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Dec’s conventional diesel conceptual model
describes short-ID mixing & combustion

O, =21% (noEGR)
SOl =10 BTDC
P 1000 Bar

inj

PAH PLIF: Soot Precursors
As hot ignition reactions increase
the temperature in the jet, fuel
fragments are formed into
chemical building blocks for soot.

Chemiluminescence: Ignition
Spontaneous ignition reactions
occur in the hot mixture of fuel
and air throughout the leading
portions of the jet.

2
Rayleigh Scatter: Vapor Fuel
The vaporized fuel-air mixture
downstream of the liquid is
relatively uniform and fuel-rich
(D =2-4).

- N W HdOO N
Equivalence Ratio

Mie Scatter: Liquid Fuel
After penetrating approx.
25 mm, the hot, entrained
gases completely vaporize
the liquid fuel.

1

LIl: Soot Concentration
Shortly after the premixed fuel
burns, soot is formed in the
hot, fuel-rich region throughout
the jet cross-section.

S
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From Dec’s 1997
conceptual model
(SAE 970873).

Scale (mm)

OH PLIF: Diffusion Flame
Shortly after the premixed
fuel burns, a thin diffusion
flame forms on the jet
periphery, surrounding the
interior soot cloud.

NO PLIF: Thermal NO
NO forms on the
periphery of the jet

in the hot diffusion-

I Liquid Fuel
[ Rich Vapor-

Fuel/Air Mixture [l Thermal NO Production Zone
wess Diffusion Flame

[ Initial Soot Formation

== Soot Oxidation Zone

Low RN High

Soot Concentration

[ Fuel-Rich Premixed Flame

flame products.
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2n LTC conceptual model describes long-ID mixing
CRI. & combustion for both heavy- and light-duty

4

Early-injection LTC Late-injection LTC

10 20 30 40 mm 10 20 30 40 mm

* Team effort with Lyle Pickett and Paul Miles ~ ——— W —

» Conceptual models for partially premixed low-temperature diesel \\Jj
combustion,” M.P.B. Musculus, P.C. Miles, and L.M. Pickett, — :
Progress in Energy & Combustion Science 39(2):246-283, 2013 \\*ﬁ e ;ﬁi}":\\ - |
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\. Conventional
CRF Diesel Combustion

* n-Heptane fuel, so spray is short
* Low camera gain — bright soot
« Late soot at center: injector dribble

Fuel n-heptane
Intake 21% O,
Load 4.6 bar IMEP
Intake T 153 C

Intake P 1.80 bar

CR SOl 10° BTDC
Speed 1200 rpm
Enginer,  10.75
Window 100 mm diam
Framing 7200 fps
Gain 1

Filter 500 nm SWP

N B O
o W 9

Pressure [bar]

o

1360

— IJJ

N

o o
AHRR [J/deg]
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27\ LTC: Early-
CKE. Injection PCCI

* n-Heptane fuel, so spray is short
« High gain: very little soot, cool flame

* No combustion at center: UHCs

Fuel n-heptane
Intake 21% 13% O, (EGR)
Load 4.5 bar IMEP
Intake T 163G 30C
Intake P 48 1.5 bar
SOl 40° 25° BTDC
Speed 1200 rpm
Engine r¢ 10.75
Window 100 mm diam
Framing 7200 fps

Gain 4 500

Filter 500 nm SWP

'E' 60+ 41360 §
2 i o
@ 40+ 41240 S
= I T e
o 20+ 4120
| . > I
o caq....... il <L

0 s
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2\ [ETCiLateslnjection’ = ° 360
_ CRE. pCCI(MK) o 40/
@ 201
 Near-TDC inj.: shorter spray & ID a

, : : 0
+ High gain: very little soot, cool flame 240 -210 -180 -60
« No combustion at center: UHCs

Fuel n-heptane
Intake 21% 13% O, (EGR)
Load 4 bar IMEP

Intake T 153 Cc30Cc50C
Intake P 1.8 4.5 2.0 bar

SOl -10° -25° 3° ATDC

Speed 1200 rpm

Engine r¢ 10.75

Window 100 mm diam

Framing 7200 fps

Gain 4 500

Filter 500 nm SWP Sandia

National
Laboratories
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LTC: Increased premixing and high EGR reduced

CRE. PM & NOXx, but other problems arose, including UHC

* Many potential sources may contribute to

UHC emissions (wall wetting, crevices, etc.)

« Some UHC emissions increase rapidly when ignition occurs after end of injection

__60 - - ’0-

2 Diesel engine UHC ~'DO:

"5) 50F emissions data for a wide : =
< range of operating N :

2 40} conditions, courtesy T dened
o Cummins Inc. Y~ -

D 30 R o o LIS
O O . g

O o .

o 20F K rhea, ]
7 ©

T 1 .

>

s ?

Ignition Dwell [CAD]

“Ignition Dwell” = Time from end of
injection to start of combustion

= Most conventional diesel combustion
conditions have negative ignition
dwell and low UHC emissions

CTTTLELL ' Many LTC (PPCI, HCCI, MK, etc.)

and some low-load diesel conditions
have positive ignition dwell, and high
UHC emissions

“Hockey Stick”. When ignition is delayed just a few crank angle degrees (<1 ms)
after the end of injection, UHC emissions increase by an order of magnitude.

What is causing this source of UHC emissions?

COMBUSTION RESEARCH FACILITY
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A\ ~LTC spray penetrates more quickly + longer
CRE. liquid; liquid recedes after EOI, but before SOC

f * Injection into lower density: faster spray penetration, longer liquid length

* Liquid recedes at/after EOI, but before SOC (not vaporized by combust.)
— If vaporization is still mixing-limited, implies increased mixing after EOI

1200 RPM o
g 41 N N 1.0° 9| N Liquid Fuel
D’,j!Z:OJ% mm 3. S ; o Gravscale ASI :] Vapor Fuel

SOI =22°BTDC
o |
3.0 e

o ' Leading edge
' of vapor fuel AS|

Trpc = 867 K

Contours: 5.0 0‘

, ASI
Outline of
liquid fuel
_:—:—
(l) 110 210 3[0 410 5]0 ([) 1]0 2'0 3IO 410 5]0 0 10 201 30 40 50
Distance from Injector [nm]  Distance from Injector [mm] Scale (mm)
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Fuel-tracer fluorescence shows near-injector

’ “ mixtures rapidly become fuel-lean after EOI

7 0.5 5=
i 1
1.25
10 r.l\.. 1% =
10 20 30 40

Distance from Injector [mm)]

* At end of injection (0 AEI), mixtures are richer near
injector (¢ ~ 9) and leaner downstream

* |n the quasi-steady jet, from a Lagrangian

perspective (moving with jet fluid at penetration
rate):

~ = — After 2° crank angle, 25 mm penetration to
¢p=5to7

~— After 5° crank angle, 45 mm penetration to
d=3to5

* After end of injection, mixtures near injector are
much leaner than expected for downstream
transport in a steady jet

7T Y ~
‘ A "~ — At 2° AEI, within 25 mm penetration,

d=1t03

[ = =~ — At 5° AEI, within 45 mm penetration,

$=0.5-15
(SAE 2007-01-0907, Musculus et al.)
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2. Analytical control-volume analysis for steady jets

predicts richest mixtures near injector (liquid)

*In 1996, Naber and Siebers used control-
volume analysis to predict diesel jet
penetration and mixing (SAE 960034)

* Some assumptions:
—Non-vaporizing, isothermal
—Injection rate and ambient are steady
—Uniform velocity and ¢ profiles
—Constant spreading angle (adjusted)
—Fuel velocity = entrained gas velocity

» Apply conservation of mass and momentum
to derive analytical penetration & ¢ solution:

- 30
O(x) =
J1+16%2 —1

 Excellent prediction of experimental
penetration, equivalence ratio, liquid length

5 But, richest mixtures are near injector,

which is inconsistent with LTC liquid
vaporization after EOI

' Re-derive 1-d discrete/analytical
model for transient jets

Control Surface —\ Entrained Gas: P, .p,

U(x)
A(x)
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2~ 1-D jet model predicts lean mixtures near injector

CRE  after EOIl due to “wave” of increased entrainment

N : : — Relative Entrainment Rate
. Time = 0.010 ms at iteration 222 - Bel. Entrair. Bate.? Eusl 2
—— Steady-State Analytic 1004
7200' - Control Volume Model -% 50 3.5
= ' X -ty 3
2> B Qg 12.5
8 Q@ T L U ——— {12
o ©
- L ... SO 15
c 8 1 L
5 B o T A R 1
= SR 1 I los
% 0.1} :
0 . . . . 0
0 20 40 60 80 100 0 20 40 60 80 100
Axial Distance [mm] Axial Distance [mm]
100 ————— ——500 @ 10
E 80} 400 E s " Equivalence Ratio Contours 1
E z 6
c 60} 3008 4
= ) 2 | = 1
S 40} 200 > ]
D = 0.8
5 20f 1005 99
2 0
= 0.2 : - . :
0 0 £
0051152 25 3 35 4 R

Time [ms] Axial Distance [mm]
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2\ The entrainment wave action is consistent
CRI with several observations in diesel jets

1-D Diesel Jet Control-Volume Model — Relative Entrainment Rate
. --- Rel. Entrain. Rate / Fuel
* Solves conservation of mass and —200p By S e T 4
: momentum for 1-D control volume array §1g8
* Prediction: An “entrainment wave” travels & ol
downstream after EOI, with higher mixing~ < & 1o}
= =,
— Entrainment wave is not an input, butan 2 o
output of the model (cons. of mass) 2 % '
D- .
— 1. Explains rapid leaning of mixtures near '-'é
injector that contribute to exhaust UHC ¢ — _3_8'3'...
_ oor 2Rl |
2. t=2xDO %\ 0
WEE tration) '\ -20 40 60 80 100
= £ \ Axial Distance [mm]
— 3. £5 on| \
be2 & ch, split) 10 . . . .
— 8 " Equivalence Ratio Contours
3 1 |
= 4
iSE T
g = 0888 K
HE 06
] | S
' 0 20 40 60 80 100
10 20 30 40 3 Axial Distance [mm]

Distance from ln'lector [mm]
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2N\ The entrainment wave action is consistent
CRI with several observations in diesel jets

1-D Diesel Jet Control-Volume Model —— Relative Entrainment Rate
-== Rel. Entrain. Rate / Fuel

- . B
g

* Solves conservation of mass and __200¢5 4
momentum for 1-D control volume array 31g8
* Prediction: An “entrainment wave” travels E ol
downstream after EOI, with higher mixing= < & 40}
= =t
— Entrainment wave is not an input, butan 2 3}
output of the model (cons. of mass) = 2
— 1. Explains rapid leaning of mixtures near iif
injector that contribute to exhaust UHC § 8? i
— 2. Explains penetration “kink” at t=2xDOlI = '0

(wave propagates at 2x jet penetration)

— 3. Explains liquid-fuel vaporization 8.6 AEI
behavior after EOI (retreat, detach, split) x

— 4. Explains rapid oxidation of soot in the D
; 5 s i D
upstream jet after the end of injection

— 5. Explains lack of soot formation in ® Contours (0.1-1.0)
upstream jet with long ignition dwell

10 20 30 40 50

— 6. Explains stagnant region near injector Dilstatios from: (et [

after end of injection

COMBUSTION RESEARCH FACILITY Cummins 2018 Musculus 13/34 @Sandia National Laboratories
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2n.  PIV measurements at IFPEN (via ECN) confirm

CRE. wave of increased entrainment after EOI

 Contours: non-dimensional
entrainment flux from PIV

- Rédy B @iytaaranetitady
jeinproaribtintedsdfonent
ft ratiydtery wifodns d)x)

oo e oy
R )

0.5

-0.5

-20 0 20

|

* “An improved entrainment rate measurement method for transient jets from 10kHz particle image velocimetry,”
WE Eagle, MPB Musculus, L-MC Malbec, G Bruneaux, Atomization and Sprays 27(6):531-37 (2016)
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, Measured entrainment coefficient (C,) from PIV
| CKE. gata agrees surprisingly well with simple 1-d model

0.5

A
150ps PO
0.
— Measured s
--- 1-D Model O° | /
0-16 [ "0.5 /
|T| 1400u5\/ \/
W | 2400ps
[=¥] 0-4‘ _5 i i
L esssseealdd it szl 0 40 60 80
0 2 Axial distance [mm]
0.8 -
= 5500p§/\\
PN - g
gO 40 60 80 0.61 ‘
Axial distance [mm)] T o4l
0.2
4
Axial distance [mm|
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A\ 1-D analytic, KIVA RANS, and Sandia LES models

CRE. predict wave of increased entrainment after EOI

* Reduction in upstream jet velocity draws in more entrainment, which
reduces velocity further, driving more entrainment, etc.

f
« LES (Oefelein, Hu): EOl ramp-down causes B LiquidFuel , Head of Entrainment
[ Vapor Fuel ' Wave
large flow structures to separate rather than .
collide; ambient fluid is entrained into gaps  ggo% . |
— - 7 oD
ASI | i ' i
=35 I } ;
g 5% - i
1'D mOdeI —> %2.55 g8 ° 6.000 ; :
ELS- g ¥ 7 : g ! ' :
S SV F AV Al . :
& M7 A T 7.0° : :
LES mOdel '0 . “ \:: (’Stead\{JéH;)f ASI 0‘— (1
60 80 100 -
\L Axial Distance [mm] .
N Ai;jet, ,'50| L Air jet, EOl+1ms 8.0° . .
| ASI
2h —:—:—
0 10 20 30 40 50
-6 2 4 8 8 10 12 14 1 Scale (mm)
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2N Experiments show significant near-
CRI injector structural changes after EOI

~» Models and experiments: Upstream velocities decrease significantly
after EOI, downstream velocities remain higher until entrainment wave

« LES and experiments: Jet is tightly confined during injection, but large,
slow-moving near-injector structures emerge after EOI

- F[\‘/ -
o
¢ RY A >

£ y

, 1
P 5 -

) Vs '
-138 ps ,(,J 4 /

10 20 30 40 20 60 70 80
Axial distance [mm)]

Diesel Shadowgraph (Lyle Pickett and coworkers, available at www.sandia.gov/ecn/)
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2N LES air-jet model shows fluid-mechanical changes
CKL  jn jet structure and entrainment increase after EOI

ms
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A 2\ LES A, visualization shows ambient engulfment
CRE, between separating large-scale structures after EOI

« )\, =2"-|argest eigenvalue of S? + O? (S and Q
4.2 ms , = symmetric and anti-symmetric parts of VV)

» Vortex cores have A,<0, so A,=0 marks vortex
core boundary, where azimuthal velocity is max.

 After EOI, vorticity, breakdown and turnover
rates 4, so large structure growth T

» Axial velocity inversion separates large
structures, inhibiting coalescence

»

i

N

- Before EOI

0 2 4 6 8 10 12 14 16

x/D « Ambient fluid entrains into indentations between
i large structures (not apparent in RANS)
6.0ms | entations « Small-scale dynamics (scalar dissipation)

decrease: not responsible for T entrainment

(LES predictions imply that boundary\
,~ conditions (rate-shaping), which affect
4t After EO| 4 | large-scale structures can be tailored

%5 i s o 7 1z 1 1\ toachieve a desired mixing state
x/D
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2n. Existence of large-scale structures in end-of-injection

CRE. entrainment: another “knob” to control mixing

V

4.2 ms Coalescing i
Structu res (\

<
(yri

Fuel-air mixing depends on fluid mechanics -
over a wide range of turbulent structures

* Small scale turbulence results from natural turbulence
cascade from larger structures, and control is limited *! Before EOI

Large-scale turbulence depends on boundary conditions, 60ms Separating
ructures

and thus offers possibilities for control |
* |njection ramp-down rate o é@
27 @ (&
Number of ends of injections (multiple injections) 4| After EOI 4
24 6 8 10 12 14 16
Relative Entrainment Rate — Relative Entrainment Rate — Relative Entrainment Rate
- - = Rel. Entrain. Rate / Fuel i 200y ===+ Rel. Entrain. Rate/FueI g 200 = Rel; Entrain, Il?ate/II:uel 4
2 "I\ | Fast Ramp-Down {35 §1g8 1 Medium Ramp -Down 135 ¢ 1g8 """"""" Slow Ramp-Down |{3-5
™ 20} 13 : € 5
© 10 } 12.5 g g 10
QL 5 ¢ | @ o 5
g , 2T E 5
3 1t _____._.:1.5 g_ » z 1
L - 11 i ; UC-I g
[ oo o F c .
S 01t 1% o g 0.1
= 0 : 0 = 0 29 0
0 50 100 0 20 40 60 80 100 0 20 40 60 80 100
Axial Distance [mm] Axial Distance [mm] Axial Distance [mm]
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~2x._ Varying ambient conditions, injection duration, and
CRE. orifice size creates effects analogous to rate shaping

4
Relative Entrainment Rate — Relative Entrainment Rate — Relative Entrainment Rate
= = Rel. Entrain. Rate / Fuel 200" Rel. Entrain. Rate/FueI d 200"~ Rel. Entrain. I‘?ate/Fuel 4
I 4 - : I —_ T T
o 100 } - —1004 —100f\ . | . . 35
= 50 \ Coo'"ow-p ambient |35 % 50': Medlum T/p ambient 35 % 50 ngh T/p ambient
o 3 14 20: g Y
o 20 f ® i @
g 10} 2.5 S 10f~ 2
L 85 ) {2 LT | ... S— <
g g :
w . 1 w | T w
c 03rf | c 03 c
8 0.1 0.5 é | — g
=0 . 0 ;
0 0 0
0 50 100 0 20 40 60 80 100 0 20 40 60 80 100
Axial Distance [mm] Axial Distance [mm] Axial Distance [mm]
70 MPa 150 MPa —
: : pum
-5 Quasi-Steady Liquid Length=——: -3
(1 — : 0 -3
G 81usASI 360-ps injection duration . 3 0
.5 e —— -3 3
R 363 us ASI 3 0
A5 m—— e ey e ey e _3 3
0 = : ’ 0
R 686 ps ASI 3 3 20 s AEI
| I | | I S S S S S O
5 &F 81 ps AEI a
0 B, = : : ! 0 J
R 388 us ASI : 3 3 40 ps AEI
5 : IR 101 s AE| 0 o= :
0 < Io < O O 3 :
g 989 s AS! : B : : I 10  20) 10 20 30
0 10 20 30 40 50 60 70 80 0 10 20 0 10 20

. - . - Distance from injector [mm
Distance from injector [mm] Distance from injector [mm] I th [mm]

* SAE 2009-01-1356, “Influence of diesel injection parameters on end-of-injection liquid length recession, Kook S, Pickett LM, Musculus MPB
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A\ U Formaldehyde is a naturally occurring tracer for

b ~ UHC between 15t and 2"d stages of ignition

/ Closed-reactor CHEMKIN simulation of n-heptane ignition using the
LLNL detailed mechanism (Combust. Flame 114:149-177, 1998)

Senkin closed-reactor n-heptane simulation

First-Stage (10 CAD): Initial conditions: ®=0.7, T=770 K, 02=12.7%

« Much of the parent fuel 30 T 1800
molecule (black) reacts, 5| S lemlp. 1600 &
and a “soup” of UHCs 5 He o

: S 20} " 11400 5
(blue) is formed E — H2CO x6 =
- S 15} OH*10 || ©
* For these lean mixtures, £ ° ——— L 3
< roc. mD. Inst.
Formaldehyde (H,CO, <= 4o e S la
red) can track the soup é . -
of UHC (blue) @ [ |
% 10 0 30 40 560
Second-Stage (25 CAD):

Crank Angle [degrees]
* Nearly all UHC and H,CO consumed

« Appearance of OH (green) marks hot ignition and consumption of
UHC
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N

3\\\ ‘ Kr{l‘j:irst-stage ignition in downstream vapor fuel,
CRE.  partially burned fuel (UHC, CO) throughout jet

« LLNL chemical kinetics model: formaldehyde at 1st-stage ignition
« Experiments: Formaldehyde fluorescence at 1st stage, throughout jet

Full-Scale Values I Liquid Fuel [l First-Stage Ignition
UHC:100%  CO:5%  NO:20 ppm
4 KHP: 500 ppm ’ H,0,: 5000 ppm [ Vapor Fuel (H2CO, Hy0,, CO, UHC)
Flonition. | H2€0:10000 ppm PE SO0 R " Ent. Wave |« First-Stage Chemilum.
First-Stage »| | »| |=—Second-Stage [ Emission Region
Pre-lgnition ! Sch’:)erjldﬁitggs Lo Ignition - ! !
2200 * ——i i [ ‘
2 ‘
6.0° 5
2000 S MOdel ) O*
1800 | . ASI 2 ;
= G g ) >
< 1600} A
] 3 Formaldehyde PLIF !
2 1400} - !
2 7 mm o
Q.
1200 | .
8 g ASI
1000 o
800 |
600

8.0°
ASI

Time [ms]

Experiment —»

0 10 20 30 40 50

Distance From 0 10 20 30 40 50
Injector [mm] Scale (mm)
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ICEZU o 0s 24/23

V

y 2\ Second-stage ignition downstream where ¢~1,

CRE. followed by soot in rich pockets at head of jet

/'« Simultaneous PLIF of OH (green) and
formaldehyde/PAH (red) show 2"9-stage

ignition across most of downstream ¢~1 |
« Soot and PAH form in $>2 pockets
* In lean upstream regions, experime

11 ASI

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

v

I First-Stage Ignition [l Second-Stage

(H,CO, CO, UHC) gnition of fuel-
I Intermediate Ignition rich mixtures
(CO, UHC)
I 2nd-Stage Ignition [l Soot or Soot
or Diff. Flame (OH) Precursors (PAH)

10.0°.
AS|

12.0°
ASI

14.0°
ASI

Distance From Distance From Distance From Distance From 0 10 20 30 40 50
Injector [mm] Injector [mm] Injector [mm] Injector [mm] Scale (mm)
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2\ Late cycle: soot pockets largely oxidize,
CRE. formaldehyde, CO, UHC remain upstream

I First-Stage Ignition I Second-Stage

 Late in cycle, simultaneous PLIF of OH (H,CO,CO, UHC)  gnition of fuel-

I Intermediate Ignition rich mixtures

(green) and formaldehyde/PAH/soot LIl (red) (CO, UHC)

I 2nd-Stage Ignition I Soot or Soot

show soot pockets surrounded OH T tn) " e (PAF)
» Soot pockets are mostly oxidizedAy 40° ASI G\

 Partially burned fuel (CO, ,
formaldehyde) remain |at€ in cycle

19 ASI 24 ASI

0 10 20 30 4050 0 10 20 30 40 50 0 10 20 30 40 50 e — —
Distance From Distance From Distance From 0 10 20 30 40 50
Injector [mm] Injector [mm] Injector [mm] Scale (mm)
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2n.  Experiments show over-lean regions near injector,
CRE. where kinetics models predict partial combustion

V

e Experiments: vapor-fuel tracer-PLIF shows lean mixtures near injector
where combustion-PLIF shows late-cycle formaldehyde and CO

* LLNL kinetics models: Lean mixtures
have long dwell between first- and
second-stage ignition, with UHC and
CO persisting to exhaust

Distance from
Injector [mm]

¢ from

Kinetics Model experiment —

)

Distance from
Injector [mm]

0.06
Timing retard shifts mixture
0.05} distribution toward leaner ¢ ... EE
v EE
Z < 23
i S
d 0-04 B § g
v} = E
c
2 0.03}
9]
© -~} The threshold for £ —
‘S 0.02f ,‘ lean-mixture ] BE
° " / oxidation increases [ ey
= LA N /. as timing is retarded S 8
0.01 bl 7 % 2
Fr e ,"i> / A s
0 e i 10 20 30 40 10 20 30 40
0.8 1 1.2 1.4 1.6 Distance from Injector [mm] Distance from Injector [mm]

Equivalence Ratio, ¢
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A\ Injector dribble is not universal in the literature,

but it is not uncommon either

4

f

COMBUSTION RESEARCH FACILITY

SAE 930971 (Dec, Sandia)

« Heavy-duty, diesel reference fuel
« Cam-driven, mini-sac injector

» Late soot at center

SAE 2005-01-3845 (Taschek et al., Aachen)
» Light-duty, diesel fuel

« Common-rail, mini-sac injector

» Conceptual model: Inj. sac vapor — soot

SAE 2009-01-1446 (Ekoto et al., Sandia)
 Light-duty, diesel fuel

« Common-rail, mini-sac injector

» Side-view PLIF, bright fuel droplets late

SAE 2001-01-2004 (Mueller et al., Sandia)

» Heavy-duty, diesel reference fuel

 HEUI, VCO injector

» No late soot at center (but sometimes yes)

@ Sandia National Laboratories



10

= 60| LTC PCCI: Injector
5 0] Dribble
§20_
f : . Diesel PRF (realistic boiling pt)

Droplets emerge from different
holes each cycle

“Sparkling” could be flash-boiling
events or tumbling ligaments

Fuel Diesel PRF CN42.5

Intake 13% O,

Load 3 bar IMEP

Intake T 78 C

Intake P 2.14 bar

CR SOl -5° ATDC

Speed 1200 rpm

Enginer,  10.75

View 35 mm square

] Framing 14400 fps

fl:;:i:al Filter None

Laboratories

COMBUSTION RESEARCH FACILITY @ Sandia National Laboratories
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HD Conv. vs. LTC:
0-6 °ASI

« Early penetration and
vaporization are similar for
conventional and LTC

— Liquid fuel penetration is
longer for early-injection

LTC (cooler, lower density
ambient)

 First-stage ignition occurs
sooner for conventional
diesel, during injection, in
the downstream jet

Conventional Heavy-Duty
DI Diesel Combustion

Apparent Heat Release Rate

| .
-10 0 10 20

Crank Angle [°ASI]

0 10 20 30 40 50
I— T— —

 Conventional second-stage ,
i i i i i Vol
ignition in rich mixtures ﬁ
yields early soot formatii/
* As LTC injection ends,

I First-Stage Ignition
(H,CO, H,0,, CO, UHC)

|<«>| First-Stage Chemiluminscence
Emission Region

I Intermediate Ignition

entrainment is temporarily
boosted in traveling wave

I Liquid Fuel
[ Pre-ignition Vapor Fuel

' Wave

Head of Entrainment

30

(CO, UHC)

Heavy-Duty Low-Load, EGR-Diluted,
Partially Premixed Low-Temp. Combustion
T T T
(612

Injection
Profile

Apparent Heat Release Rate

- "‘v.o - — ) 40

0 10 20 30 40
Crank Angle [°ASI]

0 10 20 30 40 50
— — T—

I Second-Stage Ignition of
Intermediate Stoichiometry
or Diffusion Flame (OH)

Il Second-Stage Ignition of
fuel-rich mixtures

I Soot or Soot Precursors (PAH)

COMBUSTION RESEARCH FACILITY
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- 2\ HDConv.vs.LTC:
CRE

6-10 °ASI

Conventional Heavy-Duty
DI Diesel Combustion

» Conventional diesel jet
enters “quasi-steady” period,
characterized by fuel-rich,
soot-filled interior
surrounded by diffusion
flame

|
@ Needle
T 3
o Lift
v 6.5
© 6
o
X AHRR
T 10
£ 5
€
[
- —— = 5
< .
-10 0 10 20 30
Crank Angle [°ASI]
0 10 20 30 40 50
— — —

6.5°
ASI

Lift-Off
OCQ

 Increased entrainment after
end of injection causes
liquid-length recession in
LTC jet

Pa

Apparent Heat Release Rate

Heavy-Duty Low-Load, EGR-Diluted,
rtially Premixed Low-Temp. Combustion

Injection
Profile
10

’ 40
s | | |
0 10 20 30 40
Crank Angle [°ASI]
0 10 20 30 40 50
— — —
720"
ASI

 First-stage ignition occurs
throughout most of LTC jet,
from lean upstream mixtures
to richer downstream
mixtures.

10.0°,

=
—

« Head of Entrainment

Liquid Fuel
Pre-ignition Vapor Fuel

I First-Stage Ignition
(H,CO, H,0,, CO, UHC)

|| First-Stage Chemiluminscence
Emission Region

[ Second-Stage Ignition of
Intermediate Stoichiometry
or Diffusion Flame (OH)

Il Second-Stage Ignition of

COMBUSTION RESEARCH FACILITY

' Wave ! 3
; I Intermediate Ignition fuel-rich mixtures
(CO, UHC) I Soot or Soot Precursors (PAH)
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| é\\eF' HD LTC: Heavy-Duty Low-Load, EGR-Diluted,
Vv 1 0_ 40 o ASI Partially Eremlxed 'Low-Temp. Combgstlon

Injection
Profile - AHRR

» Second-stage ignition occurs
after the end of injection, in
the downstream jet

Apparent Heat Release Rate

0 10 20 30 40

* At "threshold-sooting” Crank Angl [ASI]
30 40 50 0 10 20 30 40 50

—— e —

conditions, soot forms in
fuel-rich pockets near the

piston bowl-wall 12.0°
+ Late in the cycle, most bulk
soot oxidizes

* Fuel-lean upstream regions _, .
do not achieve second-stage *
ignition, and contribute to
UHC and CO emissions

. il i . I Liquid Fuel I First-Stage Ignition I Second-Stage Ignition of
- I njeCtOr d I’I b ble d e pOS |tS (H,CO, H,0,, CO, UHC) Intermediate Stoichiometry
. A ftrainment || First-Stage Chemiluminscence — g’egg:‘%sgg ;Lalrg r?it(ioO: ())f
_ _ Emission Region L
fuel-rich droplets within fuel i s
(CO, UHC) [l Soot or Soot Precursors (PAH)

lean field near injector
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Light Duty: Swirl transports mixtures away from

CRE  jet axes, first-stage ignition throughout jet

COMBUSTION RESEARCH FACILITY Cummins 2018 Musculus 32/:

For light-duty, swirl transports
mixtures off the jet axes

Like heavy-duty, light-duty jet is
lean upstream and fuel-rich

H,CO PLIF
laser sheet

-12.5° ATDC

¢ S~ H,COPLF

viewing direction

close to bowl

Piston bowl contour redirects jet,
with rich mixtures at lip and in /
\

piston bowl

First-stage ignition (H,CO PLIF)
occurs nearly simultaneously

Plane 1
10} —— Jet-axis
Int.Valve & plane
DA U e
B\
( \\ / e
| )| Exh.Valve | Plane2
: | - , e
0.5 — .

Off-axis| —~——=
plane

throughout jet —\

Off- axis H,CO PLIF Image

plane

-12.5° ATDC
(5.9° AEOI)

Jet axis
plane

Plane 1

34 () Sancia National Laboratores
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2 Light Duty: Interaction with piston bowl and
CRE reverse squish play more prominent role

* In light-duty engines, liquid fuel
Impinges on piston, especially
for early injection

« Jet is split by lip of piston bowl,
with rich mixtures mostly in bowl

» Reverse-squish pulls lean near-
injector mixtures into squish.

* Incomplete combustion + late

Peak
rate of
injection

film vaporization - CO, UHC
UHC (photofrag. Cz) Cco

-12.5°
10.5° ASI

18°ASI

I Liquid Fuel

[ Pre-ignition ' Wave
Vapor Fuel )
I First-Stage

Ignition (H,CO, M Intermediate
H,0,, CO, UHC)

v Head of Entrainment [ Second-Stage Ignition of
Intermediate Stoichiometery

or Diffusion Flame (OH)

Il Second-Stage Ignition of
Fuel-Rich Mixtures

Ignition (CO, UHC) [l Soot or Soot Precursors (PAH)

COMBUSTION RESEARCH FACILITY Cummins 2018 Musculus 33/34
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S34/23

Review article summarizes heavy- and light-duty
low-load EGR-diluted partially premixed LTC

Conventional Heavy-Duty
DI Diesel Combustion

Heavy-Duty Low-Load, EGR-Diluted,
Partially Premixed Low-Temperature Combustion

! ]

@ Needlef & 12

e Lin 6.5 8

2 -9 18 @ | Injection

g 6 3 | Profile AHRR

] AHRR & 10

< 3

® 10 -

2 5 =

= H

5 g

| i, T rere—— 2

2 '3

-10 0 10 20 30 20
Crank Angle [*ASI] Crank Angle [°ASI)

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40

- - — — —

1.0° 1.0°

o O ——

ASI ASI

3'000—‘ a’oao‘ﬂ

ASI| Yo ASI .
-

4.0°, i B
ASI Il@«

N
8
’

0 10
Distance from Injector [mm]

50

I Liquid Fuel
Pre-igntion Vapor Fuel
% Head of Entrainment

' Wave

W First-Stage Ignition
(H,CO, H,0,, CO, UHC)
|=->| First-Stage Chemiluminscence

4.0°

e
ASI &
50
ASI '} ;

6.0°,
AS|

7.0°
Asl®

8.0°
ASI

10.0°
ASI

f—

0 10 30 40
Distance from Injector [mm]

2 30
Distance from Injector [mm)

50 0o 10 40

B Intermediate Ignition
(CO, UHC)

B Second-Stage Ignition of
Intermediate Stoichiometry
or Diffusion Flame (OH)

B Second-Stage Ignition of
fuel-rich mixtures

Emission Region I Soot or Soot Precursors (PAH)

Light-Duty, Early-Injection, Low-Load, EGR-Diluted
Partially Premixed Low-Temperature Combustion

)
B AHRR
o
o 0
ﬁ Injection
& rate
g 122
19
£ 125
] 15
1l Los
% AV
& 20 10 0 10 20
Crank Angle
0 10 20 30 40 -5*
[ t E ¢ & 18°ASI
Scale (mm)
.22"0‘
1°ASI
o
23°ASI
-20"‘.7.
3°ASI*
Peak
rate of
injection
19
4° ASI
-17.5°

5.5°ASI

-125°
10.5°ASI Peak
15t.stage

AHRR

Bl Second-Stage Ignition of
Intermediate Stoichiometery
or Diffusion Flame (OH)

Wl Second-Stage Ignition of
Fuel-Rich Mixtures

50 M Liquid Fuel
Pre-ignition
Vapor Fuel

I First-Stage
Ignition (H,CO, HHE Intermediate

H,0,, CO, UHC)

Head of Entrainment
Wave

Light-Duty, Late-Injection, Low-Load, EGR-Diluted
Partially Premixed Low-Temperature Combustion

12.5

Apparent Heat Release Rate

Injection
rate
25 15
AHRR
10 20 i e
B i F /]
0 5 10 15 20 25 30
Crank Angle
o0 2 0 4 s
* 11.25°As1
Scale (mm) ”
225
1°ASI°\
15>
13.75° ASI
Peak 20°
. rateof || 1875°Asl
injection

8.0°
6.75°ASI Peak
15t.stage
AHRR
100
875° ASI *

Gy Sl

I Liquid Fuel

Il Second-Stage Ignition of

Head of Entrainment

Pre-ignition Wave Intermediate Stoichiometery
Vapor Fuel X or Diffusion Flame (OH)

I First-Stage B Intermediate Ml Second-Stage Ignition of
Ignition (H,CO, Ignition (CO, UHC) Fuel-Rich Mixtures

H,0,, CO, UHC) I Soot or Soot Precursors (PAH)

Ignition (CO, UHC) ml Soot or Soot Precursors (PAH)

“Conceptual models for partially premixed low-temperature diesel combustion,” M.P.B. Musculus, P.C.
Miles, and L.M. Pickett, Progress in Energy & Combustion Science 39(2):246-283, 2013
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2x. Multiple injections shift noise/emissions/efficiency
CRF. tradeoffs, but in-cylinder mechanisms are unclear

f" « Both heavy- and light-duty engine/vehicle manufacturers use multiple-
injection strategies to reduce noise, emissions, and fuel consumption

* For both conventional and low-temperature diesel combustion, the
state of knowledge and modeling tools for multiple injections are far
less advanced than for single-injection strategies

« Recent work on this project is filling some knowledge gaps

(2014 AMR: Soot PLII is first in-cylinder evidence of post-jet interacting h

with main-injection soot Main Oy Main + Post

« Second injection alters K - .‘
the shape of the first- : - . =l
injection soot cloud and et han” Post-et / main-soot —
late cycle first-injection without interaction s 2-tion frot

soot decreases, but why?
1. Enhanced oxidation?
2. Disrupted formation?

. o
\3. Displacement Shn? al

COMBUSTION RESEARCH FACILITY 7 \ @ Sandia National Laboratories

Main + Post easemmasesesenn,

_____




Vol
2n. 2017 AMR: KL & luminosity show increased T with
:

CRI: second-injection + 2013 OH = (1) enhanced oxidation

= Single
= Main+post

CAD: 350 355 360 365 370 375 380 385 390 395 400

To the side of the post-jet, KL (f,L) decreases with a

post injection, while NL increases.
- If NL=1(f L,T), then the post injection must
increase T locally, which should aid soot oxidation

Injection timing

| Within the post-jet, KL (f,L)
and NL both increase with
post injection

Consistent with previous soot PLII (2014 AMR)

showing decreased soot to side of post-jet within
laser sheet, and increased OH PLIF signal (green) to

side of sooty jet (red). OH is a strong soot oxidizer
typically formed in high-temperature regions.

Main +Post  .eeeseemeeeeean
g “'

-----
O h

S .

________

________
- ~
- .~

b 2013 AMR

-
_______
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Second-injection (2) disrupting soot formation can
be observed at threshold-sooting LTC conditions

In addition to oxidation, 2015 AMR models predict (2) disrupted soot formation
We can measure soot, but discerning formation vs oxidation is difficult

PAH & soot formation are strongly dependent on temperature’, so
(2) disrupted formation may be more evident at LTC conditions

Also provides opportunity for much- 10
needed improvements to PAH/soot 6—m
models, especially at LTC conditions

“... [PAH] formation pathways [are] fraught
with uncertainties.”

B Experimental
5‘21%1 " Soot Measurement |
B \15% — TSL Model
4! 12% |
% From Pickett*
— “The measured temperature ... where PAHs > g
appear first was ... higher than temperatures 3
predicted by a soot model.™ | 8%
— Soot models can reproduce O, trends, but they
significantly over-predict soot/PAH at LTC 1l
conditions.*%
1 Ciajolo et al, Proc. Comb. Inst. 26: 2327-2333 (1996) 4 Pickett, DOE AMR (2006) 0 JJ . :
2Violi et al, osti.gov/servlets/purl/1351404 (2017) 5Vishwanathan & Reitz, Fuel 0 1 5
3Kamimoto et al., Int. J. Engine Res. 18(5-6):397-399 (2017) 139:757-770 (2015) Time [ms]
N . . . .
Joint DOE/NSF project with UW aims to improve PAH and
Ksoot modeling from conventional diesel to LTC conditions
COMBUSTION RESEARCH FACILITY
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2014 AMR: Multi-wavelength LIF at 1 LTC condition

CRE. shows PAH & soot growth for model improvement

650

* As poly-aromatic hydrocarbons (PAH) soot
precursors grow and accumulate more
carbon/aromatic rings, their absorption
spectra shift to longer wavelengths

*Laser-induced fluorescence (LIF) using
different excitation (laser) wavelengths (266,
355, 532, 633 nm) can probe growth of PAH

« Combined with laser-induced incandescence
using IR laser (1064nm), can also probe soot

«2014 AMR: PAH LIF
(green) at 3 laser
wavelengths shows LTC
PAH growth and
conversion to soot (red)

« 2014 dataset is limited to
single injection, PAH
inception only, and one
laser sheet elevation

600

o
o

w H H wn w
w
o

50

Absorption Wavelength [nm]

w
o
o

250

200

266 nm

W
o
T

o
(=}
T

| 633nm
_532nm O“]
o - ©

R ece

S~

z\'—'jA‘ ] 6 355 nm
i o

3 \':/’ O

-_f:"‘ 266 nm ]

4

6 8 10 12
Number of Carbon Rings
633 nm

14
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2 Planar PAH LIF and soot-LIl at three slices through
CRFE. 3-D multi-injection and bowl-wall interactions

1064 nm
633, 532, I
or 355 nmxxI

7 —

Laser Sheet Elevations
11, 15, or 18 mm Below Firedeck

PI-MAX3 HQf
ICCD Camera
50-50 Beam Splitter or  (pAH PLIF

LWP 465 Dichroic Mirror I

e CF
Il ~ (N
| \ 3 { '\/‘ \,)
|

——— ———— r.___f___

Yo'

Epw
-
~J
Filters

O PI-MAX3 SB

;2 ICCD Camera

i Soot-PLII
N O

Laser-Sheet Elevation
Below Firedeck [mm]

—11

— — —15

—=-18

Note: 15-mm sheet
elevation is aligned
with nominal spray-
axis intersection at
the piston bowl-wall

Piston Crown-Window

Region of Interest

Bowl-Rim
Window

\ Laser Sheets

\ <:JParaIIeI to
Firedeck

\— Cylinder-Wall
Window

=

Piston Bowl
Squish Area
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2 Single injections: N, dilution retards PAH/soot;
CRE.

Use 10% O, (threshold soot) for multi-inj. study

» Large PAH inception from | o
358 CAD for 15% O, o 2
to 370 CAD for 9% O, ————i

e 7.5%Q, condition has
oEAPorgacd o

* 9% O, condition has

PAH but noGeod 362

* 10% O, condition has
PAH & borderline soot; 364

— Use 10% O, for multiple

|nject|on experlments 366
150| 1 —75% o, |
ﬁ‘ . 9%0, 368

10% O2

100 | \ w % 0l
l‘i:.&wvm ——125% O, 370

<
£
>, Il \
r P N\T‘ 15% O,
4 i/
50 T i
<

It \ ' 372

ON CAD | o 374

320 340 360 380 400 420
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2. Use short- and long-dwell multiple injections at

CRE. same cylinder pressure to probe jet-jet interactions

~Two multiple-injection

schedules tested: a0 |
| * Close-coupled (CC) ol
condition with short dwell -
has second injection S60f =
penetrating into residual 2 ol =
jet / turbulence 3 _ S
« Long-dwell (LD) condition 2407 39
has second injection S 30} =5
penetrating into more 3 ol 2o
uniform mixture with less 23 Double Inj CC
residual jet / turbulence 10} & 1100 Early Single
— Adjust first-injection duration 0 | = 0. |——800 Single |
to match cylinder pressure, 340 360 380 400 420
and hence compressed gas CAD
temperature, in CAD range of o SSE=337_ SSE,=347 SOl =348
PAH inception (CC) ‘
o 1R 2ne
(LD)  SSE,=270 SSE,=345 TDC
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. Use short- and long-dwell multiple injections at
CRE same cylinder pressure to probe jet-jet interactions

Close- SSE,=337 SSE,=347 SOI, =348 _ ;
Coupled 7

(CC) 0.8ms 12 ms

Long- 11ms 12 ms
Dwal : CAD

SSE=270 SSE,=345 TDC

-50
320 340 360 380 400 420

Close-
Coupled

SSE = 280,

=04 06 08
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;’\\ Large PAHSs fill downstream jet and is consumed
CRF when soot appears, at jet periphery/diffusion-flame

~ <Large PAH fill down-
I ose-Louple
stream jet to bowl wall o o oo 0Pl g paH-PLIE |[o I i ~
Firedeck I:l Soot-PLII
« Soot appears later
upstream, near jet

periphery, little overlap -]-]-]-J-]

") with PAH

Close Coupled
i ® 15 mm belo
— T high enough for soot L
only at diffusion flame?
CIose-CouIed .
Firedeck -
364 ~*%\|366 £ \)368 o | K
° - v_io : ?o i ' e
injection, or jet-wall

interactions at laser sheet
Long-Dwel

— Gap does not appear for T el
long-dwell injection: Firedeck |
Residual jet may be factor |2
in PAH/soot distribution

— All PAH consumed when
soot forms?
« At lowest elevation, gap
regularly appears

— Could be due to (3)
displacement by second

COMBUSTION RESEARCH FACILITY @ Sandia National Laboratories
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Small PAH appear first and earlier for close-coupled

CRL. injections, suggesting interaction with residual jet

» In ensemble-averaged CC images, small PAH (355-nm
PLIF) appear before large PAH (532- or 633-nm PLIF)

» PAH appear later for LD than CC, even though early
cylinder pressure is matched and LD ignites earlier

— Suggests important interaction with residual jet
(e.g., locally hotter/richer residual gas, turbulence)

a
Q

A

AHRR [J

Close-Coupled, 358 CAD

10,

-
-

200
150
100
50
0

——Double Inj LD
——Double Inj CC

CAD

-
N

-
(o]

-

Distance below Firedeck [mm]

-
o

ik
©
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2 Larger PAH quickly appear near the bowl wall; much
CRE. stronger PAH-PLIF in bottom of bowl for CC than LD

» 2°CA later in the ensemble-averaged images, larger 200 I e o
PAH (532- or 633-nm PLIF) fill the jet to the bowl wall % f—ioBoubelnj e

Ml
« Both small and large PAH continue to lag for the long- S 100 |
dwell condition, especially at low sheet heights 1 a :
0

— Shorter dwell condition has stronger small-PAH signal I

(355-nm PLIF) in bottom (and top) planes (“hollow” middle) 820 340 360 380 400 420
CAD

A

AHRR [J

Close-Coupled, 360 CAD

Distance below Firedeck [mm]

—= - \ -— - \ —
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2x. Structural differences in PAH and LIl in the three

CRE. sheets for CC and LD jets persist later into cycle

V

~+ Tri-color RGB images show overlay of ensemble-
1, and 633-nm PAH PLIF

averaged 355-nm, 532-nn

355+532 nmMli532+633 nmBl355+633 nimf
2 °CA later, weaker PAH-PLIF & soot-PLII emission
persists in the center of the CC jet, while the LD jet is
more uniform or even stronger in middle sheet

— In addition to real physical differences in CC and LD jets,
may be optical artifact (e.g., signal trapping, laser attenuation)

200

=150

A

9100
50

AHRR [J

——Double Inj LD
——Double Inj CC

-50
320 340 360 380 400 420

CAD

Close-Coupled, 362 CAD

Distance below Firedeck [mm]
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N Swirl brings separated ensemble-averaged adjacent
CRL. jet into field of view for LD injection, but not for CC
» 4 °CA later, the weak swirl flow (0.5 swirl number) 200 1 ooubie i
transports an adjacent jet into the field of view for o : —oeuen £
the LD condition, but not for the CC condition S 100 f
— Such a separate and distinct shape in ensemble-averaged 31? >0 :
< 0

images indicates a repeatable occurrence (both PAH & soot)

- Suggests that jet-jet interactions along the bowl wall 820 340 360 380 400 420
for CC create a more uniform mixture in the downstream
jet, even though first LD injection is more mixed

CAD

Close-Coupled, 366 CAD

IV
124

Distance below Firedeck [mm]
® I > o &

-
©
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