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Executive Summary  
Buildings consume more than 40% of primary energy in the U.S. Malfunctioning sensors, 

components, and control systems, as well as degrading components in Heating, Ventilating and 
Air-conditioning (HVAC) and lighting systems are main reasons for energy waste and 
unsatisfactory indoor environment. Field studies have shown that an energy saving of 5-30% of 
total building energy consumption and improved indoor air quality can be achieved by simply 
applying automated fault detection and diagnosis (AFDD), followed by corrections even if these 
are not done in real time.  

Extensive research has been made on the development of component level AFDD tools in the 
past two decades. However, in recent years, the development of method for a whole building level 
AFDD has received much attention. Here, a whole building fault refers to a fault happening in one 
subsystem but impact on more than one subsystems, or has a significant impact on building 
performances, such as building’s energy consumption. Existing component level AFDD tools 
could fail to detect or give false alarm for faults that trigger abnormalities in multiple subsystems. 
Isolating such whole building faults, which have impacts on multiple subsystems, is also 
challenging by simply using component based AFDD solutions. On the other hand, it might be 
more cost-effective for medium- or small-sized commercial buildings that have subsystems (e.g. 
primary cooling subsystem, air loop subsystem, heating subsystem, lighting subsystem, etc.) to 
install one whole building level AFDD tool, rather than many component level AFDD tools, to 
focus on significant faults. 

In recent years, whole building energy simulation models have been employed for whole 
building AFDD. These whole building AFDD methods require the existence and calibration of a 
detailed whole building energy model, hence face challenges such as high development cost and 
low scalability. In the component AFDD field, both data-driven methods and expert 
knowledge/rule based methods have been successfully developed and adopted in the field.  
Nevertheless, when applying these conventional data-driven and expert knowledge/rule based 
methods for detecting and diagnosis faults that have a whole building impact, these methods 
encounter significant challenges such as 1) the curse of dimensionality, 2) difficulty to generate 
whole building level baseline, and 3) developing whole building level data-driven models. 
Moreover, similar to component level fault detection and diagnosis, developing whole building 
level AFDD solutions that are cost-effective, is always challenging.  Moreover, there is generally 
a lack of training opportunity for undergraduate students to be engaged in research activities, 
especially in a multidisciplinary area such as AFDD research.  

Therefore, the focus of this project is firstly to provide training opportunities in building 
AFDD research area for undergraduate students and to develop a workforce pipeline in building 
sciences.  The objective of the proposed research activities is to develop cost-effective and scalable 
AFDD solutions for whole building level faults. The developed AFDD solution is VOLTTRONTM 
compatible to further increase its plug-n-play capacity and the market penetration. VOLTTRONTM 
is an open source innovative distributed control and sensing software platform developed by the 
Pacific Northwest National Laboratory. A VOLTTRONTM compatible AFDD tool brings the 
benefits such as low cost deployment, and better building to grid integration, etc. The performance 
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of the developed whole building AFDD tools is evaluated using data collected from a mixed use 
medium-sized university campus building. Another significant goal of this project is to engage 
undergraduate students in research activities and expose them to building control and AFDD fields. 

More specifically, the following tasks have been successfully conducted in this project:  
1) Undergraduate students from different disciplines have been engaged to develop various 

capabilities and professional skills in building sciences.  
2) An extensive literature review is performed on a) existing AFDD methods developed for 

whole building fault, and b) those AFDD methods developed for other applications but 
have the potential to be used for whole building faults. This literature review helps to better 
understand current gaps and limits in the whole building AFDD area, and to explore 
potential solutions. 

3) A demonstration building – Nesbitt Hall at Drexel University is identified for this study. 
This demonstration building has a typical HVAC system configuration, which includes a 
water cooled chiller system, three variable air volume (VAV) air handling unit (AHU) 
systems, and a hydronic heating system. Faults, that are expected to have a whole building 
level impact, are artificially implemented in this demonstration building for three different 
seasons. Building data have been collected in this project, which include fault free building 
automation system (BAS) data and BAS data that contain system behaviors caused by 
artificially implemented and naturally occurred faults. These collected data are used to 
evaluate the developed whole building AFDD tools.   

4) A data-driven method, which includes a weather and schedule based pattern matching 
(WPM) method and Feature based Principal Component Analysis (FPCA) method, is 
developed for whole building level fault detection. Parameter sensitivity tests, including 
snapshot window size, data sample searching pool size, etc., are implemented to evaluate 
the impacts of various WPM-FPCA parameters.  

5) A data-driven and expert knowledge/rule based method using Bayesian Network (BN) and 
WPM is developed for whole building level fault diagnosis. The developed WPM-BN 
method, which includes a two-layer BN structure model and BN parameters, are either 
learned from baseline data or developed from expert knowledge.  

6) The developed whole building AFDD tools are evaluated using BAS data collected from 
the demonstration building. In total, there are eleven (11) whole building fault test cases 
(representing seven (7) types of whole building faults) selected from twenty five (25) fault 
test cases in which artificial faults have been implemented. Other fault test cases are not 
selected, due to the following reasons: 1) a fault has not been implemented correctly; 2) 
the implemented fault has not caused significant fault impacts due to certain specific 
weather or internal load conditions; and 3) significant missing data presented in the 
collected data for this fault test case. Three (3) naturally occurred fault test cases, 
representing two types of faults that have a whole building impact, are also selected to 
form the evaluation data set. Fourteen (14) fault-free test cases representing three seasons 
are selected. These fourteen (14) fault test cases and fourteen (14) fault-free test cases form 
an evaluation data set and serve as the “ground truth” when evaluating the developed 
AFDD methods.  
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7) Using the evaluation data set, the WPM-FPCA fault detection method is evaluated under 
two different Principle Component (PC) retention rates, i.e., 0.65 retention rate and 0.95 
retention rate. It is observed that when using 0.65 PC retention rate, the WPM-FPCA fault 
detection method achieves a 79% fault detection rate (this rate reaches to 85% when 
including the six make-up fault test cases discussed in the next bullet), while when using 
0.95 PC retention rate, the WPM-FPCA fault detection method achieves 100% fault 
detection rate (this rate remains to be 100% when including the six make-up fault test 
cases). Under both PC retention rates, the WPM-FPCA fault detection method 
demonstrates 0% false alarm rates.  

8) Using the evaluation data set, the developed WPM-BN fault diagnosis method has 
successfully diagnosed thirteen (13) faults out of the fourteen (14) fault test cases. The one 
mis-diagnosed case exhibits fewer fault symptoms in different subsystems, when 
compared with other fault test cases. Overall speaking, the developed whole building 
AFDD solutions demonstrate satisfactory fault detection/diagnosis accuracy with very low 
false alarm rate.  

9) Seven make-up tests were implemented in the summer of 2018 because of a lack of field 
data that contains those faults in the past tests. All tests demonstrated various symptoms 
caused either by the implemented faults, or by the concurrent faults. Among them, one 
fault test was not included into the evaluation due to a lack of data sample to generate the 
WPM baseline. Therefore, six fault tests were used to evaluate the developed AFDD tool. 
All six test days were successfully flagged by the WPM-FPCA method to show the overall 
system operation performance was affected. Although a ground truth was not well-
established due to concurrent faults found in the nearly all six test days, the ranked 
posterior probability of each fault cause are in agreement with the fault symptoms.   

10) The developed AFDD tool is VOLTTRONTM compatible. Here, VOLTTRONTM platform 
is served as a middle ware to connect with a BAS and to obtain BAS data. This BAS data 
is sent to the AFDD tool via the VOLTTRONTM platform. The integration with 
VOLTTRON is as a proof-of-concept to demonstrate that the AFDD platform developed 
can be ported relatively easily into a control execution platform. 

11) A survey and market study has been performed to understand the existing AFDD market, 
including its gaps and needs.  

This report provides a detailed description of the above tasks: Chapter 1 presents the research 
background and literature review. Chapter 2 illustrates the demonstration building. Chapter 3 
introduces how faults are implemented in and how data are collected from the demonstration 
building, as well as the data analysis process. Chapter 4 discusses the development process of the 
whole building fault detection method. Chapter 5 introduces the development process of the whole 
building fault diagnosis method. Method evaluation and analysis are given in the Chapter 6. 
Chapter 7 illustrates how the developed whole building AFDD tools are integrated with the 
VOLTTRONTM platform. Chapter 8 describes the makeup experiments implemented in the 
summer of 2018. Chapter 9 presents the market studies. Chapter 10 summarizes how 
undergraduate students are engaged during the project. Chapter 11 provides the conclusions drawn 
from this project and discusses future research directions. 
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AFDD Automated fault detection and diagnosis 
AHU Air handling unit 
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Chapter 1 Introduction 
1.1 Background 

Commercial and residential building sectors consumed 40.1% of the U.S. primary energy and 
represented 40% of the carbon emission in 2011[1]. Malfunctioning control, operation, and 
building equipment are considered as the top cause for “deficient” building systems [2, 3]. These 
dramatically increase the energy consumption (estimated to be 1x1015 BTU for commercial 
building primary energy usage [3] and between 0.35 to 17 quads of additional energy consumption 
caused by key faults at a national level [4]), and significantly impact the health/productivity of 
occupants. Field studies have shown that an energy saving of 5-30% and improved indoor air 
quality can be achieved by simply applying automated fault detection and diagnosis (AFDD) 
followed by corrections even if these are not done in real time [5, 6].  

Existing AFDD solutions mainly focus on component level detection and diagnosis, 
decoupling the connections between the building subsystems – consequently, these may reach 
local and often incorrect solutions, yet they may not lead to overall sustainable and optimally 
conditioned systems. For example, when the outdoor air damper of an air handling unit (AHU) is 
stuck at a position that is much larger than normal in a cooling season, this fault not only could 
cause the AHU’s cooling coil valve to be opened at higher than normal position, but also could 
cause abnormalities in the primary cooling system, such as causing the chilled water pump to run 
at a higher speed to provide extra cooling needed. A false alarm may be triggered by the primary 
cooling system AFDD tool package. In this study, such faults that occur in one equipment or 
component but would have fault impacts (causing abnormalities) on more than one component and 
subsystem, or would have significant adverse whole building energy or indoor environment impact, 
are considered as whole building faults. Besides having difficulty isolating whole building faults, 
existing AFDD solutions often encounter high market barriers because they have limited 
scalability, or high implementation cost due to the needs to manually customize algorithms, collect 
data on the field, especially faulty data. Moreover, many of the reported research are based on 
simulated system data which could be very different from real system data, and do not reflect real 
system’s behavior. Therefore, more real building AFDD testing and validation are desired to 
evaluate the performance of an AFDD method. 

It is noticed that existing literature does not clearly separate the concepts of AFDD and fault 
detection and diagnosis (FDD). A reason for this could be due to the challenge to define the concept 
of “automated”, as many AFDD strategies may still engage some manual efforts. Hence these two 
concepts are not strictly separated in this report, although we focus on the methods and strategies 
that lead to a higher level of automation in FDD. 

 

1.2 Challenges for Whole Building FDD methods 
There exist five major challenges in developing whole building AFDD methods: 

1) Challenge of cost-effectiveness and scalability 

Although some model-based whole building AFDD tools have been developed and they can 
potentially provide accurate fault detection and diagnosis, developing such models and calibrating 
such models to reach an accuracy level that is sufficient for whole building FDD remains to be 
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challenging and cost-effective. At the same time, such tools often have lower scalability when 
applying in different buildings, due to the needs to customize them. 

2) Challenge of the curse of data dimensionality  

Different from component level AFDD, a whole building AFDD tool needs to utilize data from 
the entire building [7], which often has hundreds, if not thousands of data points. How to handle 
such an increased data dimensionality in a computationally efficient way, also referred to as the 
curse of the data dimensionality, is a challenge.  

3) Challenge of generating baseline data that are under identical weather and internal load 
For building systems, it is often challenging to differentiate weather and/or internal load 

triggered system operational changes from fault triggered abnormalities. Difficulties exist as to 
how to collect historical baseline data, and how to efficiently select among these collected 
historical baseline data, those baseline data that are under similar weather and internal load 
conditions as the snap-shot data (data from current system operation). Notice that a real building 
system is often impossible to be at a true “fault free” status. In this study, we use the term “fault 
free” to reflect a status at which a building system’s performance is acceptable, such as when a 
building is just commissioned.  Building data collected under such “fault free” status is referred to 
as baseline data.  

4) Challenge of root cause identification  

Although limited whole building AFDD studies exist in the literature, these studies often focus 
on fault detection, i.e., identify abnormalities. There is a lack of studies in the literature that focus 
on locating and identifying root causes for those faults that cause abnormalities in multiple 
subsystems/components, i.e., have coupled abnormalities.  

5) Challenge of real building evaluation   
Literature-reported FDD methods are mostly developed and evaluated using simulated system 

data. This is due to the difficulties of obtaining and analyzing real building data. Implementing 
faults and obtaining data that contain fault impacts in real buildings are already challenging. Yet 
cleaning and analyzing building data to obtain “ground truth” is even more arduous since 
unexpected naturally occurred faults could exist in the system and cause abnormalities or 
complicate (sometimes even eliminate) the fault impacts expected from the artificially 
implemented faults.   

 

1.3 Research Objects 
The main objectives of this project are to 1) develop a cost-effective and scalable AFDD tool 

that integrates both statistical process control, machine learning methods and rule-based methods 
to achieve a whole building system root-fault diagnosis and 2) evaluate the performance of the 
developed tools using real building data. Besides, the developed tools will be VOLTTRONTM 
compatible to further increase its plug-n-play capability and market penetration. VOLTTRONTM 
is an open source innovative distributed control and sensing software platform developed by the 
Pacific Northwest National Lab (PNNL, http://gridoptics.pnnl.gov/VOLTTRON/). Another 
objective of the project is to engage undergraduate students in research activities to encourage 
them to enter the sustainable building field. A university building is used as a demonstration site 
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for this project, which will further be used as an educational tool to train future architectural and 
mechanical engineers the significance and knowledge base of fault diagnosis. The primary final 
products are software tools (codes and data/user interfaces) for cost-effective and accurate whole 
building root-fault detection and diagnosis. 

 

1.4 Literature Review 

1.4.1 Definition of Whole Building Faults and Classification of Building Faults 
A definition for whole building faults are not found in the previous literature to the author’s 

best knowledge. In this research, a whole building fault refers to a fault that occurs in one 
equipment or component but has fault impacts (abnormalities) on more than one component and 
subsystem, or has significant adverse impacts on whole building level energy consumption and/or 
indoor environment quality.  

Although, it is well-recognized that faults can lead to occupants’ discomfort, system 
performance degradation, lower system life time and increased energy usage, there is a handful of 
investigation on typical fault types and their impacts, especially their impacts on coupled systems. 
In [8], many typical HVAC faults are identified according to their impacts on the energy 
consumption. Furthermore, energy impacts from AHU [9, 10] and variable air volume (VAV) 
system [11] were also studied. A very complete category for AHU faults were reported in [9, 12]. 
However, a systematic fault categorization for whole building faults is not found. 

Following fault categorization methods in other industrial systems, HVAC faults, including 
whole building faults, can be categorized according to the fault types, fault duration, fault source 
location, and fault causes.   

Based on the fault types, faults can be divided into hardware faults and software faults [13]. 
Hardware fault refers to the faults happened in the hardware system including sensor, actuators, 
controllers, energy or air or fluid distribution equipment and so on. Software fault refers to the 
faults caused by software system or operator. For example, a software program fault can lead the 
system operation abnormality. Moreover, some incorrect system software settings (i.e., a wrong 
tuning of PID parameters) can also be categorized as software faults. 

According to fault duration, faults can be identified as permanent faults or nonpermanent faults 
[14]. A permanent faults usually is a long term fault and will not disappear until the system is 
serviced and repaired [14]. For example, in building systems, a duck leaking fault is a permanent 
fault. Unobserved permanent faults can cause a long-lasting system deterioration and may lead to 
a complete system failure or an accumulated energy waste in a HVAC system. Nonpermanent 
faults include intermittent faults and transient faults. Intermittent faults occur repeatedly during a 
time period [14]. For example, an incorrect occupancy schedule accidently set by the operator can 
lead the building systems to be operated during unoccupied hours and cause energy waste. 
Transient faults occur randomly and are usually unrepeatable. For example, an AHU outdoor air 
damper stuck fault could happen randomly and could also return back to a normal position without 
manual correction. In such case, fault impacts may not be observed at all times during system 
operation. 

As building’s systems are often large and complex in which different subsystems are coupled 
together, the source location of a fault, rather than its impacts, is better to be utilized to categorize 
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whole building faults. Hence, in this research, whole building faults can be identified as operator 
faults, primary heating/cooling system faults, and supply air/terminal system faults. An example 
of detailed whole building fault category is provided in Chapter 3. 

1.4.2 Definition of AFDD and Classification of AFDD Methods in Building Systems 
For AFDD in building systems, Haves [15] provides good definitions. In this paper, fault 

detection is defined as “determination that the operation of the building is incorrect or unacceptable 
in some respect” and fault diagnosis is defined as “identification or localization of the cause of 
faulty operation”. Compared to fault detection, fault diagnosis is much more difficult because more 
knowledge, information, and analysis are needed to isolate the root causes which impact the system 
performance.  

However, although there is no specific definition for whole building AFDD, the above 
wordings for FDD are still applicable for whole building level faults. Here we define the term 
whole building AFDD as the detection and diagnosis of a whole building fault. 

Many methods have been developed for component level AFDD for building systems. In [6], 
Katipamula and Brambly provided a comprehensive classification for methods used for HVAC 
system AFDD as shown in  

Figure 1-1. This taxonomy can be used to determine the methods employed in the whole 
building AFDD as well. In the following sections, we group quantitative model-based methods 
and qualitative model-based methods into model-based methods. We classify the process history 
based methods into data-driven methods.  

 

 
 

Figure 1-1 Classification scheme for FDD methods [22] 

In the middle of 1990s, the DOE started to develop a whole building detection and diagnosis 
tool [16]. Some building commissioning software such as Performance and Continuous 
Recommissioning Analysis Tool  developed by Facility Dynamics Engineering [17] and 
Continuous Commission® tool [18] were developed to preliminarily evaluate the overall building 
performance. Nevertheless, it is noticed that the research work on the whole building AFDD was 
not as active as those in the component AFDD area, before Year 2000. Five academic papers were 
found between Year 2000 to Year 2010 in the whole building AFDD area. After Year 2010, 
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relatively more research work on the whole building FDD area had been published. The following 
sections provide a more detailed discussion on the whole building AFDD studies published after 
Year 2000. 

1.4.3 Whole Building FDD Work Flow  
Existing literature suggests that there are two typical AFDD strategies at the whole building 

level—top-down strategy and bottom-up strategy [19]. Figure 1-2 illustrates the differences 
between these two by using the HVAC system as an example [20].  

The top-down approach is defined as measuring the whole performance abnormality at higher 
system levels and then reason the causes of faults, mal-functioning or degradation at lower-levels. 
Building energy consumption is usually selected as the fault detection index because of its 
simplicity and significance. However, most existing studies have skipped the root cause diagnosis 
step and stop at the phase of detecting the abnormal energy consumption. Only limited studies [21-
23] completed the entire top-down approach to identify the fault sources. Wu et al., diagnosed the 
faults such as thermostat setpoint variation, VAV outlet blockage in [21], and faults such as AHU 
fan frozen, outdoor air temperature sensor malfunction, VAV supply air inlet blockage [22]. Seem 
et al., [23] used field data to detect abnormalities caused by faults including chiller failure, design 
deficiency, and improper operation. 

The bottom-up approach measures lower level system parameters and back propagates the fault 
information to a higher level to evaluate the fault’s impacts on whole building performance. In this 
approach, component or equipment fault are detected first. The cumulative fault impacts are then 
evaluated after the faults are detected and diagnosed. The fault detection and diagnosis process is 
the same as component level FDD strategy. Studies [24-27] followed this approach, among which, 
three studies [24, 25, 27] did not start the detection work flow from the component level but from 
the subsystem level. Furthermore, these three studies did not diagnose the root fault causes, nor 
did they provide detailed evaluation of the fault impacts on the whole building level. Du et. al. [26] 
presented a FDD method that started from detecting the component level faults including water 
loop return water temperature sensor fault, supply air temperature sensor fault, and chilled water 
valve fault. But it did not provide a detailed analysis on the impacts of a specific fault on multiple 
systems. The challenge of such bottom-up approach is that certain faults could cause malfunctions 
on multiple systems, such as the outdoor air damper fault discussed earlier. Hence, based on 
existing literature, component or subsystem level FDD faces challenges when isolating root fault 
causes if an abnormality is caused by a fault outside of this component/subsystem. 

1.4.4 Whole Building FDD Methods 
Similar to component FDD methods as shown in Figure 1-2 [28, 29], whole building FDD 

methods is divided into model-based methods and data-driven methods. This section provides a 
discussion of the whole building FDD methods reported in the literature.   

1.4.4.1 Overview of Model Based Whole Building FDD 
There are generally two model-based FDD methods—quantitative model-based and 

qualitative model-based methods (Figure 1-2) [30]. Quantitative model-based methods use 
detailed physical models or simplified models of the physical processes [6]. Qualitative model-
based methods consist of the basic qualitative description of the system dynamic process. This 
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description, which is based on the qualitative relationships or prior knowledge, is then used for 
fault detection and diagnosis. Rule-based method is usually considered as the qualitative method. 

 

 
 

Figure 1-2 Top-down and bottom-up methods used for HVAC FDD [19] 

In the whole building FDD area, detailed physics based building energy consumption models, 
such as those built using EnergyPlus [31], HVACSIM+ [32] and TRNSYS [33], had been adopted 
to produce baseline energy consumption, which was forecasted from the energy consumption of 
each component. Real building measurements from the BAS could be used to calibrate such whole 
building energy consumption models.  

Haves et al., [34] described a basic modeling and implementation procedure for using detailed 
whole building energy simulation in on-line performance assessment. The following three studies 
[35-37] adopted such detailed building energy simulation approaches for whole building fault 
detection. 

Bynum et al., [35] developed an Automated Building Commissioning Analysis Tool, which 
was a simulation tool combining expert system to detect energy abnormality. A building energy 
model was firstly developed by using first principles. Actual energy consumption data collected 
from the BAS combining with weather data were used to calibrate the simulation model. 
Forecasted energy performances from the calibrated simulation model were then compared with 
the measured data to detect faults. Five buildings were used to demonstrate the detection results. 
In this paper, the authors did not describe how the faults were implemented in the demo buildings 
(or whether they were naturally occurred faults). The fault detection accuracy and detection 
threshold were not described either.  

O'Neill et al., [36] described another model-based FDD method. In their approach, energy 
consumption data from different subsystems including HVAC, lighting and plug equipment usage 
were compared with a reference EnergyPlus model which was used to calculate the annual energy 
consumption to determine if the system had operation faults. A diagnosis process, which utilized 
the system hierarchy and the model vs. measurements deviation in each subsystem, was also 
described.  
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In article [37], Dong et al., presented a Building Information Management System (BIMS) 
based on Autodesk Revit, which was used to serve as the platform for a baseline energy 
performance model developed by MATLAB®. Building Control Virtual Test Bed developed by 
Laurence Berkley National Laboratory was used to collect real building energy data. Again, the 
differences between the real measurements and the forecasted energy performances from the 
BIMS model were used to detect potential faults. In this paper, a real building which had AHU 
and connected VAV were used as the case study to demonstrate the method performance. It is 
noted that, the three papers described above did not provide detailed descriptions on 1) how to 
decide on the threshold for abnormality; nor 2) detection/diagnosis accuracy.  

The advantage of model-based FDD methods using detailed building energy simulation is that 
these methods could provide a relatively accurate energy baseline (if the simulation models are 
well calibrated) to analyze the building’s energy performance. If the developed model accurately 
represents subsystems and whole building level operation, then fault diagnosis is not too difficult 
because both subsystem level and whole building level comparison (model vs. measurements) can 
be achieved to isolate faults. However, the main disadvantage of this approach is that in practice, 
developing such a detailed and accurate building energy simulation model is very time-consuming, 
and calibrating such a model to achieve a subsystem level accuracy for fault isolation remains to 
be very challenging.   

1.4.4.2 Overview of Data-driven Whole Building FDD 
Although model-based methods, including those using detailed energy simulation models, can 

be successful for both component and whole building level FDD, it is challenging to cost-
effectively implement such methods in the real practice, especially for whole building FDD. 
Besides model-based methods,  data-driven FDD methods have also been successfully employed 
in the component level FDD [38, 39]. Such data-driven FDD methods use multivariate statistics 
and machine learning strategies to detect and diagnose system operational, as well as control faults 
[40]. Moreover, data-driven FDD methods have demonstrated great potentials for whole building 
FDD, especially when system is too complex to be modeled, and when it is easy to obtain a large 
amount of measurements.  

There are a few studies reported in the whole building FDD area using various data-driven 
methods. A typical implementation of data-driven methods for building energy abnormality 
detection is summarized in [23] and is illustrated in Figure 1-3. Here, we categorize and re-define 
these basic procedures into five main steps as shown in Figure 1-4. This categorization will help 
later discussion on data-driven methods, as a specific technique, such as pattern matching, can be 
used in different processes to achieve different objectives. It is noted that not existing studies 
strictly follow all of these five steps: 

 
1. The first step is the data collection and data pre-processing process. In this step, system 

operation data is collected from the BAS. By now, this process is still the most time-
consuming and labor intensive process due to the randomness of BAS data points naming 
strategy and the complexity/diversity of BAS database design. In existing literature, both 
real building data and simulated data (in lieu of real building data) have been used. Some 
studies [21-23, 25, 35-37, 41-43] use real data from the field test. Yet other studies [26, 27, 
44, 45] use data from simulation model. Unlike in the chemical process industry, where a 
unified system process model such as the Tennessee Eastman process system model has 
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already been well-established [46, 47], in the building sector, there has been a lack of 
standardized building simulation model to validate a FDD method. Hence, it is difficult to 
evaluate an FDD method’s accuracy and cost-effectiveness when different sources of 
building data are used. Moreover, data-driven methods are sensitive to data quality. It is 
challenging to evaluate how a data-driven FDD method would perform in a real building, 
even if it performs well for a simulated building. For a data-driven FDD method, the quality 
of the collected data strongly affect the FDD method’s performance. For systems which 
have few information, the application of a data-driven method is greatly limited [36]. 
Although modern buildings often have BAS to collect data, ‘data rich yet information poor’ 
[48] phenomenon happens frequently in buildings. Unfortunately, existing literature has 
not discussed data source topics such as how to efficiently collect data and how to 
understand the impact of data uncertainty on FDD accuracy. This topic remains to be a 
challenge for future research.  

2. The second step is the system feature extraction process. Considering the much larger 
quantity of building data, this is a key step for whole building FDD, compared to 
component level FDD. Hundreds to thousands of data points exist in a BAS. But many of 
such data are correlated or redundant. Being able to efficiently remove unusable and/or 
redundant data, and to identify useful information from raw data is the key for a whole 
building FDD. In existing whole building FDD literature, Support Vector Machine (SVM) 
[48], and other data mining techniques such Artificial Neural Network (ANN) [24, 26, 42], 
have been employed for this step. However, their accuracy and efficiency are not 
thoroughly discussed.    

3. The third step is the establishment of a baseline. Again, a baseline refers to a system status, 
including corresponding system measurements, that is considered to be an acceptable 
(normal) operation status. A fault is identified when the system’s performance 
demonstrates a large enough (higher than a predefined threshold) deviation from the 
baseline. Defining baseline and threshold remains to be a great challenge even for 
component level FDD, due to the large variety of system customization in a real building, 
and that a “fault-free” status never truly exists in a real building. Typically, a baseline is 
established based on predefined rules and extracted system information. Energy 
consumption data are the most commonly used measurements for whole building FDD 
baseline, which are used in all of the whole building FDD literature identified. Some 
studies establish the baseline using direct energy measurements from real buildings [25, 
27, 45, 49]. Other studies establish the baseline based on forecasted data using correlation 
models [43]. Although building energy consumption is an easy-to-use baseline 
measurement to detect abnormality, it does not provide enough information for root fault 
isolation, which could be the reason that very few literature discusses fault diagnosis. 

4. The fourth step is the feature comparison and fault (outlier) detection. In this step, the real-
time BAS data are compared with the baseline to detect if the system has faults. Threshold 
is the key factor affecting detection effectiveness and accuracy. If the threshold is too 
narrow, it will cause a high false positive (detecting a fault when there is no fault) rate. If 
the threshold is too wide, it will cause a high false negative (not detecting a fault when 
there is a fault) rate. The threshold can be established by using system operational data and 
expert knowledge [25], or purely through statistical analysis [21].  

5. The fourth step is the feature comparison and fault (outlier) detection. In this step, the real-
time BAS data are compared with the baseline to detect if the system has faults. Threshold 
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is the key factor affecting detection effectiveness and accuracy. If the threshold is too 
narrow, it will cause a high false positive (detecting a fault when there is no fault) rate. If 
the threshold is too wide, it will cause a high false negative (not detecting a fault when 
there is a fault) rate. The threshold can be established by using system operational data and 
expert knowledge [25], or purely through statistical analysis [21].  

 
 

Figure 1-3 The procedure of detecting abnormal energy consumption  [23] 
 

 
 

Figure 1-4  Basic data-driven FDD procedure 
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6. The last step is to diagnose the root fault cause. In this step, various statistic parameters or 
probability model such as ANN and Bayesian belief network reasoning method have been 
reported [21, 24, 26, 44]. More detailed discussion is provided in the next section. 
 

1.4.5 Data-driven Whole Building Fault Detection and Diagnosis – Detailed Methods  
In this section, methods that could potentially benefit data-driven whole building FDD are 

discussed here. The methods reviewed in this section include those reported for system feature 
extraction, baseline establishment and fault diagnosis. Detailed information including detection 
and diagnosis principles, types of data used, baseline establishment principles, and major detected 
faults are discussed.   

1.4.5.1 System Feature Extraction 
System feature extraction process is similar to the model development process in a model-

based method.  However, building operation data instead of first principles are used to represent 
the system in a system feature extraction process. ANN, SVM, data based energy flow model have 
been reported to extract system features.  

Dodier et al., [24] proposed to use four Energy Consumption Indexes to establish a building 
energy consumption baseline, which included building total electric, building total thermal, non-
chiller HVAC electric, and chiller/package unit electric. ANN models were established to predict 
the expected energy end-uses. Considering the large variation of system operation models and 
weather conditions, even for the same building, large quantity of training data would be needed 
for ANN model training.  It was unclear whether the reported ANN model could be retrained for 
a new building, even if large quantity of training data were available from the new building. 
Besides, the paper did not provide details such as the training data duration and accuracy evaluation 
which would be important for the method to be used in a real practice. 

Blanes [48] et al., proposed a “CASCAD implementation kit” in which a FDD tool was 
integrated into an energy management system. In this tool, SVM, which had the ability to reduce 
BAS data dimension, was used to extract building energy information. Again, there was a lack of 
details on how such algorithm was implemented and the accuracy of the method in this article. 

Wu et al., [31,32] developed an energy flow model which was based on Bernoulli’s principle 
for all HVAC units. Energy consumptions by different HVAC units were treated as energy density. 
Operational patterns based on this energy density under normal conditions were served as the 
baseline. The energy consumption was analyzed by a method named as “temporal and spatial 
partition strategy”. The temporal partition method required a detailed analysis on the HVAC 
system unit placement according to their locations. The spatial partition method used different 
weather conditions to differentiate the unit energy consumption. However, the authors did not give 
a detailed analysis on how to differentiate energy consumption fluctuation due to faults vs. due to 
different operational modes, although theoretically, the temporal partition method should be able 
to help to differentiate operational modes. Moreover, faults from different components might cause 
similar impacts on the energy consumptions, which could weaken the ability of fault diagnosis. 
Moreover, how scalable this method was when being applied to a different system or a different 
building was not studied.  
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An efficient feature extraction method is critical for FDD, especially for whole building FDD, 
when much larger quantity of data exist. Overall speaking, existing research has reported various 
data-driven methods to extract system information and to reduce system complexity. However, 
there is a lack of discussion on critical details, such as how data quantity, quality, uncertainty etc. 
affecting the reported method’s performance, and thus it is hard to evaluate these reported methods, 
especially their scalability.  

1.4.5.2 Baseline Generation 
After system information is extracted, a baseline needs to be established to represent normal 

operation. A threshold will then need to be defined to differentiate abnormal operation from normal 
operation for fault detection.  

(1) Baseline generation 

In the component level FDD, operational parameters measured by sensors or control signals 
are usually used to detect faults [46]. In the whole building FDD, as discussed earlier, energy 
analysis and measurements are easy-to-use parameters for baseline establishment. The complexity 
here is that building energy consumption is affected by many factors (predicting factors), such as 
internal loads, operating conditions and weather conditions. Various approaches to choose 
effective predicting factors are studied in the literature. Weather conditions including outdoor 
temperature and relative humidity are the mostly common ones to establish the baseline. 

Lin et al., [25] introduced a temperature-based approach — Days Exceeding Threshold-Toa 
to detect abnormal building energy consumptions. In their study, the ASHRAE Simplified Energy 
Analysis Procedure was used to establish a simulation model. Building cooling and heating energy 
consumption in the baseline period, chosen from a post-commissioning period, were used to 
calibrate the model.  

Miller et al., [41] presented a day-typing process (named as DayFilter) which employed 
Symbolic Aggregate Approximation (SAX) to extract the most common daily profiles. At the same 
time, day-typing motif and discord candidate data were created after analyzing the day feature. K-
means based clustering algorithm was used to cluster the daily profiles to create the baseline. This 
method provided a fairly quick analysis to filter diurnal patterns of the building performance data. 

Time series regression modeling is a commonly used method to establish a baseline. This 
method attempts to use various energy consumption regression models combined with weather 
information to establish the baseline. However, system degradation faults could be neglected when 
using time-series regression methods. Fan et al., [49] presented a time series based data mining 
methodology including SAX, motif discovery and temporal association rule mining for building 
temporal operation data. The dynamic characteristic of BAS data was analyzed to establish the 
operation pattern, derive temporal association rules and evaluate the system performance. 
Although this paper did not use the developed baseline for fault detection, efficiently using 
building energy consumption information will improve the FDD effectiveness.  

Most data-driven FDD methods detect faults by comparing real time or near time operation 
data with baseline data obtained from historical data. The challenge is again finding the correct 
historical data that can represent normal operation, considering that fault free status rarely exists 
in a real building. Comparing to traditional data-driven methods, Li et al., [43] developed a 
different prediction methods to detect the whole building energy abnormality. In their study, they 
firstly extracted building energy features from time-series BAS data, and then employed the 
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features to detect abnormal energy consumptions. A canonical variate analysis was used to 
describe latent variables of building daily electricity consumption profiles, and then group the data 
sets into different clusters. The classification was produced to predict daily electricity consumption. 
Comparing with traditional regression energy forecasting models, this method had a potential to 
build a more robust baseline by removing data outliers and infrequent energy abnormality that 
could exist in historical data. The algorithm also had higher computational efficiency. However, 
detailed performance of the method, such as accuracy, was not discussed in this article.  

(2) Identification of threshold 

Threshold is a critical factor that is used to detect faults quantitatively [42]. How well a 
threshold is chosen also strongly affects an FDD method’s detection accuracy and false alarm rate. 
Two methods have been discussed in the whole building FDD literature to establish a threshold. 
One method is to directly use system operational information such as consumption variation to 
determine the threshold. Lin and Claridge [25] used hot water and chilled water consumption 
variation to establish threshold. However, in this study, how to determine an exact numerical value 
for the threshold was not discussed for each test case. Another method is to use statistical 
parameters to determine a threshold. Wu et al., [21] set 95% probability interval as the threshold 
for fault detection when using Principal Component Analysis (PCA) method.  

It is noted that, despite its significance, very few existing literature in the whole building FDD 
area have discussed how to determination a threshold nor have reported their threshold values.  

1.4.5.3 Feature Comparison and Outlier Detection 
Feature comparison and outlier detection help to detect system abnormal behavior. In this stage, 

different thresholds are set up to determine and detect outliers. Although, this stage is actually 
based on the work in previous steps, we can find some literature that provides details or innovative 
methods to implement outlier detection process. 

Seem [23] used a generalized extreme student’s deviate for outlier detection to find if the 
equipment has faults. Outlier identification was developed based on mean and standard deviations. 
In this study, three categories of system fault were detected—chiller failure and improper control 
strategy, poor design of ventilating and air-conditioning equipment, and improper operation of 
equipment on the electrical panel. However, the proposed method could only be applied to certain 
system configurations, and could not easily be applied to other systems.  

Jacob et al., [45] proposed another way to improve the outlier detection effectiveness. In their 
study, they used an improved linear regression models—change point multiple linear regression 
models to identify the abnormality in building daily energy consumption, and used the identified 
outliers to detect faults. Different from other research, they used indoor air temperature differences 
to reflect the energy variation and to improve the correlation coefficient of the model. Average 
daily energy consumption and peak energy consumption were chosen based on the previous tests.  

Capozzoli et al., [50] proposed a) a statistical pattern recognition techniques to identify fault 
patterns, and b) ANN basic ensemble method and peak outlier detection method to detect outliers 
from building electricity consumption. Pattern comparisons for lighting power consumption and 
for total power consumption of a cluster of eight buildings were developed. Although the authors 
provided the basic structure of their developed ANN, such as the number of hidden layer and 
neurons, they did not provide a detailed description on the ANN model parameters. The detection 
accuracy was not reported in their article either. 



 13 

Fuzzy sets is another effective way to describe the properties of objects which do not have 
clear boundary between good performance and bad performance. In the BAS, a large proportion 
of data points have a wide operational scale, which is more appropriate to be defined by fuzzy set. 
Yu et al., [42] proposed a method combining fuzzy set and neural network to detect faults by 
finding the overshoot of the threshold. But the selection of membership function is a challenging 
issue especially for the complex system. 

1.4.5.4 Fault Diagnosis Methods 
Fault diagnosis is the last and most challenging step in FDD. As stated above, for a whole 

building FDD, fault diagnosis is significantly more difficult because a detailed and accurate 
reasoning process has to be accomplished to find out the root cause. Currently, there are very few 
literature discussing whole building fault isolation.  

In study [21], Wu et al., described several whole building faults (thermostat setpoint variation 
fault, VAV outlet blockage fault, AHU fan frozen, outside air temperature sensor fault, VAV 
supply air inlet blockage fault), but did not give a detailed description on the reasoning process.   

Du [26] used energy model established by a neural network to find the fault sources 
respectively. These methods actually used subsystem abnormality comparison to identify the fault 
sources. The advantage of this method was that it provided a clear system classification and an 
intuitionistic analysis for field engineers. But the interrelations among the subsystem were not 
considered. Furthermore, this proposed diagnosis method will be limited when being used for a 
complex real system that is lack of subsystem information.  

Magoulès [44] compared different data-driven methods and proposed a recursive deterministic 
perceptron neural network. In this method, different equipment faults were used as inputs to the 
energy model. Four error models were then trained to predict errors caused by four units including 
chiller, coil, fan and pump. When an equipment’s error model demonstrated a good agreement 
with measured data, the associated equipment would be defined as the fault source. Again detailed 
information such as accuracy was not reported. The challenge of using such method is that it is 
very difficult to obtain fault data as training data.  

Dodier et al., [24] used Bayesian belief network to diagnose the whole building energy usage 
fault. But Bayesian belief network depends on the basic knowledge of the system structure, and is 
limited when being used for a different building system. 

 

1.5 Summary 
As discussed above, component level FDD is more mature than whole building FDD. However, 

in real buildings, different subsystems often closely couple together and a fault that occurs in one 
subsystem may trigger abnormality in other equipment or systems. Hence, using component level 
FDD alone could result in high false alarm rate for those faults that have a whole building impact, 
due to the coupling among different subsystems and fault propagation. This is the reason why 
component level FDD is often less effective to isolate faults that affect multiple subsystems.  

Furthermore, , most of the existing whole building FDD methods focuses on detecting whole 
building energy consumption abnormality, and lacks the ability to diagnose the root fault causes.  
More research are needed to develop cost-effective and scalable of diagnosis methods on whole 
building faults. Many of the reported FDD research are based on simulated data which could be 
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greatly different from how real systems behave. Therefore, more real building FDD testing and 
evaluation studies are desired to understand the performance of a FDD method.  
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Chapter 2 Demonstration Building Description 
2.1 Demonstration Building –Nesbitt Hall Overview 

One Drexel campus building – Nesbitt Hall is chosen as the demonstration building in this 
study. Nesbitt Hall is a seven-story, 78,000 square-foot mixed use building which includes offices, 
classrooms, laboratories, and an auditorium. 

 Figure 2-1 shows the appearance of the Nesbitt Hall. This building is chosen as the test 
building because its HVAC system has a configuration that is typical among medium- and large-
size commercial buildings in the U.S. The HVAC system in the Nesbitt Hall includes a water 
cooled chiller system, three AHU systems that serve multiple VAV terminal units, and a hydronic 
heating system.  

The primary cooling subsystem including one chiller and one variable speed pump, is located 
in the basement of the building. One cooling tower that serves the chiller is located in the penthouse. 
Three air distribution subsystems, which includes three AHUs (including one in the basement, 
other two on the rooftop) and eighty-eight VAV terminal units, are used to serve all seven floors. 
One steam-to-hot-water heat exchanger subsystem that is located in the basement is used to 
provide domestic hot water and space heating needs. Figure 2-2 illustrates the HVAC system 
configuration in the Nesbitt Hall. A BAS, which can remotely monitor and control the entire 
HVAC system, is connected to each subsystem.  

Table 2-1 provides a summary of the subsystems. In the following sections, each subsystem 
is illustrated in details. 

 

 
 

Figure 2-1 Overview of the Nesbitt Hall at Drexel University 
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Figure 2-2 HVAC system configuration in the Nesbitt Hall 
 

Table 2-1 BAS connected subsystem or measurement summary 
 

Subsystem Primary 
Cooling 

Subsystem 

Supply air 
Subsystem 

Steam-to-hot-water 
Heat Exchanger 

Subsystem 

Whole Building 
Energy 

Measurement 
Components 1 centrifugal 

chiller and 1 
variable primary 
flow chilled 
water system  

3 AHUs and 88 
VAV terminal 
units 

2 heat exchangers for 
domestic hot water and 
space heating water 

Electric power meter 

 

2.2 Overview of HVAC System 

2.2.1 BAS in the Nesbitt Hall 
The BAS for the Nesbitt Hall can be remotely accessed so that most of the control tasks can 

be implemented through remote computers. Data collected from various subsystems are stored in 
a cloud-base database and can be downloaded remotely.  

Figure 2-3 demonstrates the BAS graphic interface. In the Nesbitt Hall, the BAS monitors the 
above-mentioned three subsystems. Furthermore, measurements from an electric power meter that 
measures the whole building electricity usage, as well as weather station sensors (temperature 
sensor and relative humidity sensor) are also connected to the BAS. 

Outdoor air enthalpy information is not provided by the BAS, but is computed in this study by 
using the weather station temperature and relative humidity sensor measurements. Outdoor air 
pressure is also collected in this study through weather information website 
(https://www.accuweather.com/) during the outdoor enthalpy computation.   
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Figure 2-3 BAS graphic interface 

2.2.2 Primary Cooling Subsystem 
In the Nesbitt Hall, a Variable Primary Flow (VPF) system is employed in the chiller plant. 

The VPF system uses a variable speed pump (VSP) whose speed is controlled according to the 
differential pressure between chilled water (CHW) supply and CHW return pipes, so that the 
supplied chilled water flowrate can be adjusted according to cooling load variation. A CHW 
differential pressure sensor is used to measure the pressure difference. Figure 2-4 shows the VPF 
system configuration in the Nesbitt Hall.  

In the chiller plant, one centrifugal chiller is employed to meet the cooling demand of the 
entire building as shown in Figure 2-5. One primary VSP and one spare pump (constant speed) are 
used to provide chilled water for three AHUs. A bypass control valve is used to ensure a minimum 
chilled water flowrate that the chiller requires to prevent excessive fouling and evaporator frozen 
when the chiller is operated under a low flowrate. Furthermore, a cooling tower is located on the 
penthouse to provide the cooling water (CW) as shown in Figure 2-6. Various sensors including 
water flowrate sensors, temperature sensors, pressure sensors, and pump speed sensors are 
installed in the chiller plant to collect data from each component.  

2.2.3 Supply Air Subsystem 
The air distribution subsystems include three AHUs and eighty-eight (88) VAV terminal units. 

Two of the AHUs (AHU-1 and AHU-2, Figure 2-7) are equipped with supply air duct and return 
air duct. AHU-3 (Figure 2-8) serves the laboratory space, so it does not include return duct. 
Dedicated exhaust air systems are installed in those labs. Figure 2-9 shows the appearance of AHU-
1. 
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Figure 2-4 VPF primary cooling sub-system configuration in the Nesbitt Hall 
 

 
 

Figure 2-5 Centrifugal chiller in the Nesbitt Hall 
 

Eighty-eight (88) VAV terminal units are distributed in different zones as shown in Figure 
2-10. The heating subsystem located in the basement of the Nesbitt Hall provides the hot water to 
the VAV reheat system.  

 



 19 

 
 

Figure 2-6 Cooling tower configuration in the Nesbitt Hall 

 

 
 

Figure 2-7  AHU with return air duct 

2.2.4 Steam-to-hot-water Heat Exchanger Subsystem 
Two steam-to-hot-water heat exchangers are included in the heating subsystem as shown in 

Figure 2-11. Two constant water pumps are equipped to provide the domestic hot water for each 
floor, and for each VAV terminal unit with a reheat coil. The BAS supervises the water temperature 
and pump operation. Water flowrate sensor is not included in the subsystem. 
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Figure 2-8 AHU without return air duct 
 

 
 

Figure 2-9 AHU-1 profile 



 21 

 

        
(a)                                                                     (b) 

 
Figure 2-10 VAV terminal unit (a) with reheat coil, (b) without reheat coil 

 

     
 (a)                                                                      (b) 

 
Figure 2-11 Heat exchangers (a) for domestic hot water (b) for VAV reheat 

 

2.3 Summary 
In this study, a demonstration building - Nesbitt Hall is identified as the test site. This building 

is equipped with typical HVAC systems that are commonly used in medium- and large-sized 
commercial buildings. The HVAC systems at Nesbitt Hall include a water cooled primary chiller 
subsystem, three VAV AHU subsystems, and a hydronic heating subsystem. A typical BAS is 
used to monitor and control the HVAC systems at Nesbitt Hall. The BAS is connected with a 
cloud-based server which allows remote control and data exchange. In next chapter, detailed test 
design and implementation processes are provided.   
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Chapter 3 Whole Building Fault Data Generation and Collection 
3.1 Overview of Whole Building Fault Experiments 

Based on the definition on whole building fault given in Chapter 1, a list of faults that have the 
potential to have whole building level impacts are identified firstly.  However, not all of the 
identified faults can be implemented in the demonstration building due to safety considerations 
and facility capabilities. Only those whole building faults that can be implemented in the 
demonstration building and that do not have adverse indoor environmental impact are selected in 
the end as the focus of this study. These selected faults are categorized by the location of their root 
causes: 

1) Primary cooling system faults; 
2) Supply air system faults; 
3) Software - Operator/scheduling faults. 

Besides the faults that are implemented artificially, naturally occurred whole building faults 
have been observed in the data collected from the demonstration building. Table 3-1 provides a 
summary of the nine types of whole building faults, which are either manually implemented, or 
naturally occurred, in this study. 

 
Table 3-1 Whole building faults implemented or natrually occurred in this research 

Fault Location Fault Name 
Primary cooling system  Chilled water supply temperature sensor bias (screen 

reading higher/lower than real value ) 
Chilled water loop differential pressure sensor bias 
(screen reading higher/lower than real value ) 

Supply air system AHU  outdoor air damper stuck at higher than normal 
position 
AHU supply air temperature sensor bias  (screen 
reading higher/lower than real value ) 
AHU  cooling coil valve stuck at higher than normal 
position 

Software - 
Operator/scheduling  

System is unoccupied while under normal operation it 
should be occupied 
System is occupied while under normal operation it 
should be unoccupied 
Chiller is turned off while under normal operation it 
should be on 
AHU cooling coil valve software-overridden at a 
higher than normal position 

Generally speaking, there are two types of methods to implement an artificial fault in a 
building system: a fault can either be implemented via the software, such as adding a sensor bias, 
or by changing the configuration of the hardware, such as using a voltage generator to output a 
constant voltage to a damper to keep its position unchanged, in an attempt to simulate a stuck fault.  
The later method produces operation data that are more similar to those from a naturally occurred 
fault.  In this study, due to physical limitations, all faults are implemented via the BAS system, or 
through the chiller control panel.  Both bias and frozen faults could occur to a sensor.  Only bias 
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fault is considered in this study because of the above-mentioned implementation limitations at the 
Nesbitt Hall.  There are two ways to implement a sensor frozen fault, i.e., either by disconnecting 
the sensor and feeding a constant signal to the control system (not doable at Nesbitt Hall); or by 
using software-override function to keep the sensor screen reading.  If the later method is used, the 
fault symptoms will be the same as those software-override faults.   

A total of thirty-four (34) fault tests have been implemented between Year 2016 and 2018.  
This includes twenty-seven (27) fault tests between Year 2016 and 2017 and seven (7) makeup 
tests in the summer of Year 2018 (discussed in Chapter 8).  At the same, three naturally occurred 
fault cases are identified that have whole building impacts. Detailed description on all of the 
manually implemented fault tests, as well as the naturally occurred faults are provided in Appendix 
I. The following sections provide a detailed illustration of fault tests.  

 

3.2 Primary Cooling System Fault 
The chiller is controlled by a proprietary control system, and the BAS only monitors its 

performances. Therefore, the primary cooling system faults are implemented through the chiller’s 
own control panel (chilled water temperature sensor bias fault) and the BAS (chilled water loop 
differential pressure sensor fault).  Table 3-2 shows the fault test types implemented in the primary 
cooling system. 

 
Table 3-2 Primary cooling system fault tests 

 
Fault Name Equipment Operation Mode Fault Direction 

Chilled water supply 
temperature sensor bias 

fault 

Sensor  Cooling mode Negative bias  

Chilled water loop 
differential pressure sensor 

fault  

Sensor Cooling mode Positive bias  

3.2.1 Chilled Water Supply (CHWS) Temperature Sensor Bias Fault  
(1) Sensor function 

CHWS temperature measurement is typically used to control a chiller’s operation to achieve 
a desired CHWS setpoint. CHWS temperature setpoint can be reset according to outdoor 
environment information and indoor load.   

(2) Implementation method 

This fault is implemented by adjusting the CHWS temperature setpoint on the chiller control 
panel as shown in Figure 3-1. 

(3) Expected symptoms 

A CHWS temperature sensor bias fault will have an impact on the downstream AHU cooling 
coil valves' positions. If a negative bias is implemented, i.e., the screen reading is lower than the 
real value, the real CHWS temperature would be higher than its baseline values, which would 
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cause the downstream AHU cooling coil valves to have a higher than normal position. Depending 
on specific chiller's characteristics, such a fault could also have an impact on the chiller efficiency. 

    

 
 

Figure 3-1  CHWS temperature setpoint configuration on chiller control panel 

3.2.2 Chilled Water Differential Pressure Sensor Positive Bias Fault 
(1) Sensor function 

Chilled water loop differential pressure sensor is used to control the chilled water flowrate, 
which is modified by adjusting the variable frequency driver (VFD) chilled water pump to 
maintain a desired differential pressure setpoint.  

 (2) Implementation method 

This fault test will be implemented through the control logic setting from the BAS system as 
shown in Figure 3-2. 

Due to the difficulty of implementing a sensor’s bias through the hardware or through editing 
the sensor parameters (the facility does not allow such modifications), a sensor bias fault is 
implemented through adjusting the associated setpoint. The chilled water differential pressure 
sensor bias fault test is implemented by adjusting the differential pressure setpoint value as shown 
in Figure 3-3. After setting a new setpoint value, the actuator will be operated according to the 
new setpoint value, as if a biased chilled water differential pressure measurement is taken. During 
the fault post-processing, the setpoint value is artificially adjusted to its original value. For example, 
if a differential pressure positive bias of 0.5 psi is implemented, the differential pressure setpoint 
is subtracted by 0.5 psi. During the post-processing procedure, a value of 0.5 psi should be added 
to the trended setpoint value.  

(3) Expected symptoms  

A differential pressure sensor bias fault affects the VFD pump speed and has an impact on the 
pump’s energy consumption. At the same time, AHU cooling coil valve’s opening position will 
be also influenced by this fault as the chilled water supply pressure is different from its baseline 
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value.  A differential pressure sensor positive bias fault may increase the AHU cooling coil valve 
opening position to be at a higher than normal position.  

 

 
 

Figure 3-2 Chilled water supply differential pressure sensor logic configuration interface 
 

 
 

Figure 3-3 Chilled water differential pressure setpoint configuration 

 

3.3 Supply Air System Fault   
Faults in a supply air system could will affect both the AHU and VAV terminal units and 

might affect the primary cooling system too.  In this study, three supply air system faults that could 
have a whole building impact are identified and implemented in the demonstration building. Table 
3-3 lists the three faults. 

3.3.1 AHU Supply Air Temperature Sensor Bias Fault 
(1) Sensor function 

AHU supply air temperature sensor is typically used to control the AHU components to 
maintain a desired supply air temperature setpoint.  
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 (2) Implementation method 

This fault is implemented through the BAS by adjusting the demand adjust (DEM ADJ) to 
change the supply air temperature setpoint as shown in Figure 3-4. For example, if a negative bias 
of 2 °F fault is implemented, the value of DEM ADJ is increased by 1. Later when preprocessing 
the collected data, a value of 2 should be subtracted from the supply air temperature setpoint and 
supply air temperature readings. In this way, the screen reading value is lower than the real supply 
air temperature value. 

 
Table 3-3 Supply air fault tests 

 
Fault Name Equipment Operation Mode Fault Direction 

AHU supply air temperature 
sensor bias 

Sensor Cooling  Sensor screen reading 
is higher/lower than 
real value 

AHU outdoor air damper stuck at 
higher than normal position 

Actuator All modes Outdoor air damper is 
stuck at a position that 
is higher than its 
normal position under 
similar weather/internal 
load conditions 

AHU cooling coil valve stuck at a 
higher than normal position 

Actuator Cooling Cooling coil valve is 
stuck at a position that 
is higher than its 
normal position under 
similar weather/internal 
load conditions 

 

 
 

Figure 3-4 AHU supply temperature setpoint configuration 

 (3) Expected symptoms 

When there is an AHU supply temperature sensor bias fault, the AHU cooling or heating coil 
valve positions and fan speed will be different from their baseline values. For example, in a cooling 
mode, the cooling coil valve position will be lower than its baseline value under similar load and 
operation conditions, if there is a supply air temperature sensor negative bias fault. At the same 
time, the supply air fan speed could be higher than the baseline value to provide more air flow 
needed by the downstream zones. 
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3.3.2 AHU Outdoor Air Damper Stuck at a Higher than Normal Position Fault 
(1) Damper function 

The AHU outdoor air damper is firstly controlled to achieve a desired ventilation rate. In the 
heating and/or cooling (non-economizer) mode, the outdoor air damper is typically maintained at 
a minimum opening position (e.g. 15% open at the demonstration building) to satisfy the 
ventilation requirement. In an economizer mode, such as when outdoor air temperature is lower 
than the return air temperature, and outdoor enthalpy is lower than the return air enthalpy (which 
are the conditions used at the demonstration building), the outdoor air damper is either at 100% 
open (if the outdoor air temperature is higher than the supply air setpoint) or adjusted to maintain 
the mixed air or supply air setpoint.   

 (2) Implementation method 

This fault is implemented through the BAS by locking the software point “Economizer” to a 
desired value as shown in Figure 3-5.  

 

 
 

Figure 3-5 AHU economizer adjustment 

 (3) Expected symptoms 

When the outdoor air damper is stuck, the heating/cooling loads brought in by the outdoor air 
would be different from their baseline values.  Hence the AHU heating/cooling coil valve positions 
would be abnormal. If the damper stuck position is very different from the normal position, for 
example, the damper is stuck at 100% open (rather than the minimum position) in a hot summer 
day, the load could be abnormal enough to be reflected in the primary cooling system operation, 
resulting in energy and chilled water measurement abnormality.  The supply air temperature 
setpoint may not be maintained successfully, which would result in downstream zone temperature 
abnormality. 
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3.3.3 AHU Cooling Coil Valve Stuck at a Higher than Normal Position Fault 
(1) Cooling coil valve function 

An AHU’s cooling coil valve is controlled according to the supply air temperature setpoint to 
maintain a desired supply air temperature. A motorized driver is typically used to automatically 
adjust the valve position based on a voltage signal provided by a controller.   

 (2) Implementation method 

As discussed earlier, this fault cannot be implemented by adjusting the voltage signal to the 
driver due to the limitations in the demonstration building. This fault is implemented by overriding 
the cooling coil valve signal through BAS as shown in Figure 3-6. Hence the implementation of 
this fault is the same as that from an operator fault – software override AHU cooling coil valve 
position (Section 3.4.1).  When this fault occurs naturally, the symptoms of this fault are very 
similar to the operator fault too, except one difference:  when the valve is stuck naturally, the 
screen reading of the valve would be the same as the controller output, although the real position 
is stuck. However, for a software override fault, the screen reading of the valve position is the 
overridden value, not the controller output.  Hence, when this fault is implemented, the controller 
output is manually recorded and used instead of the trended valve position.   

 

 
 

Figure 3-6 AHU cooling coil valve adjustment 

(3) Expected symptoms 

If the AHU cooling coil valve is stuck at a higher than normal position, it will cause the supply 
air temperature to be lower than its setpoint, and therefore introduce more cooling energy 
consumption. To the upstream, a higher openness of the cooling coil valve causes the speed of the 
primary chilled water VFP to be increased, and the chilled water flowrate is increased as a 
consequence. At the same time, the cooling coil valve controller output signal may be abnormal 
compared with the baseline attempting to drive the valve to the correct position.  

 

3.4 Operator Fault  
Operator fault is to simulate the faults from the operators or field engineers during the course 

of system commissioning or maintenance. In the real practice, operator fault mainly includes two 
categories. The first category is that the operation schedule is wrongly set by field engineers. The 
second category is that the faulty setpoint/control signal in HVAC system is wrongly configured. 
Table 3-4 lists the operator fault tests that will be implemented.  
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Table 3-4 Operator fault test 
 

Fault Name Equipment Operation Mode Fault Direction 
AHU software wrong: cooling 
coil valve to be a higher than 

normal  position 

System Cooling Override software 
setting 

System scheduling fault System All modes Change system 
schedule  

3.4.1 AHU Cooling Coil Valve Software Operator Override Fault 
(1) Cooling coil valve function 
The AHU cooling coil valve is controlled according to the supply air temperature setpoint to 

provide required supply air temperature. The valve position is controlled by the valve driver.  

(2) Implementation method 

The implementation of this fault is same as cooling coil valve stuck at a higher than normal 
position fault. 

 (3) Expected symptoms 

If the AHU cooling coil valve is overridden at a higher than normal position, it causes the 
supply air temperature to be lower than its setpoint, and therefore introduces more cooling energy 
consumption.  

3.4.2 System Scheduling Fault 
A HVAC system is operated based on its occupancy schedule settings. Therefore, an error in 

the occupancy schedule setting will have a significant energy impact and lead to whole building 
abnormality.  

This fault test is implemented through BAS system as shown in Figure 3-7.  

 

 
 

Figure 3-7 System scheduling configuration 
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3.5 Fault Implementation Consideration 
When implementing a fault, special considerations are given to avoid adverse impacts on the 

system or indoor environment quality.  A fault test day is selected after carefully examining the 
weather conditions. At the same time, the zone conditions and targeted equipment on which the 
fault is implemented are also carefully monitored during the test to ensure the safety of occupants 
and equipment. 

Observations of system performance as well as zone temperatures are recorded manually on 
an hourly basis and a test will be terminated if any of the following conditions are met: 

• Any zone temperature in the test areas exceeds 80°F ; 
• Any zone temperature in the test areas drops below 60°F; 
• The outdoor air damper of an AHU is fully closed;  
• The supply air fan and return air fan are shut down abnormally; 
• Any alarms in the system is triggered. 

 

3.6 Fault Implementation Methods 
A daily test procedure as shown in Figure 3-8 is followed for each test case. 

 

 
 

Figure 3-8 Fault test implementation flowchart 
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Weather conditions are the first consideration in the checklist to ensure that the fault test will 
not be implemented in any extreme weather conditions. The next step is to check the zone thermal 
conditions to ensure that the implemented fault will not cause any complaints from the occupants. 
Usually, from the zone condition check, equipment operation information can be evaluated as well. 
If zone thermal conditions are not maintained well, a naturally occurred fault might already exist. 
In the third step, equipment conditions will be examined, again, to identify if a naturally occurred 
fault exists. When all conditions are satisfied, the fault test begins and the test observations are 
manually logged during the course of the test.  

 

3.7 Summary 
In this Chapter, a variety of whole building faults, including primary cooling system, supply 

air system and operator faults, are discussed in details. Considerations that need to be given when 
implementing these whole building faults are explained. Fault implementation procedure is also 
illustrated in details.  
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Chapter 4 Development of Fault Detection Method 
4.1 Introduction 

In a building AFDD process, the process of fault detection identifies whether the building 
system is abnormal when compared with a pre-defined baseline. As discussed in Chapter 1, there 
is a need for data-driven fault detection strategies that can overcome the difficulties associated 
with physical model based methods such as high engineering cost and low scalability.   

Although a variety of data-driven methods for component level fault detection has been 
successfully developed in the past two decades, it is difficult to directly implement these methods 
for whole building fault detection because of the following challenges: 1) complicated subsystem 
coupling; 2) much larger dataset dimension; and 3) difficulties to differentiate abnormalities that 
are triggered by weather/occupancy from those triggered by faults.   

Targeting these three challenges, this research proposes a novel multi-structure fault detection 
method which consists of 1) a whole building feature selection process that aims at identifying key 
features to reflect system coupling and to reduce dataset dimension, 2) a Weather and schedule 
information based Pattern Matching (WPM) process that aims at differentiating the abnormality 
caused by weather/occupancy from those by faults; and 3) a Feature based Principal Component 
Analysis (FPCA) fault detection process that aims at achieving high automation, cost-effectiveness, 
and scalability.  

The goal of this new Weather and schedule information based Pattern Matching and Feature 
based Principal Component Analysis (WPM-FPCA) fault detection method is to monitor whether 
a building’s performance is significantly different (abnormal) from a pre-defined baseline (normal).  
Since it is a data-driven fault detection, “fault free” data that represent the normal condition need 
to be collected firstly. As discussed in Chapter 1, it is understood that there is no true “fault free” 
status for a real building, here the condition of “fault free” is defined as a satisfied condition, such 
as when the building is just commissioned.   

 

4.2 Overview of the WPM-FPCA Fault Detection Method  
More specifically, the feature selection process in the developed whole building WPM-FPCA 

fault detection method uses Partial Least Square Regression (PLSR) and Genetic Algorithm (GA) 
method. Symbolic Aggregate Approximation (SAX), which is a highly efficient PM method 
designed for time-series data, is adopted for the WPM. Figure 4-1 illustrates the overall 
architecture of the developed strategy. 

Firstly, historical baseline operation data as described earlier are collected.  A PLSR and GA 
based feature selection process is implemented by using the collected historical baseline data. 
Through this process, the dimension of the original building data set is reduced and only useful 
measurements are remained for the later fault detection.  

Secondly, a WPM method is developed to search the historical baseline data and generate a 
WPM baseline dataset, which has similar weather and building use (operation and occupancy) 
conditions as the incoming snapshot data (current data collected from the building). In a building, 
its HVAC system is operated in different operation modes under different working conditions such 
as weather conditions and occupant conditions. Hence, the historical baseline data may vary under 
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different operation modes. This poses a challenge for the data-driven method as it is difficult to 
develop dynamic baseline model. In this study, weather and schedule information are used to 
during a pattern matching process to identify the system operation data under the same weather 
and schedule patterns, which are then grouped to generate a WPM baseline dataset for each 
snapshot period.  

The third process is to detect whether a whole building level abnormality exists. PCA is 
employed here to generate statistic thresholds from the WPM baseline dataset and compare with 
those from the incoming snapshot data. When the statistical indices surpass the thresholds, the 
building is flagged as faulty.  

In the following sections, these three processes are illustrated in details. 

 

 
 

Figure 4-1 Architecture of WPM-FPCA fault detection method 

 

4.3 Development of Feature Selection Process 

4.3.1 Introduction 

4.3.1.1 Purpose of Variable Dimensionality Reduction 
Although, large quantity of system measurements can be collected and stored in a BAS, not all 

the measurements are equally important for monitoring the system. Usually, useful information 
are included in few key measurements for monitoring the building system operation or detecting 
system faults. This leads to a “data rich, but information poor” situation in current building systems 
[51]. Furthermore, a large number of data measurements in a dataset may lower the accuracy of a 
fault detection method and increase the computational burden [52, 53]. Therefore, it is necessary 
to identify the key variables (features) which contain more useful information than other variables 
for building system status monitoring, before developing a fault detection method [54].  

In practice, some key variables can be defined as features of the system. Therefore, the 
determination of these key variables turns out to be a process of reducing variable dimension. This 
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process can be achieved by optimally designing the monitoring system using expert knowledge, 
i.e., an expert determines and pre-selects a specific subset of variable dataset for monitoring system 
operation [54]. However, in a large scale system, manually selecting the proper variable subset 
group and reducing the variable dimensionality become challenging for the following two reasons. 
Firstly, the number of data measurements has been increased rapidly with the increasing 
complexity of the system. A manual identification process will take too much time. Secondly, the 
system with multi-operation modes generates various combination of sub dataset. This makes the 
expert knowledge based variables reduction impractical in the real practice. Moreover, for building 
systems, key variables often vary from building to building due to the diversity of building design, 
envelope types, internal load, and system configurations, which makes manual variable reduction 
process much more difficult and inaccurate.  Hence, automated variable dimension reduction 
techniques are the focus of this study. Existing variable dimension reduction techniques can be 
divided into two categories as feature selection and feature extraction. 

The purpose of feature selection is to reduce the dimensionality of data without losing intrinsic 
information. Usually, high dimension data is mapped to a lower dimensional space. By this means, 
the useful information is retained and uninformative variance in the data is discarded [55]. At the 
same time, the computation efficiency can be increased as less variables are included in a building 
model or a monitoring system. 

Usually, the process of feature selection is to choose a subset of M features from the original 
set of N features (M≤N), so that the feature space is optimally reduced to meet a certain criteria 
[56]. When implementing feature selection method, two aspects needed to be considered. One 
aspect is to develop an efficient search strategy to select candidate subsets. Another aspect is to 
establish an objective function to evaluate the candidate subsets [57]. Different evaluation criteria 
have been used to assess the optimal candidate subsets. For example, in a supervised learning, one 
of the primary goals of feature selection is to use the optimal feature subsets to maximize predictive 
accuracy [58]. Moreover, some performance measurements such as similarity factor, extraction 
accuracy can be employed to fulfill the goal of feature extraction when searching for a minimum 
set of new features [59]. 

4.3.1.2 Category for Feature Selection Method 
Various feature selection methods have been developed to reduce the data dimension. A 

common taxonomy is to categorize the feature selection techniques into three types as “filter”, 
“wrapper” and “embedded” as shown in Figure 4-2 [60]. This kind of taxonomy was also used by 
Mehmood et al., [61] when dealing with variable selection methods used for PLSR in the process 
control.  

Here, “filter” methods identify the relevance of variable by only assessing the intrinsic 
properties of the data. In this kind of method, subsets of variables are selected as a preprocessing 
step and this step is independent from the chosen predictor. A “wrapper” method incorporates the 
model hypothesis search within the feature subset search. Therefore, a learning mechanism is 
included to score the variable subsets according with the modeling target. The “embedded” 
methods include the variable subset searching method in the classifier construction. So, embedded 
methods are specific to a given learning algorithm. 
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Figure 4-2 Categories of dimension reduction method (adapted from [61]) 

4.3.1.3 Basic Feature Selection Flow  
Although, a large number of dimension reduction methods have been developed in the past 

three decades, very few studies on a unified work flow have been found in the existing literature. 
This is probably because dimension reduction methods are used to solve problems in different 
practical fields, so it would be very hard to find a unified workflow to employ them. However, one 
general step checklist was proposed when implementing variable selection [62].  

4.3.2 Partial Least Square Regression (PLSR)  

4.3.2.1 Introduction of PLSR 
In this research, a feature selection method is used to identify candidate key variables which 

represent the system performance. This method employs a PLSR technique to develop system 
performance model. Building energy consumption from fault free days is used as the target output 
variable (predicted variable).  System operation variables are used as predictors. GA is used to 
search whole variable set and generate candidate variable subset for the PLSR. When the system 
performance standard is met, the variable subset is determined. Through this process, the key 
informative variables can be selected and the variable dimensionality can be reduced.   

PLSR is a technique that generalizes and combines features from PCA and multiple regression. 
Although, this technique was not originally designed for classifying and discriminating the dataset, 
it was found to be efficient to distinguish different datasets and determine the key variables [63].  

Suppose system output Y matrix (𝑌𝑌 ∈ 𝑅𝑅𝑀𝑀×1) consists of M observations and one dependent 
variable, and system input X (𝑋𝑋 ∈ 𝑅𝑅𝑀𝑀×N) matrix consists of M observations and N dependent 
variables. The goal of a PLSR is to best predict Y from X and to describe their common structure 
[64]. Usually, PLSR searches for a set of components (called latent vectors) that decompose 



 36 

simultaneously the X and Y with the constraint that these components maximally explain the 
covariance between X and Y. This step is similar as in the principal component analysis. By this 
means, the system input X matrix can be decomposed as: 

 
 𝑿𝑿 = 𝑇𝑇𝑃𝑃𝑇𝑇 + 𝐸𝐸  with 𝑇𝑇𝑇𝑇𝑇𝑇 = 𝐼𝐼     (1)  

where 𝑇𝑇 ∈ 𝑅𝑅𝑀𝑀×K  is the score matrix, 𝑃𝑃 ∈ 𝑅𝑅𝑀𝑀×N  is the loading matrix, 𝑬𝑬 ∈ 𝑅𝑅M×N  is the error 
matrix and I is the identity matrix. 

The output can be decomposed as: 
 𝒚𝒚 = 𝑇𝑇𝑇𝑇 + 𝑓𝑓      (2) 

where 𝒃𝒃 = [𝑏𝑏1,⋯ , 𝑏𝑏𝑘𝑘]𝑇𝑇 ∈ 𝑅𝑅K is the loading vector of 𝒚𝒚, 𝒇𝒇 ∈ 𝑅𝑅M is the error vector. 
A nonlinear iterative partial least squares algorithm is employed to develop the Partial Least 

Square (PLS) model [65]. Suppose that the first latent 𝒕𝒕𝟏𝟏 variable to the k-1th latent variables 𝑡𝑡𝑘𝑘−1 , 
the loading vectors 𝑝𝑝1… 𝑝𝑝𝑘𝑘−1and the loading vector 𝑏𝑏1… 𝑏𝑏𝑘𝑘−1are given. Then the kth residual input 
and output can be written as follows: 

 𝑋𝑋𝑘𝑘 = 𝑋𝑋𝑘𝑘−1 + 𝑡𝑡𝑘𝑘𝑝𝑝𝑘𝑘−1𝑇𝑇       (3) 
 

 𝑦𝑦𝑘𝑘 = 𝑦𝑦𝑘𝑘−1 + 𝑏𝑏𝑘𝑘𝑡𝑡𝑘𝑘−1     (4) 

where 𝑡𝑡𝑘𝑘 is a linear combination of the columns of 𝑋𝑋𝑘𝑘. 𝑡𝑡𝑘𝑘 =  𝑋𝑋𝑘𝑘𝑤𝑤𝑘𝑘, and 𝑤𝑤𝑘𝑘 is the kth weighting vector. 
It is defined so that the covariance between  𝑦𝑦𝑘𝑘 and 𝑡𝑡𝑘𝑘 is maximized under ||𝑤𝑤𝑘𝑘|| = 1. 

By using the Lagrange multipliers method, the function to maximize 𝑦𝑦𝑘𝑘 and 𝑡𝑡𝑘𝑘 can be defined 
as [66]:  

 𝐺𝐺𝑘𝑘 = 𝑦𝑦𝑘𝑘𝑇𝑇𝑡𝑡𝑘𝑘 − 𝜇𝜇( ||𝑤𝑤𝑘𝑘||−1) = 𝑦𝑦𝑘𝑘𝑇𝑇𝑋𝑋𝑘𝑘𝑤𝑤𝑘𝑘 − 𝜇𝜇( ||𝑤𝑤𝑘𝑘||−1)    (5) 

where 𝜇𝜇 is the Lagrange multiplier. Solving ∂𝐺𝐺𝑘𝑘
∂w

= 0 , 𝑤𝑤𝑘𝑘 can be derived as 
 

𝑤𝑤𝑘𝑘 =
𝑋𝑋𝑘𝑘𝑇𝑇𝑦𝑦𝑘𝑘

||𝑋𝑋𝑘𝑘 
𝑇𝑇𝑦𝑦𝑘𝑘||

 
 

    (6) 

The kth loading vector 𝑝𝑝𝑘𝑘 and the k loading 𝑏𝑏𝑘𝑘 can be written as:  
 

𝑝𝑝𝑘𝑘 =
𝑋𝑋𝑘𝑘𝑇𝑇𝑡𝑡𝑘𝑘
𝑡𝑡𝑘𝑘𝑇𝑇𝑡𝑡𝑘𝑘

 
    (7) 

 
𝑏𝑏𝑘𝑘 =

𝑦𝑦𝑘𝑘𝑇𝑇𝑡𝑡𝑘𝑘
𝑡𝑡𝑘𝑘𝑇𝑇𝑏𝑏𝑘𝑘

 
    (8) 

In the PLSR, the entire procedure is repeated until the number of adopted latent variables K is 
obtained. K can be determined by the cross-validation.  

4.3.3.2 Wrapper Method in PLSR for Feature Selection 
There are many PLSR algorithms for feature selection. Most methods are based on orthogonal 

score of the PLSR. Wrapper method [67] is one of the most popular methods among them. 
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Wrapper method is implemented in an iterative way, and is based on certain supervised 
learning approach, where model refitting is wrapped within the variable search algorithm. Variable 
searching algorithm is used to obtain the subset of candidate variables and evaluate each subset by 
fitting a system performance model to the variable subset.  Figure 4-3 illustrates the procedure of 
a wrapper method. Based on the different searching strategies for selecting variable group are used, 
wrapper methods can be categorized into deterministic types or random type [60]. In a randomized 
searching algorithm, some kind of randomness strategies such as PLSR-GA [68] and the Monte-
Carlo based uninformative variable election and PLS [69] are used to select variable subsets. In a 
deterministic search based wrapper method, the variable subset is chosen by a deterministic 
mechanism including backward variable elimination PLS [70], sub-window permutation analysis 
coupled with PLS [71] and so on. Although deterministic search based wrapper methods are 
relatively simpler and require less computations, they are more prone than randomized searching 
algorithms [60]. In this research, a GA based randomized searching method is employed in PLSR 
for feature selection.  

 

 
 

Figure 4-3 Illustration of wrapper method for feature selection 

4.3.3 GA Searching 
As discussed above, when the data variable set is very large, there is a need to use variable 

subset searching algorithm to improve the variable selection efficiency. Here, a GA search is 
employed to facilitate the process of searching candidate variable subsets. GA searching acts in an 
iterative way to extracts the subset of relevant variables and evaluate each subset by fitting a model 
to the subset variable.  

GA has an advantage to solve multi-objective optimization problem when a set of solutions are 
found to be superior to the rest of the solutions in the search space [72]. Through the process 
similar to natural selection, high-quality solutions to optimization and search problems could be 
generated through the operators such as mutation, crossover and selection defined in field of 
biology [73].  
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In a GA searching algorithm, a given variable subset is represented as a binary string of length 
n. Here n is the total number of the available variables and the string can be mimicked as 
“chromosome” in biology [59]. In position index i of the string, a zero or one will denote the 
absence or presence of variable i in the variable set. Through this way, a population of variable 
subsets (chromosomes) is maintained. The “fitness” is used to determine how likely the variable 
set can survive and breed into the next generation [74]. New variable set are created from old 
variable sets by the processes of similarly with cross-over and mutation. In the process of cross-
over, two different parent variable set are mixed together to create an offspring variable subset. In 
the process of mutation, the indices of single of parent variable set are randomly selected to create 
an offspring variable subset. The iteration will continue through these two process until the ending 
criteria are met. This criteria can be either a finite number of iterations or a certain percentage of 
the individuals in the population using identical variable subsets. 

4.3.4 PLSR-GA based Feature Selection 

4.3.4.1 Flow of PLSR-GA based Feature Selection 
The procedure of using GA searching algorithm in PLSR for feature selection usually includes 

the following steps:  

• Generate random variable subsets. In this step, initial population of variable sets is 
established by setting bits for each variable randomly, where bit ‘1’ represents selection of 
corresponding variable while ‘0’ presents non-selection. The approximate size of the 
variable sets is defined in advance. 

• Evaluate each individual subset of the selected variables. In this step, a PLSR-model is fit 
to each variable set and the model performance is computed.  

• Discard worse half of individuals. After evaluate the variable subsets, the worse half of 
variables are eliminated. 

• Using cross-validation to evaluate the model performance. 
• A collection of variable sets with higher performance are selected to survive until the next 

“generation”.  
• Crossover and mutation: new variable sets are formed 1) by crossover of selected variables 

between the surviving variable sets, and 2) by changing (mutating) the bit value for each 
variable by small probability [61, 75]. 

• Selected variable subset is determined.  

Figure 4-4 illustrates the flowchart of PLSR-GA based Feature Selection.  

4.3.4.2 Cross Validation 
When implementing GA variable selection, a cross-validation is performed for each of the 

variable subset to determine which subset will be remained. In this study, contiguous blocks 
method is used in cross validation because for time-series data and batch data, this method can be 
convenient for assessing the temporal stability and batch-to-batch stability of a model built from 
the data. In contiguous blocks method, each test sets is determined by selecting contiguous blocks 
of n/s objects in the data set [76].  
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Figure 4-4 Flow of GA for feature selection 

The variable subset which provides the lowest model root-mean-square error of cross-
validation (RMSECV) is selected [77]. RMSECV is a “composite” prediction error obtained over 
all repetitions of the cross-validation procedure as given below. 

 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦𝚤𝚤�)2𝑛𝑛

𝑖𝑖=1
𝑛𝑛

 
 

     (9) 

where 𝑦𝑦� is the values of the 𝑌𝑌 variables that are estimated by cross validation. 𝑛𝑛 is the total number 
of objects in the date set. 

4.3.4.3 Selection of GA Parameters  
Two problems exist when using GA method to select variables. The first is model over-fitting 

which means the variable subset selected may be good for the model generated from the given 
data, but less accuracy for the unknown data. In order to solve this problem, random validation or 
multiple iterations are usually used when using GA method to select variable. The second problem 
is that GA method is usually time consuming. For example, the computation burden will be 
increased when a large population size is used in each generation. So, the GA parameters should 
be decided before employing GA method. So it is very important to choose a set of proper 
parameters used for GA method. The following key parameters were tuned when using GA method 
[77].  

• Size of Population: Population size represents the different variable combination. Although, 
a larger population provides a better representation of different variable combinations, more 
computation time will be required during each iteration.  

• Window Width: When adjacent variables contain correlated information, or the end use of 
the variable selection is to include or exclude adjacent variables together as a block (e.g., lower-
resolution measurement), the original variables can be grouped together and included or excluded 
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in "blocks". Window width indicates how many adjacent variables should be grouped together at 
a time. The grouping starts with the first variable and the subsequent (window width-1) variables. 

• Initial Terms: This specifies the approximate number of variables (terms) included in the 
initial variable subsets. Starting with fewer initial terms will make the identification of useful 
variables more difficult, but will bias the end solution towards models with fewer variables. 

Final parameters used in variable selection tests are listed in Table 4-1. 

 
Table 4-1 PLSR-GA parameter setting 

 
PLS-GA Parameters Setting Value 

Size of Population 64 
Window Width 1 
Initial Terms 30 
Max Generations 100 
Percent at Convergence 50 
Mutation Rate 0.005 
Regression Choice PLS 
Number of Latent Variables 10 
Cross Validation Setting Contiguous blocks 

 

4.3.5 Variable Selection Result  
It is noted that for a building system, it is quite difficult to choose one or two measured 

variables as the benchmarks to assess the overall system performance of a building. But, as state 
above, it is probably also unpersuasive to choose a similar factor which measures two datasets to 
evaluate a building system performance. So, it may be reliable to choose a few of key variables to 
describe the system performance. Other predictive variables can be indoor air quality, chiller COP 
and etc. But unfortunately, these value cannot be obtained at hand. 

In the variable selection process, whole building electricity consumption is used as predicted 
variable. 537 data measurements collected from BAS in the Nesbitt Hall are used as predictor. 
Data collected in the Nesbitt Hall in winter season and summer season are used to obtain the 
selected feature. Operating data in every 5 fault free day from each season is used to in one feature 
selection scenario. As the data sample rate in the Nesbitt Hall is 5-minute, this accounts for 288 
data samples in one operation day. Therefore, in one selection case, 1440 data samples are used to 
develop a PLSR model. In the contiguous blocks cross validation method, data sample set is split 
into s blocks (we use s equals 4). Therefore, in each cross validation, 360 data samples are used to 
build the model, and the 360 data samples are used to test model. 

In each season, 12 scenarios (5 days in each scenario) are used to evaluate the feature selection 
result. Figure 4-5 shows a variable selection result from one scenarios. Operation data from five 
fault free from August, 2016 in the Nesbitt Hall are collected for PLSR-GA feature selection. In 
figure (a), it shows the number of selected variables at the end of generation. Figure (b) shows 
model evolution trend accord to the generation of each variable group. The read dash line shows 
the model fitness (with the lowest RMSECV) by using all variables. The read solid line shows the 
predicted best fitness. The blue line shows the actual fitness at each step of the generation. Figure 
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(c) shows the number of variable used in each generation. Figure (d) show the contribution of each 
variable to the predicted model. The larger value the variable used in the model, the higher possible 
that this variable will be selected. From this Figure, it can be seen that the model fitness increases 
when fewer variables are selected, and the data dimensionality can be reduced. 

 

 
(a) (b) 

 
(c) (d) 

 

Figure 4-5 Variable selection result from PLSR-GA method 
(Data sample collected from August 21-25 2016) 

(a) Fitness and number of variable at final generation, (b) Trend of model fitness (RMSECV) in each generation, 

(c) Evolution trend of number of variables with generation, (d) Selected variable number at final generation   
 

Figure 4-6 shows the feature selection results in twelve scenarios in summer season 2016. In 
the figure, 42 measurements from weather condition, chiller, AHU1, AHU2 and AHU3 are 
illustrated. The black block represents the measurement selected in each scenario. The feature 
selection results for the entire data measurement set for summer season and winter season can be 
found in Appendix VI. 
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Figure 4-6 method key variable selection result (July to August, 2016) 

 

4.4 Development of Weather/Schedule Information based Pattern Matching  

4.4.1 Introduction of Data Pattern Matching 
Similar to other process control system, a building HVAC system may operate differently 

under different external (e.g. weather) conditions and internal (e.g. occupancy) conditions. Hence 
a system’s operation processes are time-varying due to the changes of a process’s characteristics. 
Therefore, conventional monitoring strategy with unique system model does not show good 
prediction performance due to the self-limitations of these methods and the unique characteristics 
of multi operation processes such as time-varying, non-linearity, non-Gaussian and multiphase 
control [78].  

A PM method is therefore needed to identify similar equipment operating conditions in 
historical database that are known to be fault free [38, 79, 80]. Compared with the monitoring and 
fault detection based on the traditional multivariate statistical process monitoring techniques which 
employ global system operation model, the PM strategy can identify and develop local operation 
model. Therefore, historical data can be better grouped to provide useful information and higher 
monitoring resolutions [81].   

In this research, a weather/schedule based PM named as WPM method by using time series 
data mining technique is employed to locate similar system operation status and generate the WPM 
baseline data for the local PCA model. 

4.4.2 SAX Method 
In this research, SAX method is used to search similar weather time series data in historical 

database. SAX is a Piecewise Aggregate Approximation (PPA) based method to find similarity of 
time series data [82].  SAX, rather than other traditional PM techniques, is used in this study 
because of its ability to handle time-series data efficiently.  A preliminary study (not included in 
this report) has demonstrated that traditional PM techniques have a significantly higher 
computation burden than the SAX technique when handling BAS data.  
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The PPA method is an equal sized segment time series data cutting technique. In the PPA 
method, the set of time series which constitute the database as 𝑌𝑌 = {𝑌𝑌1,⋯ ,𝑌𝑌𝑘𝑘} is defined compared 
with the original time series dataset  𝑋𝑋 = {𝑥𝑥1,⋯ , 𝑥𝑥𝑘𝑘}. Each sequence in 𝑋𝑋 is n units long. Let N be 
the dimensionality of the transformed space and set the index (1 ≤ N ≤ n). Here, N is assumed as 
a factor of n [83]. Then, the original time series data 𝑋𝑋 of length n can be represented in N space 
by a vector  𝑋𝑋� =  𝑥̅𝑥1,⋯ , 𝑥̅𝑥𝑘𝑘. The ith element of  𝑋𝑋� can be calculated by:  

 
 

𝑥̅𝑥𝑖𝑖 =
N
𝑛𝑛

� 𝑥𝑥𝑗𝑗

�𝑛𝑛𝑁𝑁�𝑖𝑖

𝑗𝑗= 𝑛𝑛
𝑁𝑁(𝑖𝑖−1)+1

 

 
(10) 

By this means, a time-series data is divided into N equal sized segment. At the same time the 
data with n dimensions can be reduced to N dimensions. Then, mean value of the data in each 
segment can be calculated. Therefore, this transformation produces a piecewise constant 
approximation of the original time series dataset. Figure 4-7 illustrates this transformation based 
on PPA method. The x axis represents the time-series and y axis represents the data range.  

Similarly, in the SAX method, time series data is also divided into equal width data segments. 
These segments are represented by different symbolic strings. Through this process, the time series 
data dimension is reduced and similar data pattern can be easily marked as a discrete low 
dimension data for later clustering to find similar pattern. Finding similarity in a lower dimension 
data is more efficient. The test data and candidate historical fault free data can be combined to one 
L length time series X(t). X(t) is then normalized and divided according to normalized mean 
breakpoint. Different symbolic letters are assigned to the X(t) according to the normalized data 
and clustering tool such as VizTree can be used to cluster the decomposed data [84]. 

 

 
 

Figure 4-7 Illustration of PPA method 

 

4.4.3 SAX Time Series Data Pattern Matching 
For a HVAC system in buildings, the impacts from weather condition, occupants and different 

electrical appliances play a critical role in HVAC system operation. Usually, the schedule of 
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occupants and the usage of electrical appliances follows relatively fixed schedule and are seldom 
monitored in current practice. Therefore, finding and matching similar weather pattern to generate 
baseline data are main tasks in this study.     

When using the SAX method, the historical baseline data should be firstly generated. Then the 
weather information data from historical baseline data and the new incoming snapshot data are 
combined together to  produce one time series dataset.  The incoming snapshot data’s weather 
information are the head of this dataset.  The dataset X(t) is normalized by using z-score 
normalization as shown in:                 

 
𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 =

𝑥𝑥 − 𝑋𝑋�
𝜎𝜎𝑥𝑥

 
 
    (11)       

where, x is the time series data, 𝑋𝑋� is the mean, 𝜎𝜎𝑥𝑥 is the standard deviation. 

After normalization, dataset X(t) is divided into N individual non-overlapping segments which 
have equal size data segment. One data segment is defined as one time window. In the research, 
same data window size is used for both snapshot dataset and historical dataset. The window size 
is determined by two factors: how fast weather conditions change and computation efficiency.  If 
the window size is too large, weather has changed largely within a data window, which will reduce 
Pattern Matching accuracy.  If the window size is too small, the computation burden will be 
increased.  A number of alphabet size a is used to convert each W window into a SAX word. 
Alphabet size a is used to determine how many alphabet (letter) will be used to partition the 
subsequence of data. Each alphabet corresponds to a subsequence of data. The time series X(t) is 
tagged by using different symbolic alphabet as shown in Figure 4-8.  

In this research, outdoor enthalpy is used as the tagging target. The selection of enthalpy is 
because enthalpy information includes both temperature and humidity information. In Figure 4-8, 
one day outdoor enthalpy data is firstly normalized and divided into 48 equal-sized snapshot 
window (30-minute time elapse in each snapshot window). The selection of snapshot window size 
for WPM-FPCA method will be discussed in section 4.6.1. Then the data is tagged by using 
different symbolic characters as ‘a’ to ‘j’ and also marked with different color.  

When the weather information time series dataset is tagged, the data section with same 
symbolic tag will be clustered to generate the WPM baseline dataset. In this research, a sample 
pool size S is used to define how many samples will be used to generate a baseline dataset. 
Although a smaller window size can accurately capture the weather change, less information is 
obtained to generate a valid baseline database if a small window size is used to partition the data. 
Therefore, an adjacent dataset to the test window can be used as the sample pool because the 
building occupancy may remain steady in a relatively long period. 

Figure 4-9 summarizes the above-discussed procedure of WPM by using SAX method. Figure 
4-10 demonstrates a result of the WPM process by using outdoor air enthalpy information. It can 
be seen that when implementing the SAX based WPM, outdoor air enthalpy information obtained 
in each snapshot window can find its match from historical baseline data. Therefore, system 
operation status under similar weather conditions can be identified and the WPM baseline dataset 
for each snapshot window can be efficiently generated for developing PCA models used in the 
following fault detection process.  

 



 45 

 
 

Figure 4-8 SAX word in tagging enthalpy condition 

 

4.5 Development of PCA for Building Fault Detection 

4.5.1 Introduction 
PCA is one of the most popular multivariate statistical process control (MSPC) tools employed 

in process control industry to monitor system operation [85]. PCA is used for multivariate data 
when the correlation among the large number of variable measurement sets is difficult to be 
described using physical modeling method. By projecting the data into a lower-dimensional space, 
the high dimensionality of system operation process variables can be more accurately represented. 
Through implementing PCA, a lower-dimensional representation which preserves the correlation 
structure among a large number of system variables can be obtained and the variability in the data 
can be clearly captured [86].  

In the past two decades, the PCA method has been widely used for FDD in many fields 
including building equipment fault detection. Wang et al., employed PCA in AHU sensor fault 
detection [87], and later expand this method to detect VAV terminals [88] and central chilling 
systems [89]. Although PCA tool has been demonstrated to be useful in some equipment fault 
detection, some weaknesses are found to hinder its application when coping with more 
complicated conditions such as if some error samples are included when training PCA model, 
system propagation characteristic, and system sample noise. In order to solve these issues, several 
updated PCA tools are developed. For example, Hu et al., developed a self-adaptive PCA for 
chiller sensor fault detection [90]. Du et al., improved the PCA tools with joint angle analysis to 
detect faults in the VAV system [91]. Xu et al., combined wavelet analysis and PCA method to 
improve the chiller sensor fault detection result [92]. Li et al., proposed a PM-PCA for AHU 
system fault detection [38]. 
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Figure 4-9 Flow of WPM by using SAX 

 
 

Figure 4-10 Illustration of WPM by using SAX 

However, there is no report in the existing literature using MSPC tools such as PCA in whole 
building system fault detection. In this research, PCA is employed in the multi-structure fault 
detection strategy for whole building fault detection after implementing system feature selection 
and system operation PM.  
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4.5.2 PCA Method 
PCA uses orthogonal transformation procedure to extract a set of linearly uncorrelated principal 

components (PCs) from the possibly correlated original variables [93]. In PCA [94], a data 
measurements matrix 𝑿𝑿 ∈ 𝑅𝑅𝑛𝑛×𝑚𝑚 includes 𝑛𝑛 samples and 𝑚𝑚 process variables. Measurement X can 
be decomposed into a principal component (PC) matrix 𝑿𝑿� (also known as PC subspace) plus a 
residual matrix E (also known as residual subspace). In the principal matrix 𝑿𝑿�, system process 
variations are captured. In the residual matrix E, system noise and error information can be mainly 
captured. The principal matrix 𝑿𝑿� is a product of a scores matrix T (I × A) and a loadings matrix P, 
as given in equation:  

 
 

𝑿𝑿 = 𝑋𝑋� + 𝐸𝐸 = 𝑇𝑇𝑃𝑃𝑇𝑇 + 𝐸𝐸 =  �𝑡𝑡𝑖𝑖𝑝𝑝𝑖𝑖𝑇𝑇  + 𝐸𝐸
𝑎𝑎

𝑖𝑖=1

 
 

(12) 

where 𝑡𝑡𝑖𝑖 is a score vector (orthogonal) which contains information about relationship between 
samples and 𝑝𝑝𝑖𝑖is a loading vector (orthonormal) which contains information about relationship 
between variables. 𝑎𝑎 is the number of PCs which explain the variability of a process. Figure 4-11 
shows the decomposition of measurement matrix X.  

When implementing PCA, the following procedures are usually carried on [95]: 

Firstly, the sample data matrix X is scaled. Columns of matrix X are mean centered by 
subtracting the mean of each column from each entry in the column. Then, a covariance matrix of 
X can be obtained [96]: 

 

where m is the number of samples.   

 

 

 
Figure 4-11 Decomposition of measurement matrix X 

The next step is to calculate the principal component. Usually, two algorithms such as singular 
value decomposition (SVD) and Non-linear iterative partial least squares are employed to calculate 

 𝑐𝑐𝑐𝑐𝑐𝑐(𝑋𝑋) = 𝑋𝑋𝑇𝑇𝑋𝑋
𝑚𝑚−1

        (13) 
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the principal component. Here, we use SVD algorithm to decompose data measurement matrix X 
(m by n, m sample and n variable) as: 

 

where U (m by m) and V (n by n) are orthonormal matrixes, ∑ (m by n) is a diagonal matrix. The 
elements of S are defined as singular value 𝜎𝜎 and place in ∑ in a descending order. Here, each 
singular value 𝜎𝜎 is the square root of the corresponding eigenvalue of the covariance matrix as 
𝜎𝜎𝑖𝑖 =  �𝜆𝜆𝑖𝑖. The first PC is associated with the largest singular value. In PCA, the loadings matrix 
P are identical to the matrix V as: 

 

The scores matrix T can also be represented by SVD parameters U and ∑ as:  

 

Therefore, Equation 12 can also be written as: 

 

The next step is to choose the number of PCs retained in the model. Although, there is no best 
strategy to determine how many PCs are retained in the model, there are some other rules of thumb 
and user’s knowledge used to determine the number of PCs [77]. Two methods of selecting number 
of PCs retained in the model are introduced and used in later PCA fault detection. 

One method is to look at the plot of eigenvalues (or known as scree plot method) [97]. Scree 
plot exhibits the eigenvalues in each PC in a descending order as shown in Figure 4-12. When 
there is an obvious “turning point” of eigenvalue founded in the scree plot, the numbers of PC 
corresponding to that “turning point” are retained and the rest of PCs is discarded. For example, 
in Figure 4-12, “turning point” is found in PC No. 5 which the eigenvalue is 0.9. Therefore, the 
first five PCs are retained in the model.  

Another method is cumulative variance percentage contribution method. In this method, the 
smallest number of PCs is selected to capture a certain percentage of the cumulative variance 
which is pre-determined by the users. This number of PCs contributes the maximum cumulative 
variance [97].   

 

where 𝜃𝜃 is the pre-determined percentage, d is variance captured by each PC, p is the total number 
of PC, q is the retained number of PC. 

 𝑋𝑋 = 𝑈𝑈∑𝑉𝑉𝑇𝑇  (14) 

 𝑃𝑃 = 𝑉𝑉 (15) 

 𝑈𝑈∑ = 𝑇𝑇  

 𝑋𝑋 = ∑ 𝑡𝑡𝑖𝑖𝑝𝑝𝑖𝑖𝑇𝑇  + 𝐸𝐸 =  𝑈𝑈𝑎𝑎𝑎𝑎
𝑖𝑖=1 ∑𝑎𝑎𝑉𝑉𝑎𝑎𝑇𝑇 + 𝐸𝐸  (16) 

 𝑑𝑑1 + 𝑑𝑑2 + ⋯+ 𝑑𝑑𝑞𝑞
𝑑𝑑1 + 𝑑𝑑2 + ⋯+ 𝑑𝑑𝑝𝑝

≥ 𝜃𝜃 
   (17) 
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Figure 4-12 Number of PCs determination by using scree plot 

4.5.3 Statistics for PCA Fault Detection 
In process monitoring and fault detection, Hotelling statistics (T2) and Squared Prediction Error 

(SPE) [95] statistics are commonly used with PCA techniques to judge whether the operation is 
under abnormality or not. When a fault occurs in an operation process, such fault usually causes 
one or several changes in monitored variables, resulting in some PCs with larger variation which 
are beneficial for monitoring the fault (informative PCs), and other PCs with less or without 
variation.  

T2 can be calculated for each new observation by: 

 

where ∑𝑎𝑎 contains the non-negative eigenvaluescorresponding to the a principal components. 

The upper confidence threshold of T2 can be calculated by using F-distribution as: 

 

where n is the number of samples in the data, α is the level of significance.  

Another statistic is SPE value which can be calculated as following: 

 
 𝑆𝑆𝑆𝑆𝑆𝑆 = ||(𝐼𝐼 − 𝑃𝑃𝑃𝑃𝑇𝑇)𝑥𝑥||2 ≤ 𝑄𝑄𝛼𝛼2     (20) 

where 𝑄𝑄𝛼𝛼 is SPE control limit which can be calculated as follows: 
 

 
𝑄𝑄𝛼𝛼 = θ1[

𝑐𝑐𝛼𝛼�2θ2ℎ02

θ1
+ 1 +

θ2h0(h0 − 1)
𝜃𝜃12

]
1
ℎ0 

      (21) 

 𝑻𝑻𝟐𝟐 = 𝑥𝑥𝑇𝑇𝑃𝑃∑𝑎𝑎 𝑃𝑃𝑇𝑇𝑥𝑥   (18) 

 𝑻𝑻𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝟐𝟐 = 𝑎𝑎(𝑛𝑛−1)
𝑛𝑛−𝑎𝑎

𝐹𝐹𝑎𝑎,𝑛𝑛−𝑎𝑎,𝛼𝛼   (19) 



 50 

where 
θ𝑖𝑖 = � 𝜆𝜆𝑗𝑗𝑖𝑖

𝑛𝑛

𝑗𝑗=𝑘𝑘+1

 

 

 
 

 h0 = 1 −
2θ1θ3

3𝜃𝜃22
  

The SPE statistic is a measure of the amount of variation not captured by the PCA model. T2 

statistic is a measure of the variation in each sample within the PCA model. It indicates the distance 
of each sample from the center of the model [95]. As the SPE statistic is more sensitive to detect 
faults with small magnitudes [98], when implementing a whole building fault, SPE tends to 
generate a high false alarm rate. Therefore, in this study, T2 statistic is used to obtain the detection 
result.   

4.5.4 Flow of PCA Fault Detection 
When implementing the PCA method for fault detection, the following procedures are 

followed: firstly, WPM baseline dataset, i.e., data that have similar weather condition and schedule 
the snapshot data, will be identified from the baseline dataset using the SAX based WPM method.  
Two PCA models will be developed, one for the WPM baseline dataset and one for the snapshot 
data. Statistic thresholds will be established for the WPM baseline dataset. Statistical value, i.e. T2 
from the snapshot data, will be compared with the threshold. Fault is flagged if the T2 value (from 
snapshot data) is larger than the T2 threshold (from the WPM baseline dataset). Figure 4-13 shows 
the flowchart of a WPM-PCA fault detection process. In Chapter 6, this WPM-PCA method will 
be evaluated using real building data. 

 

4.6 Parameter Sensitivity Test for WPM-FPCA Fault Detection 
When implementing the SAX method for WPM, there are several parameters including 

snapshot window size and sample pool size that need to be determined. In order to evaluate the 
effects of different parameter values on the PM and fault detection performances, sensitivity tests 
need to be performed.  In this study, the sensitivity tests on snapshot window size, data sample 
searching pool size are performed and are summarized below. 

 
 

Figure 4-13 Flowchart of WPM-FPCA for fault detection 
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4.6.1 Sensitivity Test on Snapshot Window Size 
In order to identify the effects of window size on the PM and fault detection result, sensitivity 

tests have been performed. Three window sizes, i.e., 15-minute, 30-minute and 45-minute time 
window size have been used to test the PM performance. The PM performance is evaluated by 1) 
examining the weather pattern matching result, and 2) examining the fault detection result by using 
fault test day and free day. Data from the summer of 2016 have been used to implement the 
sensitivity test. Historical data that provide a 30 day baseline dataset is used in each test. Five days 
are used as the test days.  A WPM dataset with smaller window size helps SAX method to capture 
the weather dynamic change better, and therefore generate a more accurate baseline data. This 
would further help to better detect faults with higher dynamic responses under different weather 
and indoor conditions.  

Figure 4-14 shows the PM results under the three window sizes for test day of July 6th, 2016. 
From the Figure, it can be observed that smaller window sizes (15-minute and 30-minute) produce 
more accurate baseline data than the 45- minute window size.  

Five randomly selected fault test days (August 8th, September 7th, September 11th in 2016, and 
July 9th, July 11th in 2017) are used to evaluate the performance of the fault detection method under 
different time window sizes.  The comparison also shows that the baseline data generated under 
smaller window sizes can produce a more sensitive detection result as indicated by the number of 
abnormal samples (automatically counted in the post-process). For example, in September 7th 2016, 
T2 value in 72% of the total time during the fault test overpasses the threshold under 15-minute 
snapshot window size, compared with 41% and 33% using 30-minute and 45-minute snapshot 
window size respectively, as shown in Figure 4-15. 

However, a smaller window size may also cause an increased false alarm rate in some cases.  
For example, Figure 4-16, which is generated by using a November 1st 2016, shows the fault 
detection comparison for a fault free day. It can be observed that in this case, the fault detection 
method in the 15-minute window size yields false alarm for some periods.  No false alarm is 
observed in the 30-minute window size and 45-minute window size cases. 

Based on the above analyses, in the following fault detection test, a window size of 30-minute 
is adopted to reach a trade-off between detection accuracy and false alarm rate. 

 
 

Figure 4-14 PM comparison under different window sizes (i. window size 15-minute, ii window size 30-
minute, iii. window size 45-minute) 
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Figure 4-15 Fault detection comparison under different window sizes (i. window size 15-minute, ii 
window size 30-minute, iii. window size 45-minute) 

 
 

Figure 4-16 Fault detection comparison under different window sizes (i. window size 15-minute, ii 
window size 30-minute, iii. window size 45-minute) 

4.6.2 Sensitivity Test on Baseline Data Size and Sample Searching Pool Size 
The literature does not have suggestions as to how many data samples should be included 

when generating a PCA model for fault detection.  In this study, a minimum of 100 data samples 
is set as the goal for the WPM baseline dataset when developing a PCA model. In order to meet 
this requirement, two parameter sensitivity tests have been implemented.  

Firstly, we investigated how many historical baseline days should be collected for the baseline 
dataset. Obviously, including more fault free days in the baseline dataset will increase the accuracy 
and robustness of the fault detection method. However, in the real practice, especially for building 
re-commissioning, it may not be possible to obtain a large number of fault free days. In this 
investigation, a 20-day fault free baseline dataset and a 30-day fault free baseline dataset are 
formed for each season and used in the sensitivity analysis.  

To evaluate these two historical datasets, 30 days testing data from summer (July), 30 days 
from fall (November) and 30 days from winter (December) of 2016 have been employed. These 
testing data do not have any overlap with the historical baseline data. The searching pool size is 



 53 

fixed as 120- minute (2 windows before the snap shot window and 2 windows after the snap shot 
window) for this sensitivity test. The impact of the searching pool size will be evaluated next.   

Table 4-2 summarizes the maximum sample number, minimum sample number and average 
sample number in the WPM baseline dataset for each tested snapshot window. At the same time, 
the percentages of the snapshot windows which finds less than 100 data samples in its WPM 
baseline dataset over all the snapshot windows are calculated.  This percentage is referred to as the 
“small sample size percentage” hereafter. The higher this percentage is, the more the tested 
snapshot windows do not find enough similar fault free baseline data.  

 
Table 4-2 Sensitivity analysis on fault free date searching number 

 
Test Period Maximum 

Number of 
Sample 

Minimum 
Number of 

Sample 

Average 
Number of 

Sample 

Percentage of 
Windows with 

Sample Size Less than 
100 

Searching 
Date 

Number 

20 30 20 30 20 30 20 30 

Summer 216 288 0 0 77 120 72% 38% 
Fall 216 282 0 0 72 106 75% 49% 

Winter 216 312 0 0 88 123 60% 36% 

The results show that, all of the average sample numbers in each WPM baseline dataset are 
less than 100 for all tested seasons when using the 20-day baseline dataset. When using the 30-day 
baseline dataset, this number, i.e., the average sample numbers in each WPM baseline dataset, 
increases to be more than 100 for all tested snapshot windows. The small sample size percentage 
reaches 72%, 75% and 60% respectively for each test season when using the 20-day fault free 
baseline dataset. These small sample size percentages was decreased to be 38%, 49% and 36% 
when using the 30-day fault free baseline dataset. Therefore, the 30-day fault free baseline dataset 
is used in the future fault detection studies. 

After the size of the historical baseline dataset is selected as 30 days, the size of the data 
searching pool size is evaluated next.   

When forming the WPM baseline dataset, neighboring windows of a snapshot window is 
typically included in the searching pool for pattern matching. For example, when analyzing a 
snapshot window of 10:00am-10:30am, all collected historical baseline data between 10:00am-
10:30am, as well as its neighboring windows, such as 9:30am-10:00am and 10:30am-11:00am, 
can be used to form the searching pool, among which, those with similar weather will be selected 
as the WPM baseline dataset, as shown in Figure 4-17. This searching pool size (S) will affect the 
WPM accuracy. If S is too small, there would not be enough samples to be included in the WPM 
baseline dataset. If S is too large, the time frame of the neighboring windows will be too long. In 
the above example, when extending the concept of neighboring window to be from 8:00am -
12:00pm, instead of 9:00 -11:00am, data that contain very different internal loads would be 
included in the searching pool, and thus affect the WPM accuracy In this sensitivity study, three 
data sample searching pool sizes, namely, 120- minute (2 windows before and 2 windows after), 
180-minute (3 windows before and 3 windows after) and 240-minute (4 windows before and 4 
windows after) are considered. Here, the snapshot window size is chosen as 30-minute, based on 
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a previous sensitivity test. The testing data and evaluation criteria used here are similar to those in 
the historical baseline database size evaluation.  

 
Figure 4-17 Illustration of data searching pool 

Observing the results, it can be concluded that the data sample number increases with the 
increase of the searching pool size.  When using the 120-minute searching pool size, the average 
number of data sample reaches 120, 106 and 123 for the summer, fall and winter season, 
respectively. When using the 180-minute searching pool size, this number increases to be 179, 159 
and 184.  

It can also be observed that the number of data sample is relatively low in the fall season (data 
from November, 2016) when compared with other two seasons (i.e., data from July and December, 
2016). It is partly because the weather changes quickly over a day in the fall season in Philadelphia. 
So, it is more difficult for the WPM method to find similar weather pattern 

Table 4-3 summarizes the test results for each data sample searching pool size in different 
seasons.  

Observing the results, it can be concluded that the data sample number increases with the 
increase of the searching pool size.  When using the 120-minute searching pool size, the average 
number of data sample reaches 120, 106 and 123 for the summer, fall and winter season, 
respectively. When using the 180-minute searching pool size, this number increases to be 179, 159 
and 184.  

It can also be observed that the number of data sample is relatively low in the fall season (data 
from November, 2016) when compared with other two seasons (i.e., data from July and December, 
2016). It is partly because the weather changes quickly over a day in the fall season in Philadelphia. 
So, it is more difficult for the WPM method to find similar weather pattern.  

Figure 4-18 to Figure 4-20 show the frequency of the size (data sample number) of the WPM 
dataset for snapshot windows in different seasons. From the frequency distribution, it can be seen 
that in fall and winter seasons, the frequency of snapshot windows with smaller “similar baseline 
data” sample size increases dramatically. It means that it is more difficult for the WPM method to 
find similar weather pattern.  Again, this could be due to the dynamic daily weather pattern. 
Therefore, different data searching pool size can be considered for different seasons in the future 
research.  
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From the analysis above, the 180-minute data sample searching pool size has met the 
requirement of at least 100 data samples in each snapshot window. Hence, the 180-minute data 
sample searching pool size is used in WPM-FPCA fault detection method. 

 
Table 4-3 Sensitivity test on data searching pool size 

 
Test Period Summer  Fall  Winter 
Data searching 

pool size 
120-

minute 
180-

minute 
240-

minute 
120-

minute 
180-

minute 
240-

minute 
120-

minute 
180-

minute 
240-

minute 
Maximum 
Number of 

Sample 

288 408 501 282 432 570 312 456 588 

Minimum 
Number of 

Sample 

0 0 0 0 0 0 0 0 0 

Average  
Number of 

Sample 

120 179 238 106 159 213 123 184 246 

Percentage of 
Window with 

Sample 
Number Less 

than 100 

38% 20% 12% 49% 27% 20% 36% 23% 15% 

 

 
 

Figure 4-18 Frequency of number of data sample for the 30 test days in summer season 
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Figure 4-19 Frequency of number of data sample for the 30 test days in fall season 

  
 

Figure 4-20  Frequency of number of data sample for the 30 test days in winter season 

 

4.7 Summary 
In this Chapter, a data-driven method named as WPM-FPCA method is developed for whole 

building fault detection. Firstly, historical baseline data are collected that reflect an acceptable 
building status. A PLSR-GA algorithm is then used to identify key system variables (features) 
from all available variables in the historical baseline dataset. These key features which represent 
system operation are used for developing the following PCA models. Secondly, a WPM method 
is developed based upon the time series SAX algorithm. The WPM method can efficiently find a 
WPM baseline dataset that has similar weather and building conditions with the incoming snapshot 
data with minimum computational burden, which makes it suitable for future on-line fault 
detection for large and complex building system. Lastly, PCA models are developed for both the 
WPM baseline dataset and snapshot data and are used for an automated whole building fault 
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detection process. Parameter sensitivity tests including snapshot window size and data sample 
searching pool size are implemented to find the impacts of the parameters from the developed 
methods. Proper parameters are then selected and used. The evaluation process of the developed 
method is described in Chapter 6.   
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Chapter 5 Development of Fault Diagnosis Method 
5.1 Introduction 

When a whole building level abnormality is detected, the root-causes of this abnormality need 
to be diagnosed and located so that these faults can be corrected.  

In this research, a Bayesian Network (BN) based method is proposed to diagnose and isolate 
root-causes for whole building faults. BN based methods have been successfully developed for 
FDD and system maintenance in different areas because BN has demonstrated an excellent ability 
to work well under uncertainty and incomplete information [99]. 

In a building HVAC system, there are existing studies that have adopted the BN for component 
level fault diagnosis such as chiller, AHU, and VAV terminals [100-104]. For example, Zhao et 
al., developed diagnostic BN for AHU and intelligent chiller FDD method by using a three-layer 
Bayesian belief network [100]. They also developed diagnostic BNs to diagnose component faults 
in AHU [101, 102]. Xiao et al., proposed a BN based FDD strategy for diagnosing ten typical 
faults of VAV terminal unit [103]. Although these studies demonstrate good potentials of using 
BN in component level fault diagnosis, there is a lack of study that uses BN diagnosis methods for 
whole building faults where interactions exist in different subsystems.  

When applying BN based fault diagnosis method for building system faults, the following 
challenges exist: 1) it is impractical to develop a system-level BN from exhausted fault data by 
implementing fault experiments in a real building. Hence, determining parameters (prior and 
conditional probabilities) are challenging; 2) due to the coupling impacts, fault root-cause 
determination and fault evidence are often more complicated for whole building faults than 
component-level faults; and 3) it is harder to develop baseline models for whole building faults 
due to the large dimension of whole building dataset.  

In this research, expert and physical knowledge are used to develop a BN structure model and 
part of the BN parameters. The WPM method [105] which has been employed in the WPM-FPCA 
fault detection method is used to create a baseline data for evidence generation and to obtain LEAK 
probabilities which are parameters needed in the proposed BN method.  

 
5.2 Bayes Theorem 

A BN is based on Bayes theorem. In Bayes theorem, conditional probability distribution is 
used to measure the probability of an event under the assumption that another event has occurred.  
For example, if an event A occurs (here A may represent a fault) when event B (here B may 
represent a symptom) is known or assumed to have occurred, the probability of A under the 
condition B can be written as [106]: 

 
 

𝑃𝑃(𝐴𝐴|𝐵𝐵) =
𝑃𝑃(𝐴𝐴𝐴𝐴)
𝑃𝑃(𝐵𝐵) =

𝑃𝑃(𝐵𝐵|𝐴𝐴)𝑃𝑃(𝐴𝐴)
𝑃𝑃(𝐵𝐵)  

 
(22) 

where P(AB) is the joint probability of events A and B, and 𝑃𝑃(𝐴𝐴𝐴𝐴) = 𝑃𝑃(𝐵𝐵)𝑃𝑃(𝐴𝐴|𝐵𝐵) =
𝑃𝑃(𝐴𝐴)𝑃𝑃(𝐵𝐵|𝐴𝐴).  
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Supposing A1,A2, . . . , An  are a set of random variables and satisfy: (a) ∑ 𝐴𝐴𝑖𝑖 = 𝑆𝑆𝑛𝑛
𝑖𝑖=1 , where 

S is the certain event; (b) they are mutually independent; and (c) P(Ai) > 0, i= 1,2,. . . ,n, for any 
given event B, the following marginal probability can be obtained: 

 
 

𝑃𝑃(B) = �𝑃𝑃(𝐴𝐴𝑖𝑖)𝑃𝑃(𝐵𝐵|𝐴𝐴𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

 
 
(23) 

Through this way, Equation 22 can be re-written as: 

 
 

𝑃𝑃(𝐴𝐴𝑖𝑖|𝐵𝐵) =
𝑃𝑃(𝐴𝐴𝐴𝐴)

∑ 𝑃𝑃(𝐴𝐴𝑖𝑖)𝑃𝑃(𝐵𝐵|𝐴𝐴𝑖𝑖)𝑛𝑛
𝑖𝑖=1

=
𝑃𝑃(𝐵𝐵|𝐴𝐴𝑖𝑖)𝑃𝑃(𝐴𝐴𝑖𝑖)

∑ 𝑃𝑃(𝐴𝐴𝑖𝑖)𝑃𝑃(𝐵𝐵|𝐴𝐴𝑖𝑖)𝑛𝑛
𝑖𝑖=1

 
 
(24) 

A Bayesian inference is used to find out the cause of an event from the effects of an event by 
calculating the posterior probability. Bayesian theorem provides a way to calculate the posterior 
probability (left side in Equation 24) from the prior probabilities (right side in the equation). The 
prior probability of variable  𝑨𝑨𝒊𝒊(𝑷𝑷(𝑨𝑨𝒊𝒊)) and the conditional probability of the variable B given 
𝑨𝑨𝒊𝒊(𝑷𝑷(𝑩𝑩|𝑨𝑨𝒊𝒊)) firstly assigned through the existing knowledge of the problem which can be either 
some statistic results or the estimation from the experts in the field. Then, the posterior 
probability 𝑷𝑷(𝑨𝑨𝒊𝒊|𝑩𝑩) can be calculated via Equation 24. 

The BN includes two elements: structure model and parameters. Nodes and arcs are used in a 
BN structure model to describe relationships among events. Each node represents a variable which 
is assigned to a probability. Arcs are the direct reasoning connection between nodes. Once the BN 
structure model is defined, the BN parameters (including prior probability distribution, conditional 
probability distribution and LEAK probability distribution) for each node should be decided to 
generate a Bayesian inference.  

 

5.3 Development of BN Structure Model  

5.3.1 BN Structure 
The development of a BN structure model is to identify the cause-and-effect relationship. 

Usually, expert based knowledge is used to develop the system rule which will be mapped to the 
BN. During the development process, the first step is to determine the network layer according to 
the nature of the problem. Traditionally, a two-layer BN structure which includes a fault layer and 
a fault evidence layer are employed to develop BN for fault diagnosis problems. Apart from the 
two-layer BN structure, more layers may be added to reflect the system behavior in more details 
due to the complexity of the system. For example, an additional information layer was used to 
develop BN for chiller and AHU fault diagnosis [100-102]. In this research, a two-layer BN 
structure is designed. 

5.3.2 BN Node 
The second step in developing a BN structure model is to assign BN nodes. BN nodes are 

assigned to represent different variables through system rule mapping or knowledge representation. 
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In this study, two types of BN nodes are need to be determined as fault node and fault evidence 
node.  

Fault nodes represent whole building level faults root causes. For example, an AHU supply 
air temperature sensor bias fault (either positive bias or negative bias) is assigned to one fault node. 
The states of the fault node are divided into two types as faulty and fault free.  

Evidence nodes represent observable fault symptoms. Fault symptoms typically come from 
two sources:  

1) Concurrent relationships among measurements. For example, when an outdoor damper is 
stuck at 0% open position, the mixed air temperature measurement is the same as the return air 
temperature measurement, and is very different from the outdoor air temperature measurement;  

2) Historical relationship of a measurement between its current value and its historical baseline 
value. For example, another symptom of the outdoor damper stuck at 0% open position fault is 
that the cooling coil valve opening will be smaller than its historical baseline values under similar 
weather conditions.   

BN network is expressed graphically (Figure 5-1), in which, arcs are connected between fault 
nodes and evidence node to represent the cause-and-effect relations between them. For example, 
Figure 5-1 shows a BN for diagnosing AHU outdoor air damper stuck at a higher than normal 
position fault. This fault is assigned to a fault node named as AHU-OA-DMPR-Stuck-H. The fault 
evidences (also known as fault symptoms) in summer season are assigned as evidence nodes 
including chilled water flowrate (CHW-Flowrate), AHU cooling valve position (AHU-CC-VLV), 
the difference between AHU mixed air temperature and outdoor air temperature (AHU-MAT-OAT) 
readings, and chiller cooling energy (CHW-Cooling). These evidence nodes are connected to the 
fault node by adding arcs.  

 

 
 

Figure 5-1 BN structure model example 

5.3.3 Development of BN Structure for Whole Building Fault  
Nine fault root causes are identified as whole building faults as summarized in  

Table 5-1. Fault evidences, i.e., key measurements and virtual measurements (combination of 
measurements) used to observe a fault’s symptoms, are summarized in Table 5-2.  

Figure 5-2 demonstrates the developed BN structure model for all of the whole building faults 
considered in Table 5-3. Relationships between a fault and its symptoms are summarized in Table 
5-3. 
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Table 5-1 Whole building fault list 
 

Fault 
Category 

Fault Name Abbreviation 

Primary 
cooling 

subsystem 
fault 

Chilled water supply temperature sensor negative bias 
(screen reading lower than real value ) 

CHWS-Temp-Bias-N 

Chilled water supply differential pressure sensor positive 
bias (screen reading higher than real value ) 

CHWS-DP-Bias-P 

Supply air 
subsystem 

fault 

AHU outdoor air damper stuck at a higher than normal 
position 

AHU-OA-DMPR-
Stuck-H 

AHU supply air temperature sensor negative bias  (screen 
reading lower than real value ) 

AHU-SA-Temp-Bias-
N 

AHU cooling coil valve stuck at a higher than normal 
position 

AHU-CC-VLV-Stuck-
H 

Operator Fault Schedule fault (system is occupied while under normal 
operation, it should be unoccupied ) 

OpF-Sch-Occ 

Schedule fault (system is occupied while under normal 
operation, it should be occupied ) 

OpF-Sch-Unocc 

AHU cooling coil valve control override at a higher than 
normal position 

OpF-AHU-CC-VLV-
SWO-H 

Chiller is off while under normal operation, it should be on OpF-Chiller-Off 
 

Table 5-2 Fault evidence list 
 

Subsystem Evidence 
No. 

Key Measurement and Virtual 
Measurement 

Abbreviation 

Primary 
cooling 

subsystem  

E1 Chilled water supply temperature  CHWS-Temp 
E2 Chilled water return temperature  CHWR-Temp 
E3 Chilled water flowrate  CHW-Flowrate 
E4 Calculated chiller cooling load CHW-Cooling 
E5 Chiller pump speed CHW-Pump-Speed 

Supply air 
subsystem  

E6.1 AHU-1 outdoor air damper position  AHU1-AHU-OA-
DMPR 

E6.2 AHU-2 outdoor air damper position  AHU1-AHU-OA-
DMPR 

E7.1 AHU-1 cooling coil valve position  AHU1-AHU-CC-VLV 
E7.2 AHU-2 cooling coil valve position  AHU2-AHU-CC-VLV 
E8.1 Difference between AHU-1 mixed air and 

outdoor air temperatures 
AHU1-AHU-MAT-
OAT 

E8.2 Difference between AHU-2 mixed air and 
outdoor air temperatures 

AHU2-AHU-MAT-
OAT 

E9.1 AHU-1 supply air fan speed  AHU1-AHU-SF-Speed 
E9.2 AHU-2 supply air fan speed  AHU2-AHU-SF-Speed 
E10.1 AHU-1 supply air temperature  AHU1-AHU-SA-Temp 
E10.2 AHU-2 supply air temperature  AHU2-AHU-SA-Temp 
E11 VAV2 reheat coil valve (sum of reheat coil 

valve position in the VAVs which connect to 
AHU2 ) 

VAV2-RHC-VLV (in 
winter season) 

E12 AHU-2 preheat air temperature AHU2-PreHC-VLV(in 
winter season) 
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Table 5-3 Fault and evidence list 
 

Fault Fault Node Symptom Description 

1 OpF-Sch-Occ E1(lower than normal); E2 (lower than normal); E3 (higher than 
normal); E4(higher than normal); E9.1 (higher than normal); E9.2 
(higher than normal); E10.1(lower than normal); E10.2(lower than 
normal) 

2 OpF-Sch-Uocc E1(higher than normal); E2(higher than normal); E6.1(lower than 
normal); E6.2(lower than normal); E9.1(lower than normal); E9.2(lower 
than normal); E10.1(higher than normal); E10.2 (higher than normal) 

3 
 

OpF-AHU-CC-
VLV-SWO-H 

E3(higher than normal); E4(higher than normal); E7.1(higher than 
normal); E7.2(higher than normal); E10.1(lower than normal); 
E10.2(lower than normal) 

4 
 

OpF-Chiller-Off E1(higher than normal); E2(higher than normal); E3(lower than normal); 
E4(lower than normal); E7.1(higher than normal); E7.2(higher than 
normal); E8.1(lower than normal); E8.2(lower than normal); 
E10.1(higher than normal); E10.2(higher than normal) 

5 CHWS-Temp-
Bias-N 

E2 (higher than normal); E3(higher than normal); E4(higher than 
normal); E5(higher than normal); E7.1(higher than normal); E7.2(higher 
than normal) 

6 
 

AHU2-AHU-OA-
DMPR-Stuck-H 

E3(higher than normal) ; E4(higher than normal); E7.2(higher than 
normal); E8.2 (lower than normal); E11(higher than normal, in winter 
season) ; E12(higher than normal, in winter season) 

7 AHU1-AHU-SA-
Temp-Bias-N 

E3(lower than normal); E4(lower than normal); E7.1(lower than 
normal); E9.1(higher than normal) 

8 AHU2-AHU-SA-
Temp-Bias-N 

E3(lower than normal); E4(lower than normal); E7.2(lower than 
normal); E9.2(higher than normal) 

9 AHU2-AHU-CC-
VLV-Stuck-H 

E3(higher than normal); E4(higher than normal); E7.2(lower than 
normal); E10.2(lower than normal)  

10 CHWS-DP-Bias-
P 

E3(lower than normal); E4(lower than normal); E5(lower than normal); 
E7.1(higher than normal); E7.2(higher than normal); 

 

 
 

Figure 5-2 BN structure for whole building fault diagnosis 
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In the development of BN structure for whole building fault diagnosis, GeNIe and jSMILE 
[107] BN tools developed by the Pittsburg University are used to generate the whole building level 
BN. 

 

5.4 Development of BN Parameter 
The determination of parameters is the second step when developing a BN based diagnosis 

tool. The parameters of a BN reflect the quantitative relations among parent nodes and child nodes, 
expressed by using probability. Usually, three probabilities, i.e., prior probabilities, conditional 
probabilities, and leak probabilities (which is only for Noisy-Max gate, see discussion later), need 
to be determined when developing a BN parameter model.   

Prior probability, which represents the probability of a fault event that may occur, needs to be 
assigned to each of the fault node.  

Conditional probability is to measure the probability of a symptom event under the occurrence 
of a fault event. When developing a diagnostic BN, the conditional probability distributions for 
each evidence node are stored in conditional probability tables (CPTs) which reflect all possible 
combinations of states of fault nodes.  

There are two methods of generating prior or conditional probabilities: from expert knowledge 
or from the probabilistic analysis of historical data [103]. Here the historical data can be historical 
operational data, experimental data, or simulated data.  Data driven or machine learning techniques 
are typically used to obtain the probabilities when they are determined from data.   

LEAK probability is the probability of the child node having a value 1 when all parent nodes 
are with value 0. In fault diagnosis, LEAK probability represents a probability of an evidence node 
demonstrating an abnormal (faulty) state when no fault exists.  

Obtaining the prior and conditional probability distributions is the major challenges of 
applying a BN for FDD in a building system. Although operational data that contain naturally 
occurred faults are easy to obtain, ground truth data (such as a service record) that show the root 
causes of these faults are very hard to obtain.  Even such data exists for a specific building system, 
the learned probabilities are not scalable to other buildings and/or building systems due to the fact 
that each building system is very different from others.  Similar reasons prevent learning these 
probability distributions from simulated data.  

Another challenge when developing a BN parameter model is that the number of parameters 
for the evidence nodes grows exponentially with the increasing number of the fault node as the 
network structure becomes more complex. Therefore, it is unreliable to directly generate the 
conditional probabilities for each state of the evidence node when there are more than four fault 
nodes [108]. For example, traditionally, when generating a conditional probability table of an 
evidence node, all of the possible combinations of states of its parent nodes (fault nodes) should 
be considered. If an evidence node is a Boolean state node, which contains two state, and there are 
n parent nodes in which Boolean state is, then the parameters of a conditional probability table 
would have a size of 2n+1. In real practice, the development of such kind of conditions will be 
highly challenging and time-consuming. Therefore, canonical models such as Noisy-OR gate and 
Noisy-Max gate which only require a few parameters draw more attention when developing BN 
parameter model. The use of canonical models not only simplifies the construction of Bayesian 
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networks and influences diagrams, but also leads to more efficient computations [108]. In the 
Noisy-OR gate, effect evidence Y (a binary random variable) is deduced by each cause event Xi (a 
binary random variable) which acts independently of the other cause events [109]. A Noisy-OR 
gate model is illustrated in Figure 5-3. A Noisy-MAX gate is the extension of Noisy-OR gate.  In 
a Noisy-MAX gate, effect event variable Y has ny states and these states are ordered according to 
the effect strength. At the same time, every parent variable (cause event) Xi has ni values. By this 
means, the number of parameters can be reduced from exponential to linear in the number of parent 
nodes. 

 

 
 

Figure 5-3 Illustration of Noisy-OR gate 

Here, the Noisy-Max gate is adopted to develop the BN parameter for the evidence node. 
Three assumptions should be made when developing a Noisy model: (a) the child node and all its 
parents must be variables indicating the degree of presence of an anomaly; (b) each of the parent 
node must represent a cause that can produce the effect (the child node) in the absence of the other 
causes; and (c) there may be no significant synergies among the causes [108]. 

By employing canonical models, the increase of parameters in a conditional probability table 
is reduced to a linear increase instead of an exponent increase as in a typical BN structure. When 
using canonical models to map BN nodes, LEAK probability (as introduced earlier) needs to be 
determined in the Noisy-Max distribution model.  

5.4.1 Development of Prior Probability Distribution 
As discussed earlier, there is a lack of understanding as how often faults occur in a building 

system.  In this study, prior probability values that have been reported for component level fault 
diagnosis [110] are adopted. These prior probability values can be updated when more system 
operation knowledge or fault data are available. In this research, the fault state is divided into faulty 
state and fault-free state. The initial prior probabilities for each fault node are assigned as 0.01 for 
faulty state and 0.99 as fault-free state as shown in Table 5-4. These numbers indicate that we 
believe that for each fault, there is only 1% probability for this fault to occur. Noted that we 
intentionally keep all prior probability values to be the same for all faults since we do not have any 
information to individually customize them. However, the developed BN is able to handle 
individual prior probability for each fault, should such information be available.    
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Table 5-4 Prior Probability for fault node 
 

Fault Node State Prior Probability 
Fault 0.01 

Fault free 0.99 

5.4.2 Development of Conditional Probability Distribution 
Due to the limitation of obtaining fault data and their root causes in a real building, obtaining 

condition probability from fault data is unrealistic. Obtaining accurate values for condition 
probabilities from expert knowledge is very difficult as well due to the fact that the same fault 
could behave slightly different in different buildings and under different weather conditions.  
However, expert knowledge could provide a range of condition probability for a fault and its 
associated fault evidences. Using the same example, when AHU outdoor air damper is stuck at a 
100% open position in cooling mode (non-economizer), the fault symptoms including 1) mixed 
air temperature measurement has the same value as the outdoor air temperature measurement; and 
2) AHU cooling coil valve has a position that is higher than normal (baseline) position).  Both of 
these two symptoms are strong symptoms, i.e., they would occur whenever the fault occurs.   

In this study, a fault evidence is firstly judged by whether it is a strong evidence or not.  Three 
association levels, namely, strong evidence, medium evidence, and weak evidence, are used.  If a 
fault evidence is a strong evidence, i.e., when a fault occurs, this evidence is most likely to occur, 
we consider that the condition probability of this evidence when a fault occurs is 90%, out of which, 
45% is considered to have very sever fault symptom.  In the example above, fault evidence node 
1 (difference between mixed air and outdoor air temperatures) is a strong evidence and a 0.45 
conditional probability is assigned to this node for a very severe fault symptom (very abnormal), 
a 0.45 conditional probability is assigned to this node for a severe fault symptom, and a 0.1 
conditional probability is assigned to this node as a low severity fault symptom. A similar treatment 
is used for the other two association levels, i.e., medium evidence nodes and weak evidence nodes. 
Details are provided in Table 5-5. The conditional probabilities in Table 5-5  can be adjusted and 
updated when more knowledge is obtained during the system operation. In this research, the 
conditional probability values are based on those reported in BN based fault diagnosis tool for 
component-level faults[110].  

 
Table 5-5 CPT for evidence node 

 
Association Between Evidence 

Node and Fault Node 
Severity Conditional Probability 

Under Fault 
 
Strong Evidence 

Very Severe (S-V-S) 0.45 
Severe (S-S) 0.45 
Low Severity (S-L) 0.1 

 
Medium Evidence 

Very Severe (M-V-S) 0.25 
Severe (M-S) 0.25 
Low Severity (M-S-L) 0.5 

 
Weak Evidence 

Very Severe (W-V-S) 0.05 
Severe (W-S) 0.05 
Low Severity (W-S-L) 0.9 
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5.4.3 Development of LEAK Probability Distribution 
LEAK probability represents the probability of an evidence node to be abnormal when all of 

the parent fault nodes are absent (when no fault occurs).  The LEAK probability value for each 
evidence node is obtained by identifying the outliers in the baseline data. An outlier is defined as: 

 

 |𝑥𝑥(𝑖𝑖) − 𝑥̅𝑥| > 𝑡𝑡 ∙ 𝜎𝜎 (25) 

where 𝑥̅𝑥 is the mean of the data sequence, 𝜎𝜎 is the standard deviation and t is the threshold. 

In this study, two classes of threshold, i.e., 2𝜎𝜎  for “very high/very low” and 1𝜎𝜎 for “high/low” 
are used.  𝜎𝜎 is the standard deviation.  

Therefore, LEAK probability can be calculated as: 

 

 
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑓𝑓 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

 
(26) 

WPM method [111] is firstly used to identify baseline data that has a similar weather condition 
as the incoming snapshot data.  The outliers in the baseline data are then counted by using the pre-
defined thresholds. LEAK probability distribution can be obtained through Equation 26. An overall 
LEAK probability for a fault evidence is eventually calculated by averaging LEAK probability from 
the entire baseline database.  

Figure 5-4 to Figure 5-7 show the outlier analysis results of the four fault symptom 
measurements in the chiller plant. Table 5-6 summarizes all of the LEAK probabilities for the BN 
evidence nodes based on the baseline data.  

 

  
 

Figure 5-4 LEAK probability (chilled water flowrate) 
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Figure 5-5 LEAK probability (chilled water return temperature) 
 
 

 
 

Figure 5-6 LEAK probability (chilled water supply temperature) 
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Figure 5-7 LEAK probability (chiller cooling energy) 
 

Table 5-6 LEAK probabilities for each measurement 
 

Fault Evidence Node Leak Probability Normal Very High High Very Low Low 
CHW-Flowrate 1.0% 1.0% 1.0% 1.0% 96.0% 
CHWS -Temp 1.0% 1.0% 1.0% 1.0% 96.0% 
CHWR-Temp 0.5% 0.5% 0.5% 0.5% 98.0% 
CHW-Cooling 0.1% 0.1% 0.1% 0.1% 99.6% 

CHW-Pump-Speed 1.0% 1.0% 1.0% 1.0% 96.0% 
AHU-SA-Temp 1.0% 1.0% 1.0% 1.0% 96.0% 
AHU-SF-Speed 1.0% 1.0% 1.0% 1.0% 96.0% 
AHU-CC-CLC 1.0% 1.0% 1.0% 1.0% 96.0% 

AHU-OA-DMPR 1.0% 1.0% 1.0% 1.0% 96.0% 
AHU-MAT-OAT 1.0% 1.0% 1.0% 1.0% 96.0% 
VAV-RHC-VLV 1.0% 2.0% 1.0% 2.0% 94.0% 

As can be observed from Table 5-6, the leak probability is generally less than 6% for the 
evidence nodes considered. 

 

5.5 Fault Isolation Rule 
This research, especially the evaluation process focuses on single fault scenario, i.e., the 

abnormality is caused by one major fault.  Hence fault isolation rules are needed since there are 
typically a list of faults diagnosed by BN with posterior probabilities. In this study, a fault is 
isolated, i.e., identified as the root-cause for an abnormality, by the following two isolation rules: 
1) the posterior probability of this fault node is higher than 15%; and 2) the posterior probability 
of this fault node is the highest among all fault nodes and is 10% higher than the second-highest 
one.  
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5.6 Summary 
In this Chapter, a WPM-BN method for whole building fault diagnosis is developed. The 

developed WPM-BN method includes a BN structure model and associated BN parameters. Expert 
knowledge is used to generate the BN rules. The BN structure model includes a two-layer 
configuration including a fault layer and a fault evidence layer. In the fault layer, the identified 
root cause faults are assigned to the fault nodes. In the fault evidence layer, sensor measurements 
are mainly included to generate fault evidence nodes. BN parameters including prior probability 
distribution and conditional probability distribution are determined by reported literature values 
and employing expert knowledge. LEAK probability distribution is learned through the WPM 
baseline dataset in an automated manner. The evaluation of this method is discussed in Chapter 6.  
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Chapter 6 Method Evaluation 
6.1 Ground Truth Establishment 

6.1.1 Introduction 
As described in Chapter 2, the Nesbitt Hall at Drexel University is used as the demonstration 

building in this project. BAS data from the demonstration building from June 1st 2016 to September 
31st 2018 are collected. During this time period, there are about thirty-four (34) days in which 
artificial faults have been implemented (a total of twenty-seven (27) days between 2016 to 2017, 
and 7 days in 2018, as described in Chapter 8) and three (3) additional days in which natural faults 
have occurred. In order to evaluate the developed AFDD methods, the collected data need to be 
manually analyzed and labelled, i.e., to establish a “ground truth”. Noted that there are several 
scenarios that could happen in a day:  

• Scenario 1 – an artificial fault is implemented and expected fault symptoms are 
observed.  This test day will be labelled as a fault test day or fault test case.   

• Scenario 2 – no artificial fault is implemented but naturally occurred faults have been 
observed which have caused the whole building performance to be different from its 
baseline (details in Section 6.1.2).  This test day will be labelled as a fault test day or 
fault test case.   

• Scenario 3 – an artificial fault is implemented and natural faults have occurred 
simultaneously. The whole building performance is different from its baseline (details 
in Section 6.1.2) but due to the complications from naturally occurred faults, the 
artificially implemented fault has not yielded expected symptoms.  This test day will 
be labelled as a fault test day or fault test case, although the faults are more than the 
artificially implemented fault.   

• Scenario 4 – an artificial fault is implemented but no expected fault symptom is 
observed.  The building performance is similar to its baseline (details in Section 6.1.2).  
This test day will be labelled as a fault free test day or fault free test case. 

Therefore, this study uses fault symptoms to differentiate a fault test case from a fault free test 
case.  Although in a fault free test case, faults (artificially implemented or natural faults) could still 
exist in the system.  However, these faults do not cause the building performance to be different 
from its baseline.   

6.1.2 Method of Ground Truth Establishment 
A thorough manual examination is firstly performed to identify and tag collected building data 

into two states, i.e., “fault free” and “faulty” as described above. Whole building operation is 
considered as “faulty”, when there are observable abnormalities found in more than two key BAS 
measurements from two different subsystems respectively (listed in Table 6-1). A key 
measurement is considered to be abnormal if the difference between its value and its baseline value 
under similar weather conditions, is larger than a threshold. The abnormality thresholds are 
summarized in Table 6-1. Notice that these thresholds are not used in our AFDD tools but are used 
when we manually tag the test data for setting a “ground truth”. These thresholds are selected 
based on 1) sensor accuracy; and 2) measurement noise and fluctuation under normal operation.  
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Table 6-1 Key BAS measurements and abnormality threshold 
 

Subsystem Key Measurement Abnormality Threshold 
(compared with baseline) 

Primary cooling 
subsystem 

(Chiller plant) 

1) Chilled water supply temperature (°F) ± 2 °F  
2) Differential chilled water pressure (Psi) ± 0.5 Psi  
3) Chilled water supply pump speed (%) ± 5%  
4) Chilled water return temperature (°F) ± 5 °F  
5) Chilled water flowrate (gpm) ± 50 gpm  

Supply air 
subsystem 

(AHUs) 

1) Supply air temperature (°F) ± 3 °F  
2) Supply air differential air pressure (inch 
of water.) 

± 0.3 inch of water 

3) Supply air fan speed (%) ± 5%  
4) Cooling coil valve open position (%) ± 15%  
5) Outdoor air damper open position (%) ± 10%  

For each fault test case, the root cause for the abnormality is again manually identified by 
observing these key BAS measurements and their baseline values. This manual process is 
necessary because 1) faults could naturally occur during the test days when we did not implement 
a fault; 2) even a fault was artificially implemented, it might not cause any abnormality under 
certain operational conditions. Such data is again labeled as “fault free” for this project. And 3) 
even a fault was artificially implemented, other naturally occurred faults could still occurred at the 
same time, and caused abnormality.  

6.1.3 Whole Building Fault Identification and Fault Free Day Generation 
Out of the twenty-seven (27) fault test days, in which faults have been artificially implemented, 

eleven (11) test cases have been labeled as “fault test case”. Two (2) fault test days (August 13th, 
2016 and August 23rd, 2017) are identified as failure cases because no enough data samples are 
collected due to a BAS failure. Furthermore, three naturally occurred faults (in July 06th, 2016, 
January 14th and July 09th, 2017, respectively) have been identified to have whole build level 
impacts. Hence there are in total of fourteen (14) fault test cases used as the ground truth as listed 
in Table 6-2. From the 450 available days, we have selected fourteen (14) fault-free test cases from 
different seasons for the later false alarm evaluation: ten (10) days in summer season, two (2) days 
in transitional season, and two (2) days in winter season. 

  

6.2 Evaluation of Fault Detection 

6.2.1 Fault Detection 
A total of fourteen (14) whole building fault test cases (including three (3) naturally occurred 

whole building fault test cases) are used to evaluate the fault detection result. For method 
evaluation purpose, two PC retention rates, i.e., 0.65 and 0.95, are used to evaluate the fault 
detection results respectively. Usually, a higher PCs retention rates will increase the sensitivity of 
the method and increase the fault detection rate (i.e., it is easier to detect faults) because more 
cumulative variance can be captured by increase the percentage of PC, but it will also have a risk 
of increasing the false alarm rate. Under PC retention rate of 0.65, a total of eleven (11) fault test 
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cases have been successfully detected. Detection rate is hence 79%. Under the PC retention rate 
of 0.95, all fourteen (14) fault test cases have been successfully detected. Detection rate is hence 
100%.  

 Table 6-3 lists the fault detection results. 

6.2.2 Successful Detection Case Examples 

6.2.2.1 AHU Outdoor Air Damper Stuck Fault at a Higher than Normal Position Fault 
1. Fault Description 
On July 11th, 2017, a damper stuck fault (stuck at a higher than normal position) was 

implemented at AHU-2. The outdoor air damper at AHU-2 was artificially stuck at 90% and 100% 
open positions by overriding the corresponding control signal in the BAS from 10:00AM to 
08:01PM. The stuck positions (90% open) was higher than the damper’s normal position (15% 
open) under similar weather conditions. In the summer season when HVAC operates under cooling 
mode, the AHU outdoor air damper is usually controlled to be at 15% open to maintain the 
minimum requirement of fresh air flowrate. Under such circumstances, if the outdoor air damper 
is stuck at a position that is higher than normal (15% during cooling mode), cooling coil valve 
position will be increased to ensure the supply air temperature meet the setpoint requirement.  
However, in the early morning and evening hours, when outdoor enthalpy is lower than the return 
air enthalpy, the outdoor air damper is controlled under economizer mode to save energy. In these 
situations, the damper stuck fault would not yield a strong fault impact, as the stuck position is 
very similar to the normal damper position (under economizer mode).  

2. Fault Detection Result 
Figure 6-1 shows the fault detection result. It can be see that both of the faults are successfully 

detected by the WPM-FPCA method. However, in some time periods (especially early morning 
and evening hours), T2 statistic value does not overpass the threshold due to the lack of fault 
impacts.  

 
 

Figure 6-1 Fault detection result under 0.95 PC retention rate (July 11th, 2017)
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Table 6-2 Whole building fault identification (Cases from 2016 to 2017) 
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Table 6-3 Fault detection result (Cases from 2016 to 2017) 
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6.2.2.2 Chiller Stop Fault (Naturally Occurred Fault) 
1. Fault Description 

On July 9th, 2017, the chiller was stopped from 4:00-15:30 abnormally as shown in Figure 6-2. 
This is a naturally occurred because according to the system scheduling, the chiller plant should 
be operated from 4:00 to 21:00. Meanwhile, between 15:30 to 20:00 in that day, the secondary 
systems also have naturally occurred abnormalities.  

 

 
 

Figure 6-2 Chiller plant operation status (July 9th, 2017) 

2. Fault Detection Result 
Figure 6-3 shows the fault detection result. It can be seen that the T2 statistic value overpasses 

the threshold tremendously in two periods (4:00-15:30 for period I and 15:30 to 20:00 for period 
II). For the first period (4:00-15:30), this is due to the chiller stop fault. Therefore, the fault 
detection method successfully detected this whole building fault. 

For the second period, the fault detection method also reports that there exists whole building 
level abnormality, although the chiller was operated normally. An investigation on the downstream 
subsystems illustrates that there are operation abnormalities in multi-subsystems. For example, the 
cooling coil valve position in all AHU-1 and AHU-2 did not return to their normal positions 
compared with the baseline value until 20:00 as can be seen in Figure 6-4. The reason for these 
abnormalities are believed to be caused by the thermal storage of the building.  Due to the chiller 
stop fault, the building was over-heated during the day.  Hence the secondary systems, after the 
chiller returned to be normal, were operated very differently from their baseline status. An example 
from the VAV-1-1-3 and VAV-2-3-3 clearly demonstrate this operation adjustment as show in 
Figure 6-5. In this figure, it can be seen that the zone temperature begins to decrease in 15:30 when 
the chiller started to operate, but only reach the normal level around 20:00.  
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Figure 6-3 Fault detection result under 0.95 PC retention rate (July 9th, 2017) 

Hence, it is concluded that the WPM-FPCA has reported correctly that there exists a whole 
building level abnormality, although it is an aftermath from a previous fault. 

 

 
 

Figure 6-4 AHU-1 and AHU-2 cooling coil operation status (July 9th, 2017) 
 

6.2.3 Mis-detection Case Example 
Some faults were not detected under 0.65 PC retention rate because even if there were 

symptoms happening in different sub-systems, these symptoms were not too many, so under lower 
0.65 PC retention rate, the method is not sensitive to these fault. But when PC retention rate is 
increased, these minor variances in different measurements can easily detected. A fault test case 
from August 3th, 2017 is illustrated as below. 

 

1. Fault Description 
On August 3th, 2017, a chilled water supply temperature sensor negative bias of 4 °F fault was 

implemented by adjusting the chilled water outlet temperature setpoint on the chiller control panel. 
The fault test period was from 10:00 to 21:27. This fault had impact on chilled water return 
temperature (as shown in Figure 6-6) and also had impacts on the downstream subsystems. During 
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the test, we observed that the cooling coil valves in AHU-1 had higher than normal positions to 
allow larger chilled water flowrate to meet the cooling load as shown in Figure 6-7. 

 

 
 

Figure 6-5 VAV terminal unit operation status (July 9th, 2017) 

 
 

Figure 6-6 Chiller operation status (August 3rd, 2017) 
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Figure 6-7 AHU-1  operation status (July 9th, 2017) 

2. Fault Detection Result 
This fault is not detected by the WPM-FPCA method under 0.65 PC retention rate as shown 

in Figure 6-8. But when increasing the PC retention rate to 0.95, this fault is successfully detected 
as can be seen in Figure 6-9. In this research, we set PC retention rate at 0.65 which is relatively 
conservative, so in this case, we treat it as mis-detected case. 

6.2.4 Evaluation on False Alarm Rate  
Although it is desired for automated fault detection tools to have a high detection accuracy, 

low false alarm rate is another criteria to assess the fault detection strategy. Typically, a high false 
alarm rate may lead to the building operators to ignore or even disable the FDD tool and would 
decrease the system performance. A total of fourteen (14) fault free test cases are randomly 
selected from the four hundred and fifty (450) available days, including ten (10) fault free test 
cases in the summer season, two (2) fault free test cases in the transition season and two (2) fault 
free test cases in the winter season in 2016 and 2017. These fault free test cases are used to evaluate 
the false alarm rate for the WPM-FPCA fault detection method under two PC retention rates as 
shown in Table 6-4. It can be observed that no false alarm has been reported.  

Three fault free days from summer season, transition season and winter season, i.e., August 
28th 2016, December 8th 2016 and January 24th 2017 are used here to illustrate the typical detection 
results as shown from Figure 6-10 to Figure 6-12. It can be seen that the T2 of the fault data are 
below their baseline thresholds for three days respectively.  
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Figure 6-8 Fault detection result (August 3rd, 2017) under 0.65 PC retention rate 

 
 

Figure 6-9 Fault detection result (August 3rd, 2017) under 0.95 PC retention rate 
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Table 6-4 False alarm analysis 
 

Test Date Season Detection Result 
(0.65 PC retention rate) 

Detection Result 
(0.95 PC retention rate) 

2016.07.26 Summer Fault free Fault free 
2016.08.26 Summer Fault free Fault free 
2016.08.27 Summer Fault free Fault free 
2016.08.28 Summer Fault free Fault free 
2016.08.29 Summer Fault free Fault free 
2017.07.02 Summer Fault free Fault free 
2017.07.05 Summer Fault free Fault free 
2017.08.06 Summer Fault free Fault free 
2017.08.10 Summer Fault free Fault free 
2017.08.12 Summer Fault free Fault free 
2016.11.01 Transition Fault free Fault free 
2016.12.08 Transition Fault free Fault free 
2017.01.20 Winter Fault free Fault free 
2017.01.24 Winter Fault free Fault free 

 

 
 

Figure 6-10 Detection result in August 28th, 2016 (summer season) 
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Figure 6-11 Detection result in Dec. 8th, 2016 (transition season) 

 

 
 

Figure 6-12 Detection result in Jan. 24th, 2017 (winter season) 

 

6.3 Evaluation of Diagnosis Method 
The fourteen (14) whole building fault test cases (including 3 naturally occurred whole 

building fault cases) are used to evaluate the WPM-BN fault diagnosis method described in 
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Chapter 5. Thirteen (13) out of fourteen (14) fault cases are successfully diagnosed by the WPM-
BN method as summarized in Table 6-5. The following sections illustrate a typical successful case 
and also discuss the mis-diagnosed case. 

6.3.1 Successful Diagnosis Case Example 
1. Fault Description 

Here, we use AHU Outdoor Air Damper Stuck Fault at a Higher than Normal Position Fault 
as illustrated in Section 6.2.2.1 to demonstrate the fault diagnosis result. 

2. Fault Diagnosis Result  
For the July 11th case, the method reports that there is (on average) 40% posterior probability 

for the “AHU-2 outdoor air damper stuck at too high fault”. This posterior probability ranks No.1 
compared with the posterior probabilities of other causes as shown in Figure 6-13. Therefore, this 
fault root-cause is successfully diagnosed. 

 

 
 

Figure 6-13 Fault detection and diagnosis result (July 11th, 2017) 
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Table 6-5 Fault diagnosis result (Cases from 2016 to 2017) 
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6.3.2 Mis-Diagnosis Case Example 
1. Fault Description 

On August 3rd, 2017, a chilled water supply temperature sensor negative bias of 4 °F fault was 
implemented by adjusting the chilled water outlet temperature setpoint on the chiller control panel. 
The fault test period was from 10:00 to 21:27. This fault had impacts on the downstream 
subsystems. During the test, we observed that only cooling coil valves in AHU-1 had higher than 
normal positions and chilled water return temperature had higher than baseline value. 

2. Fault Diagnosis Result  
In this case, the root cause of fault was not successfully diagnosed by the WPM-BN method. 

In the diagnosis result, posterior probabilities for “AHU-2 cooling coil valve open too high” fault 
and “AHU-2 outdoor air damper stuck at too high” fault reach higher levels compared with “chilled 
water supply temperature negative bias” fault. The posterior probability for these fault cause are: 
0.91 for “AHU-2 cooling coil valve operate at too high” fault, 0.39 for “AHU2 outdoor air damper 
stuck at too high position” fault, posterior probability, and 0.04 for “Chilled water temperature 
negative bias” fault as shown in Figure 6-14. 

 

 
 

Figure 6-14 Fault diagnosis result (August 3rd , 2017) 

We are currently analyzing the diagnosis results, attempting to find the reasons for this mis-
diagnosis. From the analyses, one reason is that not too many evidences are found in chiller, AHUs. 
In this case, only chilled water return temperature and AHU-1 cooling coil valve position are found 
to be abnormal compared with the baseline data. As more evidences can strengthen BN inference 
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and hence generate a higher posterior probability, it is therefore WPM-BN fault diagnosis method 
does not diagnose the fault. Another potential reason could be that the conditional probability for 
each root fault cause is set to be equal when these faults have the same evidences. Since the “chilled 
water temperature negative bias” fault would cause similar fault evidences as other faults such as 
“cooling coil valve open too high” and “outdoor air damper stuck at too high” faults, without 
additional conditional probability information, the WPM-BN method would not be able to 
differentiate these faults that have very similar fault symptoms.  

 

6.4 Evaluation on Method Implementation Cost and Payback 
To estimate deployment costs, two metrics are investigated in this study: the number of hours 

required for our team to deploy the solution, and the typical costs presently associated with 
deploying manual retro-commissioning by service providers. Deployment costs are a function of 
the quantity of equipment and the quantity of data points collected from a given building. For a 
building that has a somewhat typical HVAC configuration, i.e., central chiller system with VAV 
distribution system, this value can be estimated in terms of cost per square foot. Based on 
conversations with many of our industrial partners, a standard estimate for a service provider to 
perform retro-commissioning analysis is $0.20/square foot, exclusive of performing any repairs.  
Comparing the time-savings that can be realized by deploying a more automated strategy, and by 
studying the time required to deploy our solution, it is found that utilizing this AFDD technology 
can save approximately 40% of this cost by removing the requirements for site-specific algorithm 
customization and threshold customization. As a result, the deployment cost is estimated at $0.12 
per square foot. 

Energy impacts of the implemented faults are also analyzed. Since weather/schedule- similar 
baseline dataset is generated as part of the FDD process in our tools, energy impacts are fairly easy 
to be obtained by comparing energy consumption measurements (real or calculated) between 
snapshot data and WPM baseline dataset. The detailed impact data are provided in Appendix V. 
Based on the expected energy impacts, the simple payback of the developed method is less than 3 
years.  

 

6.5 Summary 
In this Chapter, WPM-FPCA fault detection and WPM-BN fault diagnosis tools are evaluated 

using the collected evaluation data set from the Nesbitt Hall. Firstly, the ground truth is established 
to identify fault and fault free cases using an extensive manual process.  Root cause of a fault test 
case is also isolated.  A total of eleven (11) fault test cases that contain artificially implemented 
whole building faults are identified from twenty-five (25) test cases. Three (3) naturally occurred 
faults which demonstrate whole building fault symptoms are also identified. These fourteen (14) 
fault test cases are used to evaluate the developed methods. The WPM-FPCA fault detection 
method is evaluated under different PC retention rates. The evaluation result shows that using a 
0.65 PC retention rate, the developed method can reach 79% fault detection rate, and using a 0.95 
PC retention rate, the developed method can reach 100% fault detection rate. Fourteen (14) fault 
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free test cases are randomly selected from multiple seasons. The developed WPM-FPCA method 
is demonstrated to have a 0% false alarm rates under both PC retention rates. In the real practice, 
PC retention rate can be adjusted by the user based on a building’s specific requirement to balance 
the fault detection rate and false alarm rate. Evaluation on the WPM-BN based fault diagnosis 
method demonstrates that the developed method has successfully diagnosed thirteen (13) fault test 
cases. The one mis-diagnosed case exhibits few fault symptoms in subsystems. Overall speaking, 
the developed whole building AFDD tools demonstrate satisfactory detection and diagnosis results 
with low false alarm rate. Furthermore, the deployment cost of the developed whole building 
AFDD tools is expected to be at least 40% lower than other market available AFDD tools, due to 
the data-driven and highly automated nature of the core methods used in the tools.  
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Chapter 7 Development of VOLTTRONTM Compatible AFDD Tool 
7.1 Introduction  

In this study, the developed AFDD tools are VOLTTRONTM Compatible. The overall structure 
of the AFDD tools consists of four parts as illustrated in Figure 7-1. The developed 
VOLTTRONTM AFDD agent is connected to the BAS server of the demonstration building to 
collect system operation data and to store the collected data into a database. The AFDD algorithms, 
i.e., WPM-FPCA and WPM-BN methods, are developed in the MATLAB® environment and use 
the collected BAS operation data stored in the database. An AFDD graphic user interface (GUI) 
developed in the Microsoft Visual C#® (VC) environment is connected to the MATLAB to present 
the detection and diagnosis result. Besides, the VC GUI, a web browser-based AFDD 
demonstration platform is developed to facilitate users to access the AFDD results.  

 

 
 

Figure 7-1 Software structure 

 

7.2 Development of VOLTTRONTM AFDD Agent 
The VOLTTRONTM AFDD agent is developed using Python 2.7 [112]. The agent includes 

four main modules, i.e., “Read BAS Measurement Headers”, “Data and Time Control”, “BAS 
Communication Driver” and “Data Storage Control” as shown in Figure 7-2. The agent can be 
easily operated on the VOLTTRONTM platform. Through the agent, the BAS data can be collected 
and published on the VOLTTRONTM platform. A code list is provided in the Appendix III. 
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Figure 7-2 AFDD agent working flow 

 

7.3 Development of AFDD GUI   

7.3.1 Introduction of Microsoft Visual C#® 
 Microsoft Visual C#® is a powerful but also easy to use language which aims primarily at 

developers who create office applications using the Microsoft .NET Framework. VC#® inherits 
many of the best features of C++ and Microsoft Visual Basic (VB®), there exist few of the 
inconsistencies and anachronisms which make it more efficient to use C# to develop the interface.   

We have used VC# 4.0® and .NET 4.3 version to develop this User Interface. Compared with 
previous versions of VC# 4.0® and all versions of Visual Basic, this version provides three times 
more libraries and also much more powerful control components in its .NET Framework with 
users. It can easily parse data from other program built in other language and Web Clients just by 
simply adding a specific library in project reference management function, without excessive 
coding classes or methods for that function. Through using the nearest .NET Framework 
environment, developer could benefit from all powerful packages and libraries created by 
professional people for free. These packages are able to offer the most compatible user interface, 
data access, database connectivity, cryptography, web application development, numeric 
algorithms, and network communications functions to VC#® users, which result in a much clearer 
and sampler coding in development process comparing to other developing tools.    

Besides, a web browser based demonstration is also developed so that the FDD results can be 
demonstrated remotely. 
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7.3.2 VC# based GUI Design 
The AFDD GUI developed by the C# is composed of four interfaces including “Login 

interface” “Fault detection result interface”, and “Fault diagnosis result interface” as shown from 
Figure 7-3 to Figure 7-5. 

 

 
 

Figure 7-3 Login interface  
 

 
 

Figure 7-4 Fault detection result interface 
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Figure 7-5 Fault diganosis result interface 

A VOLTTRONTM and BAS driver interface is developed to facilitate users to set the 
communication parameters (e.g. downloading date and time) so that the AFDD agent can be 
connected to the BAS. Data storage path is also set through this interface as shown in Figure 7-6. 

 

 

Figure 7-6 VOLTTRONTM connection interface 

7.3.3 Web Browser-based GUI Design 
A web browser-based AFDD demonstration platform is also developed to help users access 

the fault detection and diagnosis results remotely. All FDD test cases are stored in the server at 
Drexel University and can be accessed from a web browser using the following address:  

www. bsegafdd.cae.drexel.edu 
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Figure 7-7 to Figure 7-10 demonstrate each interface designed for the web browser.  

 

 

Figure 7-7 Login screen of web-based AFDD demonstration platform 

Figure 7-8 shows the developed web-based WPM-FPCA fault detection interface. The 
interface has two main functions and are divided into two areas for each function. In the first 
function (left area of the screen), fault detection information is set. In the second function (right 
area of the screen), fault detection result can be presented using the T2 statistic graph. 

 

 
 

Figure 7-8 Web-based fault detection interface 
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Figure 7-9 shows the developed web-based WPM-BN diagnosis interface. Similar to the 
WPM-FPCA detection interface, the left screen area is used to set fault diagnosis information. The 
right screen area provides the ranked posterior probabilities for each root fault cause. 

 

 
 

Figure 7-9 Web-based fault diagnosis interface 

 

Figure 7-10 shows the developed web-based key measurement interface. On this interface, 
selected key measurements from the chiller plant and AHUs are plotted.  The time series values 
for each key measurement from both current and WPM baseline dataset (i.e., under similar weather 
and building conditions) are compared to help the users to understand the AFDD results and to 
decide on further maintenance actions. 

 

7.4 Summary 
In this Chapter, various components of the developed whole building AFDD tools that are 

associated with VOLTTRONTM compatibility and interfaces are introduced. These include the 
development of VOLTTRONTM AFDD agent using Python, the AFDD software GUI using VC#®, 
as well as the web browser based demonstration platform. Here, the VOLTTRONTM platform is 
served as a middle ware to connect the core AFDD algorithms with the BAS server. The developed 
GUIs will facilitate building system operator and other users to identify the system operation 
performance and locate the fault root-cause. 
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Figure 7-10 Key measurements 
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Chapter 8 Makeup Fault Test 
8.1 Introduction 

During the summer of 2018, we have the opportunity to implement more whole building fault 
tests to further evaluate the performance of the developed WPM-FPCA fault detection method and 
WPM-BN fault diagnosis method. 

Seven faults, which included five supply air subsystem faults, one schedule fault, and one 
cooling subsystem fault, were implemented during the summer season of year 2018. These faults 
were selected because of a lack of data collected in previous years that contain these faults.   

The collected field test data are analyzed and used to evaluate the developed AFDD methods. 
Details about the analysis and evaluation are provided in Section 8.2. Besides the implemented 
faults, other naturally occurred faults were observed in multiple subsystems for most of the test 
days.   

 

8.2 Fault Tests and Method Evaluation  

8.2.1 Fault Test Summary 
Table 8-1 summarizes the details of the implemented faults. System operation and 

abnormalities caused by either the implemented fault, or naturally occurred faults are also 
summarized. Impacts from the artificially implemented and naturally occurred faults are observed 
using the same manual method as described in Chapter 6 by comparing test day data with baseline 
data selected using the WPM method.   

As observed from Table 8-1, among the seven test cases, the ground truth of one test case 
(AHU-2 SA static pressure sensor positive bias 0.2 inch of water on July 19th) was not established 
because of a lack of baseline data with similar weather conditions. WPM-FPCA method failed to 
detect any abnormality therefore.  For the other six test cases, whole building abnormalities, either 
caused by the implemented fault or by other naturally occurred faults in different subsystems, were 
observed. Using the developed WPM-FPCA and WPM-BN AFDD tools, the FDD results are 
summarized in the last three columns in Table 8-1. For the WPM-FPCA method evaluation, results 
from both 0.65 and 0.95 retention rates were compared.  

8.2.2 Fault Test Description and FDD Result  
Detailed fault test description, data analysis, and FDD results are given in the following 

sections.  
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Table 8-1 Fault test and FDD results 
 

Date Time Whole Building Fault Description FDD Result 
Start End Fault 

Description 
Implementation Impacts from 

Implemented Fault 
Other Abnormalities Caused by 

Simultaneous Naturally 
occurred Faults 

WPM-
FPCA  

(Retention 
Rate - 0.65) 

WPM-
FPCA 

(Retention 
Rate - 0.95) 

WPM-BN Diagnosis Result (Top 
three faults with high posterior 

probabilities) 

07/09/18 10:15 20:15 AHU-2 
supply air 
temperature 
sensor bias 
fault negative 
3.5°F 

Override supply 
air temperature 
setpoint demand 
adj by 1.75 

AHU-2 SA temperature 
is higher than the 
baseline;  AHU-2 mixed 
air temperature is higher 
than the baseline 

Chiller CHW differential 
pressure is higher than the 
baseline; AHU-2 SA fan speed 
higher than the baseline; AHU-
1 cooling  coil valve position is 
higher than the baseline; AHU-
3 supply air fan speed is higher 
than the baseline; AHU-3 
supply air pressure is lower 
than the baseline 

detected  detected  1) AHU-2 OA damper stuck at a 
higher position fault:  79.8% 
2) AHU-1 OA damper stuck at a 
higher position fault:  60% 
3) AHU-1 cooling coil valve operate 
at higher position fault: 32.9% 
Implemented fault: AHU-2 SA 
temperature negative bias fault:  
18.2% 

07/10/18 10:30 20:30 AHU-2 OA 
damper stuck 
at 30% open 
(higher than 
the normal 
position -15% 
open) 

Override OA 
damper at 30% 
open in the BAS 

AHU-2 cooling coil 
valve and mixed air 
temperature are higher 
than the baseline, 
Chiller CHW flowrate is 
higher than the baseline 

Chiller CHW differential 
pressure is higher than the 
baseline; AHU-1 cooling coil 
valve position higher than 
baseline, AHU-1 supply air 
temperature lower than the 
baseline 

 NOT 
detected  

detected 1) AHU-2 OA damper stuck at a 
higher position fault:  40.8% 
2) AHU-1 OA damper stuck at a 
higher position fault:  12% 
3) AHU-1 cooling coil valve operate 
at higher position fault: 11.2% 

07/11/18 10:00 20:00 AHU-2 
cooling coil 
valve stuck at 
80%(higher 
than the 
normal 
position -40-
60% open) 

Override cooling 
coil valve 
control signal at 
80% open in the 
BAS 

AHU-2 SA temperature 
lower than baseline; 
cooling coil valve 
control signal lower the 
baseline; delivered 
cooling is higher than 
the baseline 

AHU-1 cooling coil valve 
position is higher than baseline, 
AHU-1 supply air temperature 
is lower than the baseline 

detected detected 1) AHU-2 cooling coil valve stuck at 
a higher position fault: 87.3 % 
2) AHU-1 cooling coil valve operate 
at higher position fault: 42.1% 
3) AHU-1 cooling coil valve stuck at 
higher position fault : 12.6 % 

07/18/18 9:30 19:30 AHU-2 OA 
damper stuck 
at 60% open 
(higher than 
the normal 
position -15% 
open) 

Override OA 
damper at 60% 
open in the BAS 

AHU-2 SA cooling coil 
valve higher than 
baseline; AHU-2 mixed 
air temperature is higher 
than baseline; 
significant delivered 
cooling loss 

AHU-1 SA static pressure 
sensor is lower than the 
baseline 

detected detected 1) AHU-2 OA damper stuck at a 
higher position fault: 62.4% 
2) AHU-1 cooling coil valve operate 
at higher position fault: 22.6% 
3) AHU-2 cooling coil valve operate 
at higher position fault : 17.1% 

07/19/18 10:15 20:30 AHU-2 SA 
static pressure 
sensor 
positive bias 
0.2 H2O inch 

Override SA 
static pressure 
from 1.8 to 2.0 
inH2O 

Failed test because no enough baseline sample generated 
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Table 8-1 Fault test and FDD results (Cont’d) 
 

Date Time Whole Building Fault Description FDD result 
Start End Fault 

Description 
Implementation Impacts from 

Implemented Fault 
Other Abnormalities Caused by 

Simultaneous Naturally 
occurred Faults 

WPM-
FPCA  

(Retention 
Rate - 0.65) 

WPM-
FPCA 

(Retention 
Rate - 0.95) 

WPM-BN Diagnosis Result (Top 
three faults with high posterior 

probabilities) 

07/22/18 20:20 21:40 Change 
weekend 
occupied 
schedule to 
end at 8:20 
PM (earlier 
unoccupied) 

Stop the HVAC 
system at 
8:20PM 

Multiple impacts on 
AHU-1 to 3  

Multiple impacts on AHU-1 to 
3  

detected detected 1) System operation schedule 
unoccupied fault: 99.9% 
2) AHU-1 SA temperature sensor 
negative bias fault: 67.2% 
3) Chiller stop fault: 45.3% 

07/23/18 8:00 18:00 CHWS 
temperature 
negative bias 
3.0 °F 

Change CHW 
supply 
temperature 
setpoint from 
44 °F to 47°F 

AHU-1 cooling coil 
valve is lower than the 
baseline; AHU-1 supply 
air static pressure is 
lower than the baseline 

AHU-2 speed is lower than the 
baseline; AHU-2 SA pressure 
is higher than the baseline; 
AHU2 cooling coil valve does 
not react 

NOT 
detected  

detected 1) AHU-1 SA temperature sensor 
negative bias fault: 33.1% 
2)  System operation schedule 
unoccupied fault: 30.0% 
3) Chiller stop fault: 11.5% 
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8.2.2.1 Fault Test on July 9th 2018 
On July 9th, a supply air temperature sensor bias fault was implemented. AHU-2 supply air 

temperature sensor with a negative bias (3.5 °F) was implemented by overriding the supply air 
demand adjust point from 0 to 1.75. This negative bias fault was expected to cause the actual AHU 
supply air temperature to be higher than the screen value. Therefore, the damper positions of the 
downstream VAV terminal units would be higher than their baseline values, in order to allow more 
air flow to enter the zone and make up the increased supply air temperature. The supply air static 
pressure would be disturbed, and the AHU supply air fan would run at a higher speed to increase 
the static pressure. From the operation data during the test and from baseline as shown in Figure 
8-1, it is observed that the AHU-2 supply air static pressure was lower than the baseline, and the 
supply air fan speed was higher than the baseline.  

Besides the implemented fault, abnormalities caused by multiple faults which naturally 
occurred were also observed. The chilled water differential pressure was higher than the baseline, 
as shown in Figure 8-2. In the AHU-1, cooling coil valve position was observed to be higher than 
the baseline, and the supply air static pressure was observed to be lower than baseline, as show in 
Figure 8-3.  

 

 
 

Figure 8-1 AHU-2 operation between the test day and the baseline (July 9th, 2018) 
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Figure 8-2 Chiller plant operation between the test day and the baseline (July 9th, 2018) 

 
 

Figure 8-3 AHU-1 operation between the test day and the baseline (July 9th, 2018) 

The whole building abnormality was successfully detected using both 0.65 and 0.95 retention 
rates as shown in Figure 8-4 (with a retention rate of 0.95).  
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Due to multiple faults occurred in different systems, this is a challenging fault isolation case.  
Because a lack of ground truth (we are unsure of the exact faults that have caused the abnormalities 
in other subsystems), it is hard to quantitatively evaluate the BN fault diagnosis result.  As shown 
in  

Figure 8-5, WPM-BN method’s result shows that the three faults with higher posterior 
probability are: 1) AHU-2 OA damper stuck at a higher position fault:  79.8%; 2) AHU-1 OA 
damper stuck at a higher position fault:  60%; and 3) AHU-1 cooling coil valve operate at higher 
position fault: 32.9%. While, the Implemented fault, AHU-2 SA temperature negative bias fault, 
has the posterior probability of 18.2%.  These diagnosed faults would lead to the abnormalities as 
we have observed. Without additional system examination, it is difficult to isolate the exact faults 
that actually occurred.   

 

      
 

Figure 8-4 Fault detection result under 0.95 PC retention rate (July 9th, 2018) 

 
 

Figure 8-5 Fault diagnosis result (July 9th, 2018) 



100 

 

8.2.2.2 Fault Tests on July 10th and July 18th 2018 
On July 10th and July 18th 2018, the outdoor air damper at AHU-2 was artificially stuck at 30% 

and 60% opening by overriding the corresponding control signal in the BAS. The stuck positions 
(30% and 60% open) were higher than the damper’s normal position (15% open) under similar 
weather conditions. In the summer, the HVAC system of the demo building is operated under 
cooling mode, where the AHU outdoor air damper is typically controlled to be at a 15% opening, 
in order to maintain the minimum requirement of fresh air flowrate. However, during the early 
morning and late night, where the outdoor enthalpy is lower than the return air enthalpy, the 
outdoor air damper is controlled under economizer mode to save energy. On these two days, the 
fault test period was from 10:30 to 20:30 and 09:00 to 19:30, respectively.  

On July 10th, besides the implemented fault, other abnormalities caused by other naturally 
occurred faults in different systems were also observed. For example, in the AHU-1, the cooling 
coil valve position was higher than the baseline, and supply air temperature was lower than the 
baseline, as shown in Figure 8-6. 

 

 
 

Figure 8-6 AHU-1 operation between the test day and the baseline (July 10th, 2018) 

On July 18th, besides the implemented fault, AHU-1 SA static pressure was lower than the 
baseline. And AHU-1 cooling coil valve position was higher than the baseline in some time period 
during the fault test, as shown in Figure 8-7.   
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Figure 8-7 AHU-1 operation between the test day and the baseline (July 10th, 2018) 

Both of these two test days were detected as abnormal when using the WPM-FPCA fault 
detection method with a retention rate of 0.95 as shown in Figure 8-8 and Figure 8-9. When using 
a retention rate of 0.65, the test case with a milder fault severity (30% open) was not detected.   

WPM-BN diagnosis results for both cases are shown in Figure 8-10 and Figure 8-11. 
According to the posterior probabilities, the WPM-BN method ranked the implemented fault as 
the top potential fault.   

On July 10th, it shows that the three faults with higher posterior probability are: 1) AHU-2 OA 
damper stuck at a higher position fault: 40.8%; 2) AHU-1 OA damper stuck at a higher position 
fault:  12%; and 3) AHU-1 cooling coil valve operate at higher position fault: 11.2%.   

On July 18th, it shows that the three faults with higher posterior probability are: 1) AHU-2 OA 
damper stuck at a higher position fault: 62.4%; 2) AHU-1 cooling coil valve operate at higher 
position fault: 22.6%; and 3) AHU-2 cooling coil valve operate at higher position fault: 17.1%.  
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.  
Figure 8-8 Fault detection result under 0.95 PC retention rate (July 10th, 2018) 

 

 
 

Figure 8-9 Fault detection result under 0.95 PC retention rate (July 18th, 2018) 
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Figure 8-10 Fault diagnosis result  (July 10th, 2018) 
 

 
 

Figure 8-11 Fault diagnosis result  (July 18th, 2018) 
 

8.2.2.3 Fault Test on July 11th, 2018 
In this day, an AHU-2 cooling coil valve fault (stuck at a higher than normal position) was 

implemented. The AHU-2 cooling coil valve was stuck at 80% open position, which was higher 
than the normal position (40% to 60%). The fault test period was from 10:00 to 20:00. As expected, 
whole building fault symptoms were observed. The AHU-2 supply air temperature was lower than 
the normal value, and thus caused the downstream VAV terminal units to reduce their discharge 
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air flow rates, which further led to the supply fan speed to be lower than the baseline value as 
shown in Figure 8-12.  

 

 
 

Figure 8-12 AHU-2 operation between the test day and the baseline  (July 11th, 2018) 

 

Besides the implemented fault, AHU-1 cooling coil valve position was observed to be higher 
than baseline. The supply air temperature and the static pressure in AHU-1 were observed to be 
lower than the baseline as shown in Figure 8-13. 

The whole building abnormality was successfully detected as shown in Figure 8-14 (with 
retention rate of 0.95). 

The diagnosis result (Figure 8-15) shows that three faults were diagnosed with high posterior 
probabilities: 1) AHU-2 cooling coil valve stuck at a higher position fault: 87.3 %; 2) AHU-1 
cooling coil valve soft-ware-override at higher position fault: 42.1%; and 3) AHU-1 cooling coil 
valve stuck at higher position fault: 12.6 %.  Again, these diagnosed faults agree well with the 
observed fault symptoms.   

8.2.2.4 Fault Test on July 22nd, 2018 
A schedule fault, i.e., system is unoccupied at an earlier than normal time, was implemented 

by stopping the HVAC system at 20:20 (normal time is 21:00). This fault impacted multi-
subsystems. This fault, which demonstrated whole building fault symptoms, was successfully 
detected and diagnosed by the developed FDD method, as show in Figure 8-16 and Figure 8-17. 
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The diagnosis result shows that the three faults with higher posterior probability are: 1) system 
operation schedule unoccupied fault: 99.9%; 2) AHU-1 SA temperature sensor negative bias fault: 
67.2%; and 3) chiller stop fault: 45.3%.  

 

 
 

Figure 8-13 AHU-1 operation between the test day and the baseline (July 11th, 2018) 

 
 

Figure 8-14 Fault detection result under 0.95 PC retention rate (July 11th, 2018) 
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Figure 8-15 Fault diagnosis result (July 11th, 2018)  

 

 
 

Figure 8-16 Fault detection result under 0.95 PC retention rate (July 22nd, 2018) 

8.2.2.5 Fault Test on July 23rd, 2018 
A sensor bias fault was implemented on the chilled water supply temperature sensor. On this 

day, the bias was set to be negative 3°F through adjusting the outlet chilled water temperature 
setpoint from 44°F to 47 °F.  

This fault caused the AHU-2 cooling coil valve position to be lower than baseline, as shown 
in Figure 8-18.  



107 

 

 

 
 

Figure 8-17 Fault diagnosis result (July 22nd, 2018) 

 
 

Figure 8-18 AHU-1 operation between the test day and the baseline (July 23rd, 2018) 

At the same time, some other abnormalities were observed in the AHU-2. For example, supply 
air fan speed was lower than the baseline, and supply air pressure was higher than the baseline as 
shown in Figure 8-19. This may be caused by the faults from the downstream VAV terminal units, 
or different zone loads.  
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Figure 8-19 AHU-2 operation between the test day and the baseline (July 23rd, 2018) 
 
As there were abnormalities in different systems, this day was successfully detected by the 

WPM-FPCA method as shown in Figure 8-20 (with a retention rate of 0.95). But since different 
fault root-causes may lead to the fault symptoms, the posterior probability of the implemented 
fault was not calculated as the top one form the WPM-BN method as shown in Figure 8-21. The 
diagnosis result shows that the three faults with higher posterior probability are: 1) AHU-1 SA 
temperature sensor negative bias fault: 33.1%; 2) System operation schedule unoccupied fault: 
30.0%; and 3) Chiller stop fault: 11.5%. The implemented fault was diagnosed a potential fault 
with a posterior probability of around 8%.    

 

8.3 Summary 
 In this Chapter, the seven makeup fault tests implemented during summer of 2018 are 
summarized. The developed AFDD tools are further evaluated using the makeup test data. These 
faults have been selected due to a lack of collected data that contain these faults from previous 
tests. Simultaneous naturally occurred faults have been observed in nearly all cases. The developed 
WPM-FPCA method has been demonstrated to be effective at detecting whole building 
abnormalities caused by the implemented faults and/or multiple simultaneous naturally occurred 
faults. However, it should be noted that the naturally occurred faults have made it difficult to 
establish the ground-truth to evaluate the WPM-BN fault diagnosis method. Despite of this 
difficulty, the WPM-BN fault diagnosis method has successfully demonstrated that it is able to 
suggest potential faults that could have caused the observed abnormalities. 
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Figure 8-20 Fault detection result under 0.95 PC retention rate (July 23rd, 2018) 
 

 
 

Figure 8-21 Fault diagnosis result (July 23rd, 2018) 
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Chapter 9 Market Study 
9.1 Market and Competition 

Years ago, fault diagnostic technologies were tested and trusted by owners who later found 
the software unreliable. Since then, several companies have worked to address some of the most 
glaring flaws of the AFDD technology, including creating two systems of fault detection (rules 
and symptoms), new methods of installation (including modern retro-commissioning), and 
diagnostic assessment (sub-automatic fixing and automatic fixing). The result is a market of 
diverse AFDD technologies that focus on niche markets. Current market adoption is limited, but 
in our survey of service providers, most expressed a shared prediction that prices within the 
industry will fall over the next two years as effectiveness of the technologies available increases. 

Our AFDD software is different than the above methods so that once users establish an 
expected return on investment and limit false-detections, users of the technology can expect a 
holistic improvement to their facilities.  

It is estimated that 15 to 30% of energy is wasted in commercial buildings due to various faults 
in HVAC equipment and controls. Since the market for AFDD software is relatively new, 
consumer interest and education is low. The technology requires a robust marketing presence to 
educate consumers and drive market adoption that is most easily provided through larger 
companies. There are currently no benchmarking or performance standards nor government coding 
standards. This disincentives widespread market adoption of the fault diagnostic software because 
they are difficult to compare and not legally required in most buildings. Without well-defined 
parameters for evaluating product performance, it can be difficult for consumers to make a well-
informed decision, leading to minimal technology adoption. 

The current market is poised for significant growth with increased market adoption in the next 
decade, which is why this is an excellent time to introduce a cutting-edge technology. According 
to a report conducted by Navigant Research, the Building Energy Management Systems industry 
is predicted to quintuple over the course of nine years with most of the growth being concentrated 
in Europe, Asia, and North America. The report details how over a four year period between 2010 
and 2014 the industry was led by the creation of several BEMS-focused startups and how the next 
nine years will see a transition from startups to acquisitions as individual companies come to 
dominate the industry and will find the most profit in expanding their portfolios. Predictably, future 
AFDD companies will seek a purchasing option to best take advantage of the increased profit 
potential that an acquisition-focused market brings. 

 

9.2 Distribution Recommendations 
There are several big players in the AFDD software market that create significant barriers to 

gaining market share. Creating a business around the software would be costly and time-
consuming. Additionally, the Navigant report indicates that these companies will be looking for 
new technologies to serve the needs of an industry that will likely quintuple in the next decade. 
For these reasons, we recommend licensing the technology to the major companies that already 
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provide fault diagnostic services for HVAC systems. Companies that have a well-established client 
base, exhibits strong growth in the areas of fault detection services, and has previously licensed 
technology are optimal for a licensing agreement. We believe that larger service providers will 
best fit these characteristics. 

There are three primary types of distributors who would be strategic partners in a licensing 
deal. The first type is companies that sell and maintain building control systems. Siemens and 
Allen-Bradley hold significant market share in this segment and license existing technology they 
use. Companies of this sort generally have capital flows of millions of dollars, giving them the 
capital to implement retro-commissioned software and enter into a more expensive licensing 
agreement. While they may have the incentive to purchase AFDD technology, many of these 
companies are already investing in their own research teams to develop inner-company brands of 
diagnostic software. Their R&D departments are well funded and produce excellent software. We 
believe that the robust nature of the R&D departments will actually incentivize them to license the 
software since they have engineers who have the time and funding to improve upon and best 
implement the technology.  

The second type of company we’ll target includes companies that act as national facilitators, 
such as Emcor and Comfort Systems. They focus on maintaining and operating buildings for 
clients. Companies of this sort have already developed their own client networks and have demand 
for software that increases their profits and efficiency. These companies may also be less likely to 
have a robust R&D team, which necessitates licensing agreements to have the best software 
available to their clients. One of the benefits of licensing with one of these companies is their 
national network is large enough that initial rollout of a new AFDD software can be relatively 
large.  

The third type includes companies that perform data analytics and mining that presents 
information to its owners, such as Building IQ. These companies do not develop or install their 
own fault detection software, so they would benefit greatly from having a licensing agreement. 
However, their capital and cash flow is less than the above companies, which means the licensing 
agreement would have to be at a lower price point. These companies function similarly to national 
facilitators, as they also have the benefit of their own client networks while trusting their service 
to an externally developed fault detection and diagnostic software. 

 

9.3 Survey Study  
A survey study was performed to understand the existing AFDD market, including its gap and 

need.  The above market and distribution discussions are based on the survey study findings.  The 
details of this survey study are provided in Appendix IV. 

https://drexel.qualtrics.com/SE/?SID=SV_6ujZWI0IPOJf4r3 

https://drexel.qualtrics.com/SE/?SID=SV_78rH3vujFJ5PlKB 
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Chapter 10 Undergraduate Engagement 
From year 2016 to year 2018, a total of twelve Drexel undergraduate students have been 

involved in this project to perform different research tasks. Their names and responsibilities are 
provided in Table 10-1. Among them, Ojas Pradhan will pursue a doctoral degree in building 
energy efficiency area. Ojas Pradhan and Noor Solatch have been awarded by the Sustainable 
Energy Fund to attend the 2018 EnergyPath Conference. Two students are currently working in 
the building industry pursuing energy efficient design and operation strategies. One student has 
been employed by a Big Data enterprise company, benefited from the experiences he has gained 
during this project. 

 
Table 10-1 Undergraduate Engagement 

Year Name Major Responsibility 

2016 
Taylor Castonguay Architectural Engineering Demo building identification, 

fault test design 
Binbin Fan Mechanical Engineering Fault test implementation 

2017 

Wenjian Yu Mechanical Engineering Fault test implementation 

Benjamin Scheinberg Mechanical Engineering Fault test evaluation 

Mahamoudou Doumbia Electrical Engineering Fault energy impact analysis 

Taiyu Chen Computer Engineering AFDD tool interface 
development 

Ojas Pradhan Mechanical Engineering AFDD method evaluation 

Noelle Wiggins Business AFDD tool marketplace 
analysis 

Jeremy Solomon  Business AFDD tool marketplace 
analysis 

2018 

Ojas Pradhan Mechanical Engineering AFDD method evaluation 

Taiyu Chen Computer Engineering AFDD tool interface 
development 

Crompton Hans Architectural Engineering BAS data collection 

Jaymes Bailey Architectural Engineering Fault test evaluation 

Noor Solatch Mechanical Engineering AFDD method evaluation 
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Chapter 11 Conclusions and Recommendations 
11.1 Conclusions 

In this report, the development and evaluation of the developed VOLTTRONTM compatible 
whole building AFDD tools are discussed. Different from component level AFDD solutions, the 
developed whole building AFDD tools aim at detecting, diagnosing and isolating whole building 
faults, i.e., those faults that occur in one component/subsystem, but have impacts on different 
components/subsystems, or have significant impacts on whole building performance. Main 
achievements from this project include: 

• Developed a fault detection method that employs weather/schedule based pattern matching 
and feature engineering based principal component analysis techniques to detect whole 
building faults. 

• Developed a fault diagnosis method that employs weather/schedule based pattern matching 
and BN technique to integrate expert knowledge and machine learning techniques to isolate 
the root causes of whole building faults.  

• Building operational data that contain fault behavior caused by both naturally occurred and 
artificially implemented faults are collected for multiple seasons from a medium-sized 
university campus building. A variety of whole building faults that affect both primary and 
secondary systems have been implemented in this demonstration building for multiple 
seasons.  

• The ground truth for these collected real building data, i.e., the evaluation data set, is 
established by an extensive manual data analysis process.  In test cases that contain multiple 
simultaneous faults, the ground truth for the root causes of those naturally occurred faults 
could not be verified due to the limitation of demonstration building accessibility.   

• Using the collected evaluation data set, the WPM-FPCA fault detection method is 
evaluated under two different PC retention rates, i.e., 0.65 and 0.95. It is observed that 
when using 0.65 PC retention rate, WPM-FPCA fault detection method achieves a 79% 
fault detection rate (this rate reaches 85% when including the six makeup fault test cases), 
while when using 0.95 PC retention rate, WPM-FPCA fault detection method achieves 100% 
fault detection rate (this rate remains 100% when including the six makeup fault test cases). 
Under both PC retention rates, WPM-FPCA fault detection method demonstrates 0% false 
alarm rates.  

• Using the evaluation data set, the developed WPM-BN fault diagnosis method has 
successfully diagnosed thirteen (13) faults out of the fourteen (14) fault test cases in which 
only single fault exists. The one mis-diagnosed case exhibits fewer fault symptoms in 
different subsystems, when compared with other fault test cases. In a fault day when there 
are simultaneous occurred faults, the accuracy of the WPM-BN fault diagnosis method 
could not be completely established due to a lack of ground truth about the root causes.    
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• Overall speaking, the developed whole building AFDD tools demonstrate satisfactory fault 
detection/diagnosis accuracy with very low false alarm rate.  

• These developed methods are highly automated, computational efficient, and do not require 
special training with an estimated implementation cost of ~$0.12 per square foot. The 
simple payback time is less than 3 years.  

• An estimated 5 - 40% of HVAC system energy can be saved by diagnosing and correcting 
the faults investigated. 

• Twelve undergraduate students from different disciplines have been engaged and exposed 
to AFDD in the building industry. Educational materials, including an online demo site, 
have been developed that can be used to educate and train workforce in the FDD field.   

 

11.2 Recommendations 
This research demonstrates the feasibility of using data-driven whole building AFDD methods, 

which integrate artificial intelligence techniques with domain knowledge, to accurately and cost-
effectively detect and diagnose faults that have a whole building level impact. However, further 
research are needed to evaluate the developed solutions in more real buildings and with more types 
of faults to examine the proposed solutions’ performance and scalability. The following 
recommendations are summarized from the conduct of this project: 

11.2.1 Recommendation on More Evaluation using Real Building Testbeds 
Due to the limited budget and time of this project, only one real building testbed with a limited 

number of faults are employed to evaluate the developed tools. In order to evaluate more 
thoroughly the performance, and especially the scalability, of the developed solutions, more 
buildings and more whole building faults need to be engaged in the future. It is recommended also 
to be aware that many faults may not cause detectable fault impacts under certain 
weather/operation/internal load conditions. For example, an outdoor damper stuck fault would not 
have any adverse impact if the weather/internal conditions actually would result in an outdoor air 
damper position that is close to the position that the damper is stuck at. Moreover, other naturally 
occurred or design faults could complicate fault impacts expected from an artificially implemented 
fault. For example, a chilled water differential pressure sensor bias fault would not cause the 
variable frequency pump to behave differently from its baseline if the chilled water system is not 
sized correctly. Therefore, careful examination of a real building testbed is needed prior to the 
design of an artificial fault implementation. Enough time needs to be budgeted for real building 
testing to allow potential failures and complications.  

In this study, energy impact has been the main focus when analyzing fault impacts and 
selecting key measurements for PCA modeling and abnormality detection. A whole building fault 
may cause adverse impacts on other building performances such as indoor air quality. More 
comprehensive fault impact evaluation should be made in future real building demonstration and 
evaluation studies.  
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11.2.2 Recommendation on Improvement of WPM-FPCA Fault Detection Method  
For the WPM-FPCA fault detection method developed in this study, the following 

issues/improvements can be explored in the future: 

1. Currently, a fixed snapshot window mechanism is used to generate the WPM baseline 
dataset. In this study, such mechanism has delivered satisfactory performance in terms of accuracy 
and computation efficiency. However, if in a building where operation mode varies frequently, 
such a fixed snapshot window mechanism could potentially cause a false alarm. Therefore, in the 
future, a sliding window mechanism can be explored. 

2. In this study, outdoor air enthalpy is the only index that is used to indicate weather condition 
and schedule is the only index that is used to indicate internal load due to a lack of occupancy 
information in the demonstration building. If occupancy information is available in future studies, 
it should be explored to be combined with weather related index to more accurately generate a 
baseline dataset. 

3. Advanced techniques, such as Kernel PCA, Independent Component Analysis (ICA), and 
Kernel ICA, have been reported in the literature to be able to overcome certain shortcomings of 
traditional PCA, including a lack of ability to handle non-Gaussian dataset. These advanced 
techniques can be examined in future studies to improve the efficacy of the WPM-FPCA method. 

11.2.3 Recommendation of the WPM-BN Fault Diagnosis Method  
For the WPM-BN fault diagnosis method developed in this study, the following 

issues/improvements can be explored in the future: 

1. Due to a lack of information about building fault frequency and impact in general, and due 
to the diversity of building design and systems, it is very hard to obtain accurate prior probability 
distribution for each fault, as well as conditional probability distribution for each fault evidence. 
In this study, literature and expert knowledge are used to obtain prior probability and is set to be 
universal for all faults considered.  At the same time, the conditional probability distributions are 
discretized into several categorized levels. Again, domain knowledge is used to generate these 
distribution levels. More fault frequency data should be collected to provide more insights on the 
probability values used in this study.  More sensitivity tests should be conduct in the future to 
examine the robustness of the method.   

2. As illustrated in Chapter 8, simultaneous multiple faults happen in a real building.  
Symptoms from different faults could affect each other. How to obtain ground truth of fault ranking 
when multiple faults exist needs to be explored. Although the WPM-BN method has demonstrated 
great potential to diagnose faults even when multiple faults exist, evaluating BN’s output under 
the scenario of multiple faults remain to be challenging. 

11.2.4 Recommendation on Baseline Data Collection 
Data quantity and quality play a critical role for any data-driven method, including data-driven 

AFDD methods. For the demonstration building in this study, which has a data sample interval of 
5 minutes, it is found that at least 30 days of baseline data need to be collected for each season. 
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How to more effectively collect baseline data is an interesting topic that worth exploring in future 
research.  
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Appendix I Fault cases in Year 2016 and Year 2017 
Table I-1 Fault case in Year 2016 
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Table I-2 Fault case in Year 2017 
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Appendix II List of Whole Building AFDD Tool Code 
 

The Whole Building AFDD methods are developed based on MATLAB® R2015b. In order to implement demo, MATLAB®  should be 
installed firstly. The code list is provided as below 

Table II-1 Code list of AFDD tools 

Function Name Description 
Version 
Control  

Latest Updated 
Date 

Main function       
Whole_building_AFDD_testbed_SAX_Weather_V7.m Main function V7 2018/7/2 
        
Test Configuration       
Gather_Test_Info_V1.m Gather test information V1 2018/1/2 
Gather_Test_Parameter_Setting_V1.m Gather test parameters V1 2018/1/2 
Nesbitt_HVAC_Equipment_Ix.m Gather test building equipment information V1 2018/5/2 
        
Data Collection       
Data_collection_4.m Load test data V4 2017/1/17 
test_period_conversion_V1.m Convert the test time period V1 2017/5/17 
Historical_database_generation_V3.m Collect historical fault free data V3 2018/1/20 
Data_ORG_2.m Data clean and rearrange V2 2017/1/17 
        
SAX method       
SAX_PM_T1.m Implement SAX method V1 2017/1/16 
Wheather_day_extract_Ext_V4.m Group weather data V4  2017/5/18 
        
PCA method      
PCA_calculation_T1.m Generate baseline PCA model V1 2017/1/16 
PCA_test_data_statistic.m PCA statistic  calculation V1 2017/1/16 
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Table II-1 Code list of AFDD tools (Cont’d) 

 

Function Name Description 
Version 
Control 

Latest Updated 
Date 

Detection post process       
plot_detection_result_2.m Plot statistic chart V2 2018/8/20 
        
BN method       
BN_inference_V2.m Implement BN inference V2 2017/10/17 
Gen_BN_from_Xls_Dynamic_V1.m Generate BN network V1 2017/5/10 
BN_evidence_gen_V3.m BN evidence generation V3 2018/10/25 
Call_BN_structure.m Call BN structure model V1 2017/10/17 
LEAK_generate_auto_V2.m Generate LEAK probability V2 2018/1/17 
        
Method evaluation        
Equipment_pattern_analysis_V3.m Equipment operation analysis V3 2017/11/11 
Energy_consumption_analysis_V1.m Energy consumption evaluation  V1 2018/3/22 
BN_Posterior_Prob_Analsis_V1.m BN posterior probability analysis and plot V1 2018/3/1 
weather_pattern_analysis_3.m Weather pattern analysis V3 2017/4/17 

 

 

 

 

 

 

 

 



A-5 

 

Appendix III List of VOLTTRONTM and BAS Interface Code 
The VOLTTRONTM to BAS interface driver is developed under Python 2.7.3 version. In order to 
run the driver, Python 2.7 should be installed. Python third-party packages such as CSV, Suds, 
datatime, os, shutil and so on should be firstly imported. The list of the developed codes is provided 
as below. 

 
Table III-1 Code list of VOLTTRONTM and BAS interface driver 

Code List 
Module Name Description Version Control  

send_to_csv.py Send BAS data to a csv file V1 
date_time_org.py Obtain time stamp from the BAS V1 
get_data.py Collect BAS data V1 
Read_address.py Read BAS data measurement address V1 
voltton_webctrl_V1.py VOLTTRON to BAS interface driver V1 
call_webctrl_trend.py Call BAS trend data paths V1 
splitcsv_Date.py Split csv data file according to the date V1 
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Appendix IV Market Survey Instrument 
Two surveys were conducted to understand the market barriers and gaps: Service Providers 

Survey (https://drexel.qualtrics.com/SE/?SID=SV_6ujZWI0IPOJf4r3) and Building 
Owner/Operator Survey (https://drexel.qualtrics.com/SE/?SID=SV_78rH3vujFJ5PlKB).  Screen 
shots of these two surveys are provided here to illustrate the details.   

1) Service Providers Survey: 

 

https://drexel.qualtrics.com/SE/?SID=SV_6ujZWI0IPOJf4r3
https://drexel.qualtrics.com/SE/?SID=SV_78rH3vujFJ5PlKB
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2) Building Owner/Operator Survey: 
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Appendix V Whole Building Fault Energy Impacts  
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Appendix VI Variable Selection Result  
Table VI-1 Variable Selection Result (summer season) 
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Table VI-1 Variable Selection Result (summer season) (Cont’d) 
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Table VI-1 Variable Selection Result (summer season) (Cont’d) 
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Table VI-1 Variable Selection Result (summer season) (Cont’d) 
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Table VI-1 Variable Selection Result (summer season) (Cont’d) 
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Table VI-1 Variable Selection Result (summer season) (Cont’d) 

 



A-21 

 

Table VI-2 Variable Selection Result (winter and transition season) 
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Table VI-2 Variable Selection Result (winter and transition season) (Cont’d) 

 



A-23 

 

Table VI-2 Variable Selection Result (winter and transition season) (Cont’d) 
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Table VI-2 Variable Selection Result (winter and transition season) (Cont’d) 
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Table VI-2 Variable Selection Result (winter and transition season) (Cont’d) 

 



A-26 

 

Table VI-2 Variable Selection Result (winter and transition season) (Cont’d) 
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