR THIS
ALGORITHM IS A DATA SET SIZE OF 1283, P IS THE ENFORCED

PROCESSOR POWER CAP. T' IS THE TOTAL EXECUTION TIME IN SECONDS
FOR THE CONTOUR ALGORITHM OVER ALL VISUALIZATION CYCLES. F' IS
THE EFFECTIVE CPU FREQUENCY GIVEN THE POWER CAP P. A 10%
SLOWDOWN (DENOTED IN RED) DOES NOT OCCUR FOR THIS ALGORITHM
UNTIL THE LOWEST POWER CAP.

time and CPU frequency by a factor of 1.17X and 1.23X,
respectively. At 40W, the algorithm takes longer to run (since
the frequency is also reduced to maintain the desired power
usage), but the algorithm did not slowdown proportionally
to the reduction in power by a factor of 3. This confirms
our finding in [6], where we determined that the contour
algorithm was sufficiently data intensive to avoid slowing
down proportional to the CPU clock frequency.

Running with the lowest power cap does not impact the per-
formance for contour. If doing a contour post hoc, the user can
request the lowest power, leaving power for other applications
that are competing for the same compute resources. If doing
a contour in situ, the runtime system may leverage the low
power characteristic and dynamically allocate less power to
the visualization phase, allowing more power to be dedicated
to the simulation.

B. Phase 2: Visualization Algorithm

Phase 1 showed that the contour algorithm is sufficiently
memory-bound to avoid a change in execution time until a
severe power cap. The goal of Phase 2 is to explore if this data
intensive trend is common across other algorithms. We extend
the previous phase by varying over visualization algorithm,
and keep a constant data set size of 1283, We identify two clear
groupings: those algorithms that are insensitive to changes
in power (power opportunity), and those algorithms that are
sensitive to changes in power (power sensitive). The two
categories are discussed in more detail below.

1) Power Opportunity Algorithms: The algorithms that fall
into the power opportunity category are contour (discussed
in the previous section), spherical clip, isovolume, threshold,
slice, and ray tracing. Table II shows the slowdown in execu-
tion time and CPU frequency for all algorithms. The power
opportunity algorithms do not see a significant slowdown (of
10%, denoted in red) until P4, is at least 2X or higher. These
algorithms are data-bound — the bottleneck is the memory
subsystem, not the processor — so reducing the power cap
does not significantly impact the overall performance. This is
confirmed since 7440 1S less than Pj.g¢0.



P 120W | 110W | 100W | 90W | 80W | 70W | 60W | 50W | 40W
Pratio | 10X | 11X | 12X | 13X | 15X | 17X | 20X | 24X | 3.0X
Contour Tratio | 1.00X | 1.00X | 1.00X | 1.00X | 1.00X | 091X | 091X | 093X | 1.17X
Fratio | 1.00X | 1.06X | 1.00X | 1.00X | 1.01X | 1.00X | 1.02X | 1.01X | 1.23X
Soherical Cli Tratio | 1.00X | 1.01X | 1.03X | 1.02X | 1.00X | 1.05X | 1.02X | 1.18X | 1.48X
P P Fratio | 1.00X | 121X | 1.00X | 1.02X | 1.00X | 1.00X | 1.03X | 1.11X | 1.48X
Isovolume Tratio | 1OOX | TOIX | 099X | 1.04X | 102X | 1.06X | 114X | 130X | 181X
S Fraio | 1.00X | 1.00X | 1.00X | 1.00X | 1.03X | 1.13X | 1.31X | 161X | 2.55X
Threshold Tratio | 1.00X | 0.98X | 0.98X | 1.00X | 0.99X | 0.99X | 1.02X | 1.08X | 131X
Fratio | 1.00X | 099X | 1.00X | 0.99X | 0.99X | 1.00X | 1.00X | 1.12X | 1.38X
Shice Tratio | 1.00X | 098X | 1.00X | 099X | 098X | 1.02X | 1.04X | 1.03X | 1.26X
Fratio | 1.00X | 098X | 099X | 1.03X | 1.04X | 1.01X | 1.03X | 1.01X | 1.22X
Ray Tracing Tratio | 1OOX | T.00X | 099X | 099X | 1.00X | 1.0IX | LI0X | 131X | 1.75X
Fratio | 1.00X | 1.00X | 1.00X | 1.00X | 1.00X | 1.01X | 1.11X | 1.32X | 1.73X
. ) Tratio | 1.00X | 1.00X | 101X | 1.05X | T.IIX | 121X | 134X | 157X | 3.12X
Particle Advection | 2" ™ | \oox | 100X | 1.00X | 1.04X | 110X | 118X | 131X | 151X | 2.69X
Volume Rendering | Lratio | 100X | TOOX [[099X [TT.00X | TO4X | TT2X [ T23X [ T46X | 186X
Fraio | 1.00X | 1.00X | 1.00X | 1.00X | 1.04X | 1.12X | 1.23X | 145X | 1.84X

TABLE TT

SLOWDOWN FACTOR FOR ALL ALGORITHMS WITH A DATA SET SIZE OF 1283. SLOWDOWN IS CALCULATED BY DIVIDING EXECUTION TIME AT 40W BY
EXECUTION TIME AT 120W. NUMBERS HIGHLIGHTED IN RED INDICATE THE FIRST TIME A 10% SLOWDOWN IN EXECUTION TIME OR FREQUENCY
OCCURS DUE TO THE PROCESSOR POWER CAP P.
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Fig. 2. Effective frequency (GHz), instructions per cycle (IPC), and last level cache miss rate for all algorithms as the processor power cap is reduced. For

each algorithm, we use a data set size of 1283,

The CPU operating frequency in Fig. 2a shows that all
algorithms, regardless of whether it is in the power opportunity
or power sensitive class, run at the same frequency of 2.6
GHz at a 120W power cap, which is the maximum turbo
frequency for this architecture when all cores are active. The
differences across the algorithms are seen in the rate at which
the frequency declines because of the enforced power cap and
the power usage of the algorithms.

The default power usage varies across visualization algo-
rithms, ranging from as low as 55W up to 90W per processor.
For algorithms that do not consume TDP, the processor decides
it can run in turbo mode (i.e., above 2.1 GHz base clock
frequency) to maximize performance. Once the power cap is
at or below the power usage of the algorithm, the operating
frequency begins to drop because the processor can no longer

maintain a high frequency without exceeding the power cap.
For algorithms with a high power usage, the frequency will
start dropping at power caps close to TDP. For algorithms with
a low power usage (e.g., contour, described previously), the
processor runs in turbo mode for most power caps to maximize
performance. It is not until the lowest power cap of 40W that
contour sees a reduction in the clock frequency.

Fig. 2b shows the average instructions per cycle (IPC) for
all algorithms. The dotted line drawn at an IPC of 1 shows
the divide between compute-bound algorithms (IPC > 1) and
memory-bound algorithms (IPC < 1). Spherical clip, contour,
isovolume, and threshold make up one class of algorithms.
Their IPC is characteristic of a data-bound algorithm, and their
power usage is also very low, so the decrease in IPC is not seen
until the lowest power cap of 40W. Threshold is dominated



by loads and stores of the data, so it has a low IPC value.
Contour and isovolume have higher IPC values (out of this
class of algorithms) because it calculates interpolations.

Another class of algorithms (with respect to IPC) consists
of ray tracing and slice, which have an IPC that falls into
the compute-bound range. Although they have an IPC larger
than 1, they have low power usage and their performance
remains unchanged until low power caps. For this study, we
created an image database of 50 rendered images (either with
volume rendering or ray tracing) per visualization cycle to
increase algorithm time. The execution time for ray tracing
covers three sub-operations: gathering triangles and finding
external faces, building a spatial acceleration structure, and
tracing the rays. Tracing the rays is the most compute intensive
operation within ray tracing, but it is being dominated by the
data intensive operations of gathering triangles and building
the spatial acceleration structure. As such, ray tracing behaves
similarly to the cell-centered algorithms in this category:
spherical clip, threshold, contour, isovolume, and slice. It also
has the best slowdown factor.

Slice has a higher IPC than contour, which is expected
since it is doing a contour three times. Three-slice creates
three slice planes on x-y, y-z, and z-x intersecting the origin.
Consequently, the output size is fixed for any given time step.
Three-slice under the hood uses contour, but differs in the
fact that each slice plane calculates the signed distance field
for each node on the mesh, which is compute intensive.

Fig. 2c shows the last level cache miss rate for all algo-
rithms, and is the inverse of Fig. 2b. Isovolume has the highest
last level cache miss rate, indicating that a high percentage of
its instruction mix is memory-related. Because of the high miss
rate, the isovolume algorithm spends a lot of time waiting for
memory requests to be satisfied. Memory access instructions
have a longer latency than compute instructions. Therefore, it
cannot issue as many instructions per cycle, and has a low
IPC.

Another interesting metric to investigate is shown in Fig. 3,
which is the number of elements (in millions) processed
per second. Because the power usage of these algorithms is
low, the denominator (e.g., seconds) stays constant for most
power caps, yielding a near constant rate for each algorithm.
At severe power caps, the number of elements processed
per second declines because the algorithm incurs slowdown.
Algorithms with very fast execution times will have a high
rate, while algorithms with a longer execution time will have
a low rate.

2) Power Sensitive Algorithms: The power sensitive al-
gorithms are volume rendering and particle advection. They
consume the most power at roughly 85W per processor. When
the power cap drops below 85W, the frequency starts dropping
as it can no longer maintain the desired power cap at the 2.6
GHz frequency. Thus, there are slowdowns of 10% at 70W
and 80W, respectively, which is at a higher power cap than
the power opportunity algorithms. These algorithms not only
have the highest IPC values overall as shown in Fig. 2b (peak
IPC of 2.68, highly compute-bound), but also have the biggest
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Fig. 3. Elements processed per second for cell-centered algorithms using
1283 data set size.

change in IPC as the power cap is reduced. Such algorithms
are dominated by the CPU, so a reduction in power greatly
impacts the number of cycles it takes to issue the same set of
instructions (i.e., slows down the algorithm).

Fig. 2b coupled with Fig. 2c¢ shows volume rendering
and particle advection with a high IPC because they have
the lowest last level cache miss rate (i.e., better memory
performance). Additionally, more instructions can be retired
per cycle because the processor is not stalled waiting on
memory requests to be satisfied (i.e., high IPC). Everything fit
into cache, and IPC was changing drastically with changing
power caps, so we can infer that IPC behavior was dominated
by compute instructions.

3) Key Takeaways: For most of the algorithms explored in
this paper, the power cap has little effect on performance. This
is because the power usage of visualization algorithms is low
compared to typical HPC applications. Similar algorithms can
be run at the lowest power cap without impacting performance.
In a larger scheme where the simulation and visualization
are running on the same resources, using a more intelligent
scheme for allocating power between the two aapplications
can result in better performance than using a naive scheme
of evenly distributing the power. Said another way, most of
the power can be allocated to the power-hungry simulation,
leaving minimal power to the visualization, since it does not
need it. Additionally, we find two of the algorithms explored
(volume rendering and particle advection) have high power
usage, consistent with typical HPC applications. These algo-
rithms have a poor tradeoff between power and performance.
There may be other algorithms that behave similarly.

C. Phase 3: Data Set Size

Phase 3 extended Phase 2 by varying over data set size.
Table IIT shows the results for all algorithms using a data
set size of 2563. This table can be compared to Table II in
Section VI-B.



P 120W | 110W | 100W | 90W | 80W | 70W | 60W | 50W | 40W
Pratio | 10X | 11X | 12X | 13X | 15X | 17X | 20X | 24X | 3.0X
Contour Tratio | LOOX | 1.00X | 1.00X | 1.00X | 1.00X | 1.00X | 1.05X | L.I9X | 171X
Fratio | 1.00X | 1.00X | 1.00X | 1.00X | 1.01X | 099X | 1.07X | 1.18X | 1.52X
Soherical Cli Tratio | 1.00X | 101X | 1.01X | 1.05X | 1.01X | 1.I0X | 1.16X | 141X | 2.13X
P P Fratio | 1.00X | 1.00X | 1.00X | 1.00X | 1.01X | 1.05X | 1.17X | 142X | 1.95X
Isovolume Tratio | 1.OOX | 098X | 097X | 1.0IX | L.OIX | 1.OIX | L.I7X | 133X | 1.76X
§ Fratio | 1.00X | 1.00X | 097X | 1.00X | 1.00X | 1.05X | 1.11X | 1.32X | 1.79X
Threshold Tratio | 1.00X | 1.02X | 0.99X | 0.99X | 0.98X | 1.09X | 1.16X | 1.30X | 1.53X
Fratio | 1.00X | 101X | 1.02X | 1.02X | 1.02X | 1.05X | 1.17X | 1.38X | 1.66X
Shice Tratio | 1.00X | 1.00X | 0.99X | 099X | 1.00X | 1.00X | 099X | 1.33X | 1.69X
Fratio | 1.00X | 098X | 1.01X | 093X | 1.01X | 098X | 1.01X | 1.24X | 1.44X
Ray Tracing Tratio | 1OOX | T.00X | 1.00X | 1.0IX | 1.00X | 1.02X | L.I0X | 1.28X | 2.00X
Fratio | 1.00X | 1.00X | 1.00X | 1.00X | 1.00X | 1.01X | 1.10X | 1.29X | 2.05X
— ) Tratio | 1.00X | 1.00X | 1.03X | 1.07X | 1.14X | 139X | 1.64X | 2.13X | 2.67X
Particle Advection | 2" ™ | oo | 100X | 1.02X | 1.06X | 113X | 135X | 157X | 2.05X | 2.56X
Volume Rendering | Lratio | 100X | TOOX [ T00X [TTO0X | T06X | TT3X [ T24X [ 145X | T8IX
Fratio | 1.00X | 1.00X | 1.00X | 1.00X | 1.06X | 1.13X | 1.23X | 145X | 1.82X

TABLE TIT

SLOWDOWN FACTOR FOR ALL ALGORITHMS WITH A DATA SET SIZE OF 256°. SLOWDOWN IS CALCULATED BY DIVIDING EXECUTION TIME AT 40W BY
EXECUTION TIME AT 120W. NUMBERS HIGHLIGHTED IN RED INDICATE THE FIRST TIME A 10% SLOWDOWN IN EXECUTION TIME OR FREQUENCY
OCCURS DUE TO THE PROCESSOR POWER CAP P.
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Fig. 4. This category of algorithms sees an increase in IPC as the data set size
increases. Algorithms that fall into this category are slice, contour, isovolume,
threshold, and spherical clip.

As the data set size is increased from 1283 in Table II to
2562 in Table III, T}, changes across algorithms. For the
power opportunity algorithms identified in Phase 2, 7T}.44;, €X-
ceeds 1.1X at higher power caps with larger data set sizes. As
an example, spherical clip did not have significant slowdowns
until 50W with a data set size of 1283, but now has similar
slowdowns at 70W. Other algorithms in this category, such as
contour, threshold, slice, and ray tracing, now slowdown at
60W and 50W with a data set size of 2563 instead of slowing
down at 40W with a data set size of 1283

Depending on the algorithm, the IPC may increase or
decrease as the data set size is increased. Fig. 4, Fig. 5, and
Fig. 6 show the IPC for three different algorithms over all
power caps and data set sizes. The IPC of the three different
algorithms shown in the figures represent three categories.

The first category consists of slice, contour, isovolume,
threshold, and spherical clip. As the data set size increases,
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Fig. 5. This category of algorithms sees an increase in IPC as the data set size
decreases. Volume rendering is the only algorithm exhibiting this behavior.
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Fig. 6. This category of algorithms see no change in IPC as the data set size
changes. Algorithms exhibiting this behavior are particle advection and ray
tracing.



the IPC also increases for these algorithms as shown in
Fig. 4. Particularly for slice and spherical clip, the number
of instructions increases with a larger number of elements
(i.e., bigger data set size) because for each cell, the algorithm
computes the signed distance. The other algorithms in this
category — contour, isovolume, and threshold — iterate over
each cell, so the number of comparisons will also increase
(i.e., for threshold, keep this cell if it meets some criteria,
else discard). Algorithms in this category tend to have lower
IPC values. These algorithms contain simple computations, so
the loads and stores of the data (i.e., memory instructions)
dominate the execution time.

The second category contains volume rendering, which
shows an inverse relationship between data set size and IPC
as shown in Fig. 5. Here, the IPC increases as the data set
size decreases. As an example, as the data set size increases
from 1283 to 256 (8X bigger), the IPC only drops by 20%
going from 2.5 down to 2. On average, the IPC of volume
rendering is higher than any of the other algorithms explored
in this paper. Volume rendering is an image-order algorithm
and has a high number of floating point instructions resulting
in high power and high IPC.

The third category consists of algorithms whose IPC does
not change with increases in data set sizes as illustrated in
Fig. 6. The algorithms identified here are particle advection
and ray tracing. For particle advection, we held the following
constant regardless of the data set size: the same number of
seed particles, step length, and number of steps. Because we
chose to keep these parameters consistent, particles may get
displaced outside the bounding box depending on the data
set size. When particles are displaced outside the bounding
box, they terminate, and there is no more work to do for that
particle.

Particle advection has a high IPC value, and a high power
consumption. The advection implementation uses the Runge-
Kutta, which is the 4th order method to solve ordinary
differential equations. This method is computationally very
efficient and has a large number of high power instructions.

The ray tracing algorithm consists of three steps: building
a spatial acceleration structure, triangulation, and tracing the
rays. The amount of computation does not scale at the same
rate as the data set size. An increase in the data set size by
a factor of 8 (going from 128 to 2563) results in only a 4X
increase in the number of faces encountered.

VII. SUMMARY OF FINDINGS

One of the key goals of this paper was to identify the
impacts of various factors on power usage and performance of
visualization algorithms in order to better inform scientists and
tool developers. We summarize the findings from the previous
sections here.

On varying processor power caps (Section VI-A):

e The VTK-m implementation of contour is sufficiently
data intensive to avoid a significant slowdown from
reducing the power cap. This extends a previous find-
ing [6] which set CPU frequencies and used a custom

implementation, and is additionally noteworthy since our
study uses a general toolkit designed to support a wide
variety of algorithms and data types.

« The execution time remains unaffected until an extreme
power cap of 40W, creating opportunities for redistribut-
ing power throughout the system to more critical phases
or applications.

On comparing different visualization algorithms (Sec-
tion VI-B):

o Most of the visualization algorithms studied in this paper
consume low amounts of power, so they can be run under
a low power cap without impacting performance. These
algorithms have lower IPC values, characteristic of data-
bound workloads.

o Two of the explored algorithms consume higher power,
similar to what we commonly see of traditional compute-
bound benchmarks, such as Linpack. These algorithms
will see significant slowdown from being run at a lower
power cap, up to 3.2X. As such, the slowdown begins
around 80W, roughly 67% of TDP. These algorithms have
high IPC values, which are characteristic of compute-
bound workloads.

On varying the input data set size (Section VI-C):

o Larger data set sizes result in poorer tradeoffs for perfor-
mance. With a higher data set size, these algorithms start
to slowdown at higher power caps. So instead of seeing
a 10% slowdown at 50W with a data set size of 1282,
the slowdown begins at 70W for a data set size of 2565.

o For the algorithms that were significantly compute-bound
(and consuming high amounts of power), the change in
data set size does not impact the power usage.

These recipes can be applied to two use cases in the context
of a power-constrained environment. First, when doing post
hoc visualization and data analysis on a shared cluster, re-
questing the lowest amount of power will leave more for other
power-hungry applications. Second, when doing in situ visual-
ization, appropriately provisioning power for visualization can
either leave more power for the simulation or improve turn-
around time for the visualization pipeline. These results can
be integrated into a job-level runtime system, like PaViz [5]
or GEOPM [32], [33], to dynamically reallocate the power
to the various components within the job. By providing more
tailored information about the particular visualization routine,
the runtime system may result in better overall performance.

VIII. CONCLUSION AND FUTURE WORK

Our study explored the impacts of power constraints on
scientific visualization algorithms. We considered a set of
eight representative algorithms, nine different processor-level
power caps, and four data set sizes, totaling 288 total test
configurations. We believe the results of the study provide
insights on the behavior of visualization algorithms on future
exascale supercomputers. In particular, this study showed
that visualization algorithms use little power, so applying an
extremely low power cap will not impact the performance.



(Refer back to Section VII for specific findings.) We be-
lieve these findings can be used to dynamically reallocate
power between competing applications (i.e., simulation and
visualization) when operating under a power budget. The
runtime system would identify visualization workflows that
are compute- or data-bound and allocate power accordingly,
such that the scarce power is used wisely.

This study suggests several interesting directions for future
work. Our results identified two different classes of algorithms.
These finds can be applied to other visualization algorithms
in making informed decisions about how to allocate power
during visualization workflows. While most of the algorithms
explored in this paper consumed low power and were data-
bound, we did find two algorithms (particle advection and
volume rendering) that did not fall into this category. This
indicates there may be other visualization algorithms that
might fall into the category of high power usage and compute
intensive. Another extension of this work is to explore how the
power and performance tradeoffs for visualization algorithms
compare across other architectures that provide power capping.
Other architectures may exhibit different responses to power
caps, and so it is unclear how the underlying architecture will
affect the algorithms.
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