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Computational Peridynamics

Outline

Ingredients of a peridynamics simulation

= Governing equations

= Constitutive model, bond failure law

=  Contact model

= Discretization

=  Time integrator

= Surface effect in peridynamic simulations

= Estimation of the maximum stable time step for dynamic simulations
= Convergence of peridynamic models

= Demonstration of meshfree peridynamics for model analysis
= Modeling damage and failure
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Computational Peridynamics
1. Ingredients of a peridynamic simulation

Ingredients for computational peridynamics

= Governing equations
= Continuum form of the balance of linear momentum

p(x)i(x,t) = /% {T[x,t] (x —x) — T'[x', ] (x —x')} dVie + b(x,t)

= Semi-discrete form: meshless discretization of the strong form

X))ty (x,t) Z {T[x,t] (x; — x) — T'[x], 1] (x — x}) } AV, +b(x,1)
= Boundary and initial = Discretization
conditions = Time integration
= Constitutive model *  Explicit
=  Bond failure law = Implicit
= Contact model = Pre- and post-processing

Meshfree peridynamic model of an
expanding, fragmenting cylinder

S.A. Silling. Reformulation of elasticity theory for discontinuities and long-range forces. Journal of the Mechanics and Physics of Solids, 48:175-209, 2000.

S.A. Silling and E. Askari. A meshfree method based on the peridynamic model of solid mechanics. Computers and Structures, 83:1526-1535, 2005.
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Computational Peridynamics
1. Ingredients of a peridynamic simulation

Model for a peridynamics simulation code
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\ contact interactions /
\ /
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Computational Peridynamics
1. Ingredients of a peridynamic simulation

Constitutive models Example: Linear peridynamic solid [Silling]
= Bond-based models = State-based model
* Direct pairwise interactions = Deformation decomposed into deviatoric and
= State-based models dilatational components

=  Multi-point interactions 3
= Correspondence models 0= E/ (g g) cedV gd =e—
H

=  Worapper for classic stress-
strain models

0x
3
= Magnitude of pairwise force density given by

3k0 IS5 4

= —wx+—uwe
m m

S.A. Silling, M. Epton, O. Weckner, J. Xu, and E. Askari, Peridynamic states and constitutive modeling, Journal of Elasticity, 88, 2007.
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Computational Peridynamics
1. Ingredients of a peridynamic simulation

Algorithm 2 Routine for calculation of the internal force density for a linear peridynamic
solid material with a Gaussian influence function.
1: procedure LINEAR PERIDYNAMIC SOLID INTERNAL FORCE

Software implementation of the 2 b Initialize the globel force density vector o zero.

3 for each node i do
L . P .d ] S /-d 4: f, <0
inear reriaynamic 50l 5 end for
6: > Compute the dilatation for each node.
T for each node i do
8: 6;+0
9: for each node j in neighbor list for node ¢ do
Algorithm 1 The initialization routine for a linear peridynamic solid material with a Gaus- 10: £ex-x
sian influence function. Ea NN -
1: procedure LINEAR PERIDYNAMIC SOLID INITIALIZATION 1 W 4= exp (_ & )
2: > Compute the weighted volume for each node. 14: e« |€+n| —[¢]
. 14: 0;+ 6;+ 2 wltleAV;
3 for each node i do ™ B
15: end for
4 mi 0 16: end for
5 for each node j in neighbor list for node ¢ do 17: > Compute the pairwise contributions to the global force density vector.
6: € —x;—x; 18:  for each node i do
€] 19: for each node j in neighbor list for node ¢ do
7 @ $=iexp (_%2‘) 20: £ x—x
8 m; < m; +w [€]* AV, 21: neu—u
9 end for 22: w ¢ exp _%3
10: end for 923 e+ |€+n|—|€|
11: end procedure 24: el e — %l
25: te 2 kOwlgl+ 2w el
26: M —g—'ﬂl‘
27 fifi+tMAV;
28: fJ(—f]—iMAV,
29: end for

30: end for

David J. Littlewood. Roadmap for Peridynamic Software Implementation. SAND Report 2015-9013. 31: end procedure

Sandia National Laboratories, Albuquerque, NM and Livermore, CA, 2015.
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Computational Peridynamics
1. Ingredients of a peridynamic simulation

Bond failure law

= (Critical stretch [Silling]
= Brittle failure

=  (Critical stretch value determined from
the material’s energy release rate

= Energy-based approach [Foster]
= Ductile failure models [Silling]

Example: Critical stretch law

= Bond fails irreversibly when critical stretch

is exceeded
g o Ymax 7T g0 i
max — :L’ - 1 lf

S.A. Silling, M. Epton, O. Weckner, J. Xu, and E. Askari, Peridynamic states and constitutive modeling, Journal of Elasticity, 88, 2007.

Smax < So
Smax = S0
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Computational Peridynamics
1. Ingredients of a peridynamic simulation

Software implementation of the
Critical Stretch Bond Failure Law

Algorithm 3 Routine for evaluation of the critical stretch bond failure law. Bond damage
values, d;;, are initialized to zero at the beginning of the simulation and set to a value of one
if the bond stretch exceeds the specified critical value.

1: procedure CRITICAL STRETCH BOND FAILURE

2 for each node i do

3 > Evaluate the stretch of each bond.

4 for each node j in neighbor list for node ¢ do
5: E—x;—x
6
7

8

9

n<u—w

s = letnl-ie

> Check the bond stretch against the critical value.
: if s > s, then

10: d,‘j =110

11: end if

12: end for

13: end for

14: end procedure
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Computational Peridynamics
1. Ingredients of a peridynamic simulation

Modeling contact

= Contact algorithms involve two distinct steps:
=  Proximity search
=  Enforcement

= The majority of meshfree peridynamic simulations to date have
utilized the short-range force approach of Silling

= Local contact models have also been applied to peridynamic
simulations

Iterative penalty approach to disallow interpenetration and minimize
contact gap

Contact modeling remains an open research topic in peridynamics

Simulation of brittle fracture

1.
2

Silling, S.A. and Askari, E. A meshfree method based on the peridynamic model of solid mechanics. Computers and Structures 83:1526-1535, 2005.
SIERRA Solid Mechanics Team, Sierra/SolidMechanics 4.22 user’s guide, SAND Report 2011-7597, Sandia National Laboratories, Albuguerque, NM and Livermore, CA, 2011.
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Computational Peridynamics
1. Ingredients of a peridynamic simulation

Short-range force contact models

Spring-like repulsive force
Active when relative distance is smaller
than the prescribed contact radius

Does not require explicit definition of
contact surfaces

Interpenetration is possible (high
velocity, node misalignment)

Friction may be incorporated by
decomposing relative motion into
normal and tangential components

Example of a short-range force contact model

Force is zero if distance between nodes is greater than dj

di; = min {B|x; — x;|, a(r; + 1)}

Short-range force includes static and dynamic components

d—|y; — i
fstatic = A Cij ( lyé L4 ‘) A‘/L AV? Mij

(L VO 7

Cij = 5 ly; — il

ij =
fdamping = €Y Uij Mij

vij = (Vj — Vi) - M

ve = 2\/ACy; AV; AV, m

\{’A*.} |
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Computational Peridynamics
1. Ingredients of a peridynamic simulation

lllustration of short range force and standard bond force

. ‘

Bond Force Only Short-Range Force Only Bond Force and Short-Range Force
2.50+09 T T 4.5e+09 T T T T 8e+09 T T T T
b
4e+09 | 7e+09 - [ ]
2e+09 3.5e+09 f;
6e+09 - 4
3e+09
2\ 1.5e+09 |- @ 250400 |- g 5e+09 ’I’ 4
= o g 8 4es09 [ o
g % 20400 |- ’/‘ g ,
B 1e+09 = ST I .‘P’
1.5e+09 - .’ °
10408 | r 2409 -
5e+08 - “.
5e+08 - ., 1e+09
I 1 L 0@ 1 1
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Computational Peridynamics
1. Ingredients of a peridynamic simulation

Applying a traditional (local) contact model to peridynamics
= Contact algorithm operates on planar facets
= Peridynamics algorithm operates on sphere elements

= Lofted geometry allows for coupling of peridynamics and contact algorithm

=

Conversion to Create planar facets for
sphere mesh contact algorithm

Initial hex mesh

Simulation of brittle fracture

D. J. Littlewood. Simulation of dynamic fracture using peridynamics, finite element modeling, and contact. In Proceedings of the ASME 2010 International Mechanical
Engineering Congress and Exposition (IMECE), Vancouver, British Columbia, Canada, 2010.

SIERRA Solid Mechanics Team. Sierra/SolidMechanics 4.36 user’s guide. SAND Report 2015-2199, Sandia National Laboratories, Albuquerque, NM and Livermore, CA.
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Computational Peridynamics
1. Ingredients of a peridynamic simulation

Simple test: To bars in contact and under compression

- -

Challenges with contact and nonlocal models

Horizon = 3 * Mesh Spacing Horizon = Mesh Spacing

Displacement Displacement

i
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s 00075 g 00075
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[ Q
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Computational Peridynamics
1. Ingredients of a peridynamic simulation

Meshfree discretizations for peridynamics

= Meshfree discretization is defined by nodal volumes: (x, y, z, V)

= Each nodal volumes is assigned a material model, etc.

>
Ceee

= Nodal volumes may be grouped into “blocks” to simplify bookkeeping

= Example approaches for generating a meshfree discretization:
= Simulation code internal mesh generator
= Pre-processing script to generate (x,y,z,V) data
=  Conversion of a FEM hex/tet mesh to nodal volumes
= Concerns specific to peridynamics:
= Avariable horizon is generally not supported in peridynamics

= Discretization can be nonuniform, but large variations in V can
produce undesirable results

= Boundary conditions are generally applied over a volumetric region;
bookkeeping can be challenging, thin layers can cause difficulty
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Computational Peridynamics
1. Ingredients of a peridynamic simulation

Conversion of a FEM mesh to a meshfree discretization

= Node sets defined in the original hex/tet mesh must be transferred to meshless discretization
= Elements are preserved (one-to-one map) but nodes in the FEM mesh are not preserved

= A mechanism is required for treating small features, controlling visibility between material points
= Aso-called bond filter may be used to disallow pairwise interactions

Element Conversion
Routine

Initial mesh generated in Cubit

Peridynamic blocks converted to sphere elements

ﬁgtnigilalaal OAK RIDGE _ _ Short Course_ .
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Computational Peridynamics
1. Ingredients of a peridynamic simulation

Time integration for computational solid mechanics

= Explicit integration (dynamics): Velocity-Verlet, a.k.a. leapfrog
=  Well suited for modeling pervasive damage
= Does not require the solution of a global system of equations
=  Conditionally stable, requires small time step
= Equivalent to Newmark Beta with Beta = 0, gamma = 0.5
= Implicit integration for quasi-statics
=  Assumes that acceleration is zero everywhere, solve for equilibrium
= Wave propagation is neglected
= Requires solution of a global system of equations
=  Care must be taken w.r.t. rigid body modes
= Implicit integration for dynamics
= Newmark Beta
=  Requires solution of a global system of equations

| m ﬁgggll?al %OAK RIDGE . . Short COUI‘SG. .
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Computational Peridynamics
1. Ingredients of a peridynamic simulation

Explicit time integration

= Appropriate for dynamic problems and those with
pervasive material failure

N
px)in(x,8) = 3 {Tlx, 1] (x} —x) = T'[x}, 1] (x — x)} AVx, +b(x, 1)
1=0

Algorithm 1 Velocity Verlet

= Conditionally stable 1: w2 = yB 4 %M—l(fn +b")
= Requires estimate of the critical time step g5 Pl = u 4 Agyntl/2

. . D ontl _ unt1/2 | Atng—1/gntl 41
= Requires many small time steps 3 vl = vHl/2 4 SIMTH(EH 4 b

= Easy to implement
= Does not require solution of global system of equations

S Sandia OAK RIDGE Short Course
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Computational Peridynamics
1. Ingredients of a peridynamic simulation

Implicit time integration

Unconditionally stable

Allows for large time steps

Suitable for solution of static and quasi-static problems
Suitable for implicit dynamics

Requires solution of system of equations involving current and future configurations
= Generally nonlinear
= Newton-like methods require tangent stiffness matrix
= Matrix-free schemes offer a promising alternative approach (e.g., Jacobian-Free Newton-Krylov)

S. A. Silling. Linearized theory of peridynamic states. Journal of Elasticity, 99:85-111, 2010.
J. A. Mitchell. A nonlocal, ordinary, state-based plasticity model for peridynamics. SAND Report 2011-3166, Sandia National Laboratories, Albuquerque, NM and Liver- more, CA, 2011.
M.L. Parks, D.J. Littlewood, J.A. Mitchell, and S.A. Silling, Peridigm Users’ Guide v1.0.0. Sandia Report SAND2012-7800, 2012.

Brothers, M.D., Foster, J.T., and Millwater, H.R. A comparison of different methods for calculating tangent-stiffness matrices in a massively parallel computational peridynamics code.
Computer Methods in Applied Mechanics and Engineering 279:247-267, 2014.

David J. Littlewood. Roadmap for Peridynamic Software Implementation. SAND Report 2015-9013. Sandia National Laboratories, Albuquerque, NM and Livermore, CA, 2015.
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Computational Peridynamics
1. Ingredients of a peridynamic simulation

Th e tan ge n t S tlff ness ma tl" IX Algorithm 1 Construction of the tangent stiffness matrix by central finite difference.
1: procedure TANGENT STIFFNESS MATRIX
L Approaches for construction: 2 > Initialize the tangent stiffness matrix to zero.
3 K<+ 0
= Analytic (i.e., peridynamic modulus state) 4: > Traverse each node in the discretization.
. . 5: for each node i do
= Finite difference 6 {traversal list} < node i and all neighbors of node i
= Automatic differentiation 7 for each node j in {traversal list} do
. . 8: > Evaluate the force state at x; under perturbations of displacement.
o Tan ge ntis expensive 9: for each displacement degree of freedom r at node j do
. 10: Tt Tx](u+e)
= Expensive to construct 11: T « Tx] (u—¢€)
- . 12: > Evaluate pairwise forces under perturbations of displacement.
EXpenSIVe to store 13; for each node £ in neighbor list of node i do
» Expensive to apply 14: Fr e T (i —x;) AV; AV
15: f 5_7 $— IF_ <X1\- — Xi> AV, AV;\-
= Number of nonzeros is directly related to 16: FEE o pet— fe-
. . 17: for each degree of freedom s at node k do
the number of peridynamic bonds faie
18: Kor ¢ Kor + =5~
= Nonzero entry for all bonded nodes 19: end for
20: end for
= Nonzero entry for all nodes that are 21: end for
bonded to a common node (state based) 2 eodl fay
23: end for
24: end procedure
= San_dia OAK RIDGE Short Course
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Computational Peridynamics

Outline

Ingredients of a peridynamics simulation
=  Governing equations

= Constitutive model, bond failure law

=  Contact model

= Discretization

=  Time integrator

Surface effect in peridynamic simulations

Estimation of the maximum stable time step for dynamic simulations

Convergence of peridynamic models

Demonstration of meshfree peridynamics for model analysis

Modeling damage and failure
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Computational Peridynamics
2. Surface effect

The peridynamic surface effect is a significant concern for engineering applications

= The majority of peridynamic material models were derived based on bulk response
= Material points close to the surface have a reduced nonlocal region (fewer bonds)

relative to material points in the bulk
Root problem
= Ordinary peridynamic material models exhibit inconsistencies at the surface o
models assumes that a full
- . . neighborhood of bonds is present
Axial Displacement Stress versus Strain
e ' ' ' ' ' ' Surface
. a In the bulk i
StOred ElaSth Energy ; 6o} Missing bonds
— [Images courtesy John Mitchell]
Engineering Strain (m/m)
/ ,:m ‘ m ﬁgtnigir?al %OAK RIDGE Short Course
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Computational Peridvnamics
2. Surface effect

One possible approach to mitigating the surface effect

Example calculation

wii'e . . . ; PALS model accurately recovers elastic
= Position-Aware Linear Solid (PALS) constitutive model modalus in fensilatest
takes proximity to free surfaces into account
Numerical strain gauge
1 ) \ / Grip
W= -K6 og)ece 0= (wX|)ee R L e
2 _I_ l‘l‘ (—) = (—l |) =l f bond: £ \ Region
= Coefficients 0 and w are determined for each point in the 1400
discretized model - —
= LPS
= Calculation of 0 and w ensures that the expected strain T e PaLS
. . . &
energy is recovered for a set of matching deformations e
3 8.0
'g 6.0
g 4.0
2.0
J. Mitchell, S. Silling, and D. Littlewood. A position-aware linear solid (PALS) model for isotropic elastic materials. 0.0 T 3 4 T waﬁ

Journal of Mechanics of Materials and Structures 10(5):539-557, 2015. Engineering Straiﬁ (m/m)
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Computational Peridynamics

Outline

Ingredients of a peridynamics simulation

=  Governing equations

= Constitutive model, bond failure law

=  Contact model

= Discretization

= Time integrator

= Surface effect in peridynamic simulations

= Estimation of the maximum stable time step for dynamic simulations
= Convergence of peridynamic models

= Demonstration of meshfree peridynamics for model analysis
= Modeling damage and failure
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Computational Peridynamics
3. Estimation of the maximum stable time step

Candidate approaches for estimating the maximum stable time step

= Courant-Friedrichs-Lewy (CFL) condition

p c

= Approach of Silling and Askari for microelastic materials (von Neumann analysis)

_ 2p _ _|of
At. = Zp ‘/;)Cip Cip - |C(5I3p - -’L'z)| - ‘%

= Global estimate using eigenvalue analysis (via Lanczos method)

i = K — AM)x = At, = =
Mi+ Ku="f ( AM)x =0 ’

Littlewood, D.J., Thomas, J.D., and Shelton, T.R. Estimation of the critical time step for peridynamic models. Presented at the SIAM Conference on Mathematical Aspects of Materials Science, Philadelphia, Pennsylvania, 2013.
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Computational Peridynamics
3. Estimation of the maximum stable time step

= Critical time step for simulation of wave propagation s Sl and Ackar
= Compared approaches for estimating the maximum — T max. time step = 0.241 is
stable time step against empirical observations 1ae SR | ASHS jergy . [B% Kinewic encray= 8/31 )
o . 0.1 ps 3.51 - - _
= CFL limit with element size as the length scale, and the 0.9 # 251 ] CFL Limit (element size)
method of Silling & Askari were conservative A foo ' migx. tie step = 0.329/1s
. 0.3 s 3.517J L max. kinetic energy = 3.51 )
» Lanczos method was very accurate (but expensive) aid 57 5 P
T : 4 ps : irical .
= CFL limit with the horizon as the length scale was Fnpingsl Qlservation
0.5 ps 14.1J max. time step = 0.499 us
unstable 0.6 - NaN L max. kinetic energy = 3.51J
(
Fixed displacement in 0.7 us NaN Glokal Larczos
longitudinal direction 0.8 us NaN max. time step = 0.500 us
Initial velocity in Velocity (cm/s) \ max. kinetic energy = 3.51
longitudinal direction 1500 0.9 us NaN P
— — o 1.0 ps | 1.75e+299J || <EL Linit Horizon]
—— )ﬂi:g:ﬁa. : —— max. time step = 1.00 ps
%"H 2o revvess - <800 _ max. kinetic energy = unstable
_— s ;
EAOD
0
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Computational Peridynamics

3. Estimation of the maximum stable time step

P - ~N 5
Silling and Askari .W%
. L 2aRRE. -
max. time step = 0.290 us ’@ 3 L
percentage of broken bonds = 44.7 % ,:ﬁ @ E
Percentage of | Maximum Kinetic max. kinetic energy = 3.82 kJ '.'-; :‘E = . —
Time Step | gyoken Bgé)nds Energy (t > 10 pus) < % £. 05 Time step = 5.0 ys
CFL Limit (element size) =, ‘_g : 46.7% of bonds broken
_MhLgm i14_3_?_6 _______ i max. time step = 0.395 pus g;. .g Son
0.1 us 44.5 % 3.82 kJ percentage of broken bonds = 45.3 % 4 % %’ DE
0.2 pis 44.7 % 3.82 kJ PO, Kifeceeneey =551 J Y W BV
0.3 ps 45.3 % 3.82 kJ Global Lanczos )
0.4 ps 45.3 % 3.82 kJ max. time step = 0.682 s
0.5 us 45.4 % 3.82 kJ percentage of broken bonds = 46.0 %
max. kinetic energy = 3.83 kJ )
0.6 us 46.7 % 3.81 kJ 3
0.7 us 49.1 % 3.83 kJ Empirical Observation 5 @;%
0.8 735 3.82 kJ - max. time step = 0.707 us %_ Jarece
He % percentage of broken bonds = 50.0 % sﬁﬁ' E
0.9 ps 95.3 % 4.39 kJ max. kinetic energy = 3.83 kJ ) 4 . e Time step = 7.5 s
LU L% ] CFL Limit (horizon) E ~  62.7 % of bonds broken
max. time step = 1.19 s -
percentage of broken bonds =99.1 % ﬂ&, ) UE
max. kinetic energy = unstable ) @w
GE@N "1 Elg?igirellal %OAK RIDGE Short Course
(EE g ) )5 A w - 5 "
N, laboratories - [\ational Laboratory Peridynamic Theory of Solid Mechanics




Computational Peridynamics

Outline

Ingredients of a peridynamics simulation
=  Governing equations

= Constitutive model, bond failure law

=  Contact model

= Discretization

=  Time integrator

Surface effect in peridynamic simulations

Estimation of the maximum stable time step for dynamic simulations

Convergence of peridynamic models

Demonstration of meshfree peridynamics for model analysis

Modeling damage and failure
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Computational Peridvnamics
5. Convergence of meshfree models

Convergence of meshfree peridynamics

= Two forms of convergence: horizon and mesh spacing
= Convergence to a local solution as horizon approaches zero

=  Convergence to a nonlocal solution under mesh refinement with
horizon held constant

Neighbor-horizon
intersection in 2D

= Current practice introduces errors and spoils convergence

= Quadrature, poor treatment of neighbor-horizon intersections Neighbor-horizon

intersection in 3D
Approaches for improving convergence behavior

= Improved treatment of neighbor-horizon intersections
= Variety of correction techniques (scalar multiplier):

n PD-LAMMPS, Hu-Ha-Bobaru, analytic partial area (2D) Seleson, P. Improved one-point quadrature algorithms for two-dimensional peridynamic models
. . . . . based on analytical calculations, CMAME, 282, pp. 184-217, 2014.
= Appllcatlon of SmOOthly'decaymg influence functions Seleson, P., and Littlewood, D.J. Convergence studies in meshfree peridynamic simulations.
. . . C t d Math ti ith Applicati 71:2432-2448, 2016.
=  Approximate calculation of partial volumes (3D) CIRULRIS GRa Y ATIRIARES W ARRHRAHOTS ! _ S
Seleson, P., and David J. Littlewood, D.J. Numerical tools for effective meshfree discretizations of
] Geometry, q uad rature peridynamic models. In George Z. Voyiadjis, editor, Handbook of Nonlocal Continuum Mechanics for
Materials and Structures. Springer. Accepted.
= Sandia
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Computational Peridvnamics
5. Convergence of meshfree models

Numerical experiments: Solution of statics problem with known solution

= Linearized LPS material model equates to classical local model under assumption of a quadratic displacement field

Peridynamic equation of static elasticity, linearized LPS model Classical Navier-Cauchy equation
w(|€]) , _ of static elasticity
- / AED ! (3K — 50) (8" [x] + 9" x + €]) €
He ™M
§x¢

- [GVzu(x) + (K + %G) v(V- u)(x)] — b,
€2

+30G

(u(x+€) — u(x))}dve = b(x) x € Q,
u(x) = g(x) x € B\ Q.

= Permits verification via method of manufactured solutions

. i Body force density for static equilibrium
Quadratic displacement field

[ 1
b1 = — [2G (U11 + Uz + Uss) + (K lr gG) (2U11 + Vig + Wla)] )

u(x) = Un12® + Usoy® + Uss2® + Urazy + Urszz + Uszyz,
v(x) = V112 + Vagy® + Vaz2® + Vigzy + Vizzz + Vasyz, by

[ 1
— |2G (Vi1 + Vag + Va3) + (K+ §G> (Ur2 + 2Va2 +W23)} ’

_ 2 2 2 -
w(x) = Wuz” + Way” + Wasz” + Wiazy + Wiszz + Wasys, by = — |2G (W11 + Wag + W33) + (K + %G) (Urz + Vas + 2W33)] '
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Computational Peridvnamics
5. Convergence of meshfree models

Convergence results for different partial-volume schemes and different influence functions

A8 . . — - 48— . . . -
19! ) _;._E:I\:::?.?MMPS — 19/ VV'VVVS_Q:_EE::’E:LBAMMPS Algorlthm a=0 o =
ol -] | sl P = 7 R F R
= p 7 ~ Lo FV 1.53 0.165 | 1.38 0.128
?'2“' — _3'2"' e PV-PDLAMMPS | 0.86 0.186 | 0.89 0.167
oy < PV-HHB 1.56 0.035 | 1.34 0.030
=- =- PV-NC 1.22 0.003 [ 1.05 0.001
- 2. FV PWL 1.24 0.036 | 1.05 0.004
FV PWC 1.07 0.005| 1.11 0.009
FV PWQ 1.10 0.014 | 1.15 0.016
, , FV PWS 1.04 0.006 | 1.12 0.012
-2.15 2.1 -2.05 2 -1.95 19 -2.15 -21 -2.05 -2 -1.95 -1.9
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Computational Peridvnamics
5. Convergence of meshfree models

Numerical experiments: Solution of dynamics problem o
Initial displacement

=  Cubic computational domain i 2

= |nitial displacement applied to shell of .
internal nodes =" f

= Wave allowed to propagate freely through EQ\ K_/
domain N

= Solutions compared against highly-refined SORCERE R

benchmark solution

Initial conditions A o
_ (Ix|=r0)? _ g '
w(x)=4 e 7 & if (ro —36) < [x| < (ro+3¢) g\ / e
0 otherwise, N .
vO(x) = 07 v
= Sandia Short Course
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Computational Peridvnamics
5. Convergence of meshfree models

Convergence results for different partial-volume schemes and different influence functions

-4.7 T T T -4.7 - T T ™ — ™ 7
475k | s "y ] PE R A ] Algorithm a=0 a=1
anl [Emie ] P . | 7 R 7 R
N e N Al et oD e ] FV 427 0514 | 141 0.099
= e~ El PV-PDLAMMPS | 1.05 0.202 | 1.02 0.157
< < PV-HHB 1.31 0.038 | 1.04 0.026
< = PV-NC 0.96 0.013 | 0.85 0.016
® 2. FV PWL 0.98 0.019 [ 0.93 0.017
FV PWC 0.85 0.016 | 0.88 0.015
FV PWQ 0.86 0.015 | 0.91 0.015
. , . FV PWS 0.85 0.016 | 0.93 0.015
-2 -1.95 -1.9 -1.85 -1.8

-2.05 2 295 18 485 18
logyo(h) log,(h)
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Computational Peridvnamics
5. Convergence of meshfree models

Changing the influence function changes the underlying model (physics)

x10-4 x10‘4
6 —FV
— PV-PDLAMMPS
— PV-HHB
4 | —PV-NC
— FV PWL
2 L| -- FVPWC
= - FVPWQ _
&~ -~ FVPWS 5
#® 0 b
-] 1
21 =
4t
6}
-05-04-03-02-01 0 0.1 0.2 0.3 04 05
Z T
= Sandia
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Computational Peridynamics

Outline

Ingredients of a peridynamics simulation

=  Governing equations

= Constitutive model, bond failure law

=  Contact model

= Discretization

= Time integrator

= Surface effect in peridynamic simulations

= Estimation of the maximum stable time step for dynamic simulations
= Convergence of peridynamic models

= Demonstration of meshfree peridynamics for model analysis
= Modeling damage and failure

S Sandia OAK RIDGE Short Course
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Computational Peridvnamics
7. Demonstration of meshfree peridynamics for modal analysis

Test case

Why modal analysis?

One-dimensional analysis of simply-supported

®  Modal analysis is used to determine the dominant structural modes and LiESa00 WITEH SEUERE Grmss eetian

natural frequencies of a given system .
q 8 y Classical (local)
"  Peridynamic models containing material damage can be used in the analytic solution
analysis of experimentally-measured frequency responses (nondestructive B Bastic modalus
testing of bridges, etc.) Height and depth
h of beam
How does it work? m  Mass of beam
l Length of beam
®  Modal analysis is achieved by solving for the dominant eigenvalues and n  Positive integer
eigenvectors of the tangent stiffness matrix f Characteristic linear
n frequency (mode n)
. _wn [E
"2 Vi2gmi4

= Sandia OAK RIDGE Short Course
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Computational Peridvnamics
7. Modal analysis of peridynamic models

Results from peridynamic simulation

Beam dimensions: 1m x 0.01m x 0.01m
Material: steel (E = 206.8 GPa)
Peridynamic horizon: 0.000713m
Correspondence elastic material model
Beam discretized with 840K elements

Classical ~ Peridynamic Percent
Mode  Theory Simulation  Difference
1 23.30 Hz 23.26 Hz 0.17 %
2 93.22 Hz 93.02 Hz 0.21 %
3 209.73Hz  209.06 Hz 0.32 %
4 372.86 Hz  371.29Hz 0.43 %
5 582.59Hz  579.39 Hz 0.55 %

Visualization of first five mode shapes

\_/

(a) Mode 1.

D

(b) Mode 2.

N\
VAVA

VAVAV

(e) Mode 5.

David J. Littlewood, Kyran Mish, and Kendall Pierson. 2012. Peridynamic simulation of damage evolution for structural health monitoring.
Proceedings of the ASME 2012 International Mechanical Engineering Congress and Exposition (IMECE2012), Houston, TX.
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Computational Peridynamics

Outline

Ingredients of a peridynamics simulation
=  Governing equations

= Constitutive model, bond failure law

=  Contact model

= Discretization

=  Time integrator

Surface effect in peridynamic simulations

Estimation of the maximum stable time step for dynamic simulations

Convergence of peridynamic models

Demonstration of meshfree peridynamics for model analysis

Modeling damage and failure
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Computational Peridvnamics
7. Modeling failure and damage

Modeling failure and damage with peridynamics

= Modeling pervasive damage is a primary advantage of peridynamics
= Nonlocality separates the length scale (horizon) from the mesh, which relieves mesh dependence

= Convergent solutions to material failure problems (localizing phenomenon) are possible with
peridynamics, impossible with a local model

= Cracks develop / grow / branch in peridynamic simulations based primarily on energetics

E%

[Images courtesy Seleson]
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Computational Peridvnamics
7. Modeling failure and damage

Experimental setup

= Tube expansion via collision of Lexan
projectile and plug within AerMet tube VISAR Probes

cb

= Accurate recording of velocity and 1

displacement on tube surface lll

Modeling approach W <t
Sample Tube Projectile

= AerMet tube modeled with peridynamics, e

elastic-plastic material model with linear Experimental setup

hardening [Vogler, et al.]

. . Computational model

= Lexan plugs modeled with traditional FEM,

EOS-enabled Johnson-Cook material model

Vogler, T.J., Thornhill, T.F., Reinhart, W.D., Chhabidas, L.C., Grady, D.E., Wilson, L.T., Hurricane, O.A., and Sunwoo, A. Fragmentation of
materials in expanding tube experiments. International Journal of Impact Engineering, 29:735-746, 2003.

D. J. Littlewood. Simulation of dynamic fracture using peridynamics, finite element modeling, and contact. In Proceedings of the ASME 2010 International
Mechanical Engineering Congress and Exposition (IMECE), Vancouver, British Columbia, Canada, 2010.
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Computational Peridvnamics
7. Modeling failure and damage

Experimental image at 15.4 Simulation at 15.4 microseconds
microseconds [Vogler et. al]

Experimental image at 23.4 Simulation at 23.4 microseconds
microseconds [Vogler et. al]

VK ) Sandia OAK RIDGE Short Course
N7 "1 [‘L“‘J},‘Eﬁ',,ies %National Laboratory Peridynamic Theory of Solid Mechanics




Computational Peridvnamics
7. Modeling failure and damage

VISAR Probes
cbha
Displacement and velocity “l [ogler, etal.]
on tube surface
at probe position A ' <
Sample Tube Projectile
25
250
_ 2 Experimental Data [Vosgilr::lL T;t?(l)ﬂ _ 500
E =
E 15 2
= E 150
g z
%é‘ 1 %) 100
A 2
0.5 % Experimental Data [VOS%];ru le;tziicl).r]l _
0 0
0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14
Time (microseconds) Time (microseconds)
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Computational Peridvnamics
7. Modeling failure and damage

Qualitative Comparison of
Fragmentation Results

damage

 Vogler et. al reported significant
uncertainty in results at late time

» Approximately half the tube remained
intact

» Vogler et al. recovered 14 fragments
with mass greater than one gram

Simulation at 84.8 microseconds

\‘ gi:} \
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Computational Peridvnamics
7. Modeling failure and damage

Characterizing fragment data with a Cumulative Distribution Function

= A CDF can be created for any quantity of interest Example: CDF for fragment mass
= Provides insight into the fragmentation process |

= Allows for comparison with experimental data
0.8

1 Nfrag Nfrag % 0.6
POO=31 4™ M=Y m
g o

P(X) is the probability that a given material point belongs
. F}

to a fragment whose property value X; is less than X

0 50 100 150 200
Mass (g)
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Computational Peridvnamics
7. Modeling failure and damage

Fragments identification in a meshfree peridynamic simulation

= Provide post-processing capability for characterizing fragmentation process

L Fragment ID

[ 66
K 50
Approach o
7 . K16
‘- *} O
= Computational domain is traversed to identify networks of unbroken bonds '
= Process is iterative, converges when fragment numbers are no longer
changin
ging Identification of
= Afragment number is assigned to every node in the model disk fragments
= Tiny fragments are (optionally) combined and assigned a common
fragment number DO initialize fragment numbers to node ids
» Related quantities of interest are computed for each fragment REPEAT until fragmentinumbers stop shanging
. . . FOR every node i
= Mass, center of mass, linear and angular momentum, moments of inertia, block FOR all neighbors j of node i
names IF the bond between nodes i and j is unbroken

DO assign max( F;, F;) to nodes i and j

David Littlewood, Stewart Silling, Paul Demmie. 2016. Identification of Fragments in a Meshfree Peridynamic Simulation. Proceedings of the
ASME 2016 International Mechanical Engineering Congress and Exposition, Phoenix, Arizona.
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Computational Peridvnamics
7. Modeling failure and damage

Elastic sphere impacting a brittle elastic disk
Projectile modeled with classical FEM

= Elastic material model

=  Radius 5.0 mm,

* Damage

1.00

EO.75

= |nitial velocity 35.0 m/s L0080

= Target modeled with peridynamics v [géz
= Bond-based microelastic material model

= (Critical stretch bond failure rule

= Radius 17.0 mm, height 2.5 mm

. Material parameters
Material parameters
for er;jectiIe for target Parameters for
b . Parameter Value fragment identification
arameter ue
- i Density p 2200.0kg/m> output file = frag_data.csv
Denalty p 993.1kg/m Bulk modulus & 14.9GPa increment = 4.0e-5
Bulk modulus & 1.0GPa Horizon & 1.0mm minimum fragment size =5
Poi ’s ratio v 0.3
e Critical stretch sy~ 0.0005
G ';h ﬁggﬂﬁal %0 AK RIDGE Short Course
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Computational Peridvnamics
7. Modeling failure and damage

Algorithm captures evolution of fragmentation process

Fragment ID Frqgmer})’rAID 1 l.F[ogmer})félD
E: ] Eas S E 50
E S 16 s R
E 0 i 0 E. 0
Exclusion of tiny fragments has a significant effect
1
08 Threshold Total Mass of
Fragment Size Tiny Fragments
2 o6
z 1 0.000g
E 04 2 0.531¢g
3 0.613g
02 4 0.641g
, Tiny Fragmonts Excluded 5 0.651g
0 0.1 02 03 04 05
Mass (g)
/ ,:m ‘ m ﬁgtnigiral‘al %OAK RIDGE Short Course
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Computational Peridvnamics
7. Modeling failure and damage

= Fragmentation of an expanding ductile ring
= Bond-based microplastic material model
= Critical stretch bond failure rule

= |nner radius 110.0 mm, outer radius 125.0 mm,
height 25.0 mm

= |nitial outward radial velocity 100.0 m/s
= ~60,000 nodal volumes

Material parameters

Discretization of ring Parameter

Density p
Bulk modulus &

Horizon &

Yield stretch sy

Critical stretch s¢g¢

7850.0kg/m>

. w%® oy
H
. %
N %
" .,
Y -
‘“ﬂ ’
S : . e
- 4 * L

Parameters for
fragment identification

output file = frag_data.csv
increment = 2.4e-5
minimum fragment size =0

i) Rom 3.OAK RIDGE
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Computational Peridvnamics
7. Modeling failure and damage

Algorithm captures evolution of fragmentation process

=t ®
oy ! 3
V 4 N | ¢
'] |} N £ 8
€ - e
Fr(:gment1 ID Frugmen]iéD ' Frcgmenztfl)D
E i l E 14 ‘ E 20
= , 1 & , 15
\-” ; "\. | ,‘ 5 150
) E 0 E 0 7—. I E 0
Exclusion of tiny fragments does not affect results
| I
- r
_ iy
Q-E 04 j’—‘
k,
0 b
:_I_°
0 X‘r—: N
\ Mass (g) - —
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Computational Peridvnamics
7. Modeling failure and damage

Visualization of
fragment momentum

Momentum (kg m/s)
20.0

:} @*\: ' E;15.0
& —;0.0
E 5.0
E 0.0
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The Peridigm peridynamics code

http://peridigm.sandia.gov https://github.com/peridigm/peridigm

Peridigm

About Peridigm

Map of downloads from
peridigm.sandia.gov
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