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Abstract—Microgirds (MGs) can operate in islanded mode and
serve as black-start resources for power system restoration (PSR).
In this work, a model predictive control based generator start-up
optimization strategy for PSR is proposed utilizing MGs as
black-start resources. Firstly, the generator start-up sequence
(GSUS) optimization is formulated as a mixed integer linear
programming. Then the uncertainties of microgrid black-start
resources (MBSRs) are modeled by discretizing the probability
distribution of the forecast errors, and representative scenarios
for MBSRs extracted by formulating the probability mass
transportation problem. Thirdly, the generator start-up
optimization strategy considering MBSRs is proposed utilizing the
model predictive control (MPC) technique, in which the
optimization objective is to maximize the energy capability of the
power systems and minimize the load curtailment of the MGs in
each looking-ahead interval. Simulations on the IEEE 118 bus
system with MGs and Zhejiang provincial power system in China
verify that the proposed strategy for PSR can successfully restore
the power system and effectively determine the optimal GSUS.

Index Terms—Black-start, microgrid, model predictive control
(MPC), power system restoration (PSR), probability mass
transportation problem (PMTP), scenario reduction

NOMENCLATURE
Subscript Indexes
w The index of representative scenario.
' The index of original scenario.
LD The indexes of non-black-start units (NBSUs),
black-start units (BSUs), and buses.
iy The index of the targeted NBSU.
t The index of time step.
y The index of the MG elements.

Variables and Parameters
pmax Maximum, or rated, output power.
Pk Cranking power of units.
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T Overall restoration time.

wowl/im?/w?  0-1 variable representing generation stages.

SBS/SNBS/SB - Sets of BSUs/NBSUs/buses of the power system.

Ve 0-1 variable for transforming the variable inside
the absolute value operator (a=1, 2, 3).

u/z% 0-1 variables for restricting v* (a=1, 2, 3).

R Ramping rate of units.

ptart Start time of units.

ek Cranking time of units.

TR Ramping time of units.

{min/gmax Critical minimum/maximum time.

PG Output power of units.

Ppmain/pMG Output power of the power system/MG.

E Stored energy of energy storage systems (ESSs).
[Emin/ pmax Minimum/maximum stored energy of ESSs.
Pf Predicted power.

5 Forecast errors

N Number of discretized probabilities.

Nt Interval with time steps.

n/y Coefficients for load curtailment.

PUL/pPL Undispatchable/dispatchable loads in MG.
e/ ped Curtailed undispatchable/dispatchable loads
ho/h\/h2/h3 0-1 variable restricting the load curtailment.

I. INTRODUCTION

ITH the extensive applications of advanced automatic

control technologies (ACTs) and information and
communication technologies (ICTs) to power systems [1], the
automation and intelligence level of power systems has been
greatly improved, the ability to resist and cope with faults
boosted, and the resilience of power systems enhanced by
sophisticated and well-designed approaches [2], [3]. However,
due to the increase of complexities and uncertainties, such as
the integration of variable renewable energy and the demand
side dynamics of loads, from the power sources, the power
networks, and the demand sides, power systems are still at risk
of major outages or blackouts, which should be paid more
attention.

After a blackout, power system restoration (PSR) processes
should be carried out to recover the system to the normal
operation state. The PSR problem is a complicated process that
generally involves multi-objectives, multi-stages and
combinatorial nonlinear constraints [4]. So far, many research
works have been conducted to optimize restoration strategies
for PSR. In [5], the PSR problem is investigated based on the
artificial neural networks, and several island restoration



schemes are presented for developing island restoration plans.
In [6], the PSR problem is decomposed as various modules
such as generation capability optimization, constraint checking,
and transmission path search ones, and a mixed integer linear
programming (MILP) for the generation capability
optimization module is proposed to optimize the generator
start-up sequence (GSUS). The linearization and simplification
of overall system generation capability (GC) is firstly
addressed in [6]. Since the proposed MILP is supported by
multiple modules to attain the optimal GSUS, the GSUS
optimization strategy in [6] can be deemed as a module based
mixed integer linear programming (MBMILP). In [7], a
restoration method based on “generic restoration milestones”
(GRMs) is proposed, by which customized restoration plans
can be generated by combining the GRMs. In [8], a black start
decision-supporting system (DSS) that can automatically
optimize restoration strategies and visualize the simulation
results is proposed for isolated power systems. In [9], a
two-stage adaptive DSS is developed to tackle online
restoration problem with the constraints such as power flow,
load modeling, and dynamic reserve incorporated. In [10], a
framework for PSR focusing on sectionalization of the power
system and GSUS is proposed, where the optimization
objective aims to minimize the time when the last
non-black-start unit (NBSU) is cranked.

The conventional black-start units (CBSUs) are confronted
with some limitations. For example, either failures of the power
plant or shortage of primary resources will result in
unavailability of cranking power, which causes that the power
system would not be restored. With the increasing penetration
of renewable energy into power systems, research works have
also been conducted considering the participation of renewable
energy sources (RESs) in PSRs. In [11], a complete PSR
strategy with the assist of RES is proposed and optimized by
the firefly algorithm (FA) for reducing the restoration time and
the unserved loads. Recently, the literature has focused on the
restoration strategies with the aid of RESs in the form of
microgird (MG). MG is a relatively small-scale power system
that can operate in grid-connected mode and islanded mode.
Integrated with various distributed generators (DGs), such as
wind turbine (WT), photovoltaic (PV), dispatch unit (DU) and
energy storage system (ESS), an islanded MG can provide its
local loads with uninterruptable, stable and reliable power. This
advantage of islanded operation can be utilized to enhance the
resilience of power systems. In [12], a resilience-oriented
two-stage heuristic for critical load restoration in distribution
systems is proposed utilizing MGs as power sources whose
uncertainties are described by a Markov chain model. In [13],
considering a variety of constraints such as transient voltage
and current limits of the DGs, a resiliency-based service
restoration method is proposed utilizing MGs to pick up critical
loads. In [14], a service restoration framework incorporating
both the power support from MGs and traditional
reconfiguration is proposed utilizing load data from the
advanced metering infrastructure meters. It can be seen that
MGs can play a significant role under emergency conditions
and operations of distribution systems.

Since the recent two decades, the installed MW capacity of
MG has increased significantly to the extent that cranking
power requirements of NBSUs (generally ranging from several
MWs to tens of MWs) can be met. Moreover, the utilization of
ESS in the MG can mitigate and offset the fluctuation and
randomness of RES and loads, which increases the reliability
and stability of the islanded MG and its output power. In
addition, the sophisticated and well-designed control strategies
for MG facilitate the stable disconnection from the power
system that suffered a failure and the reliable operations of
islanded MGs. In summary, the capacities of MGs are sufficient
enough to meet the cranking power requirements of NBSUs,
and each element in the MG can be precisely dispatched by
well-designed control strategies such that the securities of the
islanded MGs are guaranteed. As a result, it is feasible and
promising to utilize MGs to assist PSR by providing the
NBSUs with sufficient and reliable cranking power. Some
publications have also paid attention to using MGs as BSRs. In
[15], the coordinated MGs are utilized as black-start resources
(BSRs) for accelerating the disaster recovery processes of
power systems. In [16], feasibility analyses on MG resiliency
resources, i.e. local resource, community resource, and BSR,
are performed in terms of frequency, in-rush currents, and
reactive power of the system, which demonstrates that it is
possible and feasible for MGs to act as BSRs on some
conditions.

The CBSUs may be unavailable for PSR on some conditions
such as failure of the units or lack of primary resources, while
the incorporation of RESs into power system resilience
enhancement and restoration has been paid much attention with
the increasing proportion of RESs in power systems. Although
some publications [11]-[13] have integrated RESs in the form
of MGs to enhance the resilience of power systems in
distribution level by picking-up critical loads or reconfiguring
the distribution systems, the role of RESs in PSR in
transmission level has not been fully investigated. The
complete PSR strategy incorporating RESs [10] does not
consider the uncertainties of RESs and the optimum cannot be
guaranteed due to the heuristic optimization algorithm. Due to
the increasing capabilities of MGs that aggregate RESs, ESSs
and loads to enhance the resilience and reliability of power
systems, the literature [14] and [15] has focused on utilization
of MGs as resiliency resources so as to facilitate the PSR in
transmission level. However, the restoration strategy utilizing
coordinated MGs is presented for post-disaster restoration and
the restoration paths of NBSUs are not optimized [14].
Moreover, the concerned MGs in [14] and [15] do not include
RESs and their intrinsic uncertainties, which undermines the
effectiveness of utilizing MGs as resiliency resources.

To further investigate the potential of MGs to assist PSR, a
model predictive control (MPC) based generator start-up
optimization strategy is proposed by utilizing the MGs as BSRs.
The GSUS problem with CBSUs as the only BSRs is first
addressed and formulated as a MILP model by linearizing the
generation capability function. In order to utilize MGs as BSRs,
uncertainties of MGs with multiple microsources (MSs) and
loads are modeled as scenarios. Then the MPC technique is



applied to mitigate the inaccuracy of forecast parameters in
MGs due to long forecast period, and a model predictive control
based mixed integer programming (MPC-MILP) model is
presented so as to incorporate MGs into GSUS optimization
problem. Compared with the existing publications on PSR with
participation of RESs and MGs, the proposed MPC-MILP is
essentially a linear programming model, thus an optimum
solution for GSUS problem can be attained. Since ignoring the
fluctuation and randomness of the outputs and loads in MGs
may undermine the validity of the optimized restoration
strategies, the uncertainties of RESs and loads in MGs are
addressed and described as scenarios. Besides, since the errors
between the forecast uncertain parameters and their actual
realizations of MGs will become greater as the forecast horizon
increases, the MPC technique is used to mitigate the inaccuracy
of forecast parameters of MGs by recursively optimizing the
GSUS problem with the newly updated information of the
microgrid black-start resources (MBSRs) and the concerned
power system.

In summary, the major contributiona of this work can been
summarized as: 1) a generator start-up optimization strategy is
proposed and formulated as a MILP model for attaining the
optimal GSUS; 2) an scenario generation method is proposed to
model uncertainties of MGs through discretizing the
probability distribution of forecast errors (PDFEs); 3) based on
the probability mass transportation problem (PMTP), a linear
programming scenario reduction (LPSR) method is proposed to
efficiently deal with a large number of original uncertainty
scenarios with unequal probabilities, 4) the MPC technique is
first applied to PSR to mitigate the inaccuracy of the forecast
power of MGs caused by long forecast time horizon (FTH) and
a MPC-MILP model for integrating MBSRs into the GSUS
optimization problem is proposed.

The rest of this work is structured as follows. In Section II, a
novel MILP model for addressing the GSUS problem is
proposed. The feasibility of MBSRs is analyzed and the
scenario based uncertainty management algorithms are
presented in Section III. Section IV introduces the MPC
technique and presents the MPC based GSUS optimization
strategy. Simulations are performed in Section V. Discussions
and comparisons on the proposed methods are made in Section
VI. Finally, conclusions of this work are highlighted in Section
VIIL

II. A MILP MODEL FOR GSUS OPTIMIZATION

At the early stage of restoration, cranking power should be
provided to NBSUs that are generally thermal power plants as
soon as possible by black-start units (BSUs) [4]. However,
NBSUs cannot be restored simultaneously at that stage due to
restrictions such as the limited megawatt (MW) capacity of
BSUs and the critical minimum/maximum times of NBSUs.
Therefore, it is of significance to determine the optimal GSUS
for maximizing restoration benefits. Generally, the objective of
the GSUS problem is to maximize the overall energy capability
in MWh (i.e., the difference between the total system restored
energy and the required start-up energy of NBSUs) over the
system restoration time 7. In [6], this objective is linearized and

simplified as

min 3 (B™ - P @)

ieSNBS

where SVBS represents the set of NBSUs; Pmax i and Pcrk i
represent the rated output power and cranking power
requirement of NBSU i, respectively; #start i represents the start
time of NBSU i, i.e., the time when NBSU i gets cranking
power.

In order to optimize GSUS, the MW capacity of NBSUs and
BSUs should be first modeled. The MW capacity of a unit can
be separated into four stages, as shown in Fig. 1. In Fig. 1, the
black solid line above/below ¢ axis represents the total output
power/cranking power of the unit, whereas the red solid line is
the actual output power of the unit synthesized by the total
output power and cranking power. Then the MW capacity of a
unit can be expressed by introducing four variables (i.e.,
wow!l/w?/w3) in each time ¢, as shown in Fig. 1. Each variable
corresponds to one stage: if the variable is equal to 1, it means
that the output power of the unit is in the very stage; otherwise,
not in this stage. For these variables, the following constraints
should be respected.
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Fig. 1. Generation capability function of units
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Equation (3) represents that each unit could be in only one
stage at each time ¢. Equations (4) to (7) restrict the values of
the variables (i.e., wo/w!/w?/n?) at each stage of units; they
guarantee that once one unit reaches a specific stage, it will not
go back and will stay in the corresponding state until it reaches
the next stage. Equation (7) indicates that all the NBSUs are out
of service and the cranking power is unavailable at the
beginning of the restoration. Equation (9) indicates that the
BSU can be restarted by itself, i.e., the BSU will not undergo
the first stage corresponding to w°. Equation (10) indicates that
all the units are restored at the end of the restoration. Equations
(11) to (13) restrict the times of state changes of different units.
The state of each unit can only change once or twice. For

example, if wjg (wfg) of the NBSU changes from 0 to 1, it
cannot change from 1 to 0 until wy=1 (wy=1); once wy=1
(wy=1), W), (w;) changes from 1 to 0. In other words, the state
of wjy (wy) of the NBSU changes twice. Similar analyses can
be made for wy, of the BSU, and the constraint for wy, of the
BSU is included in (12). According to (3)-(7) and (9), w), of
the BSU equals 1. Thus w/.‘gof the BSU can only changes once,
i.e. from 1 to 0, as constrained by (12). Equations (14) to (16)
restrict the duration time of each stage, i.e., the duration times
of stages shown in (14), (15), and (16) are restricted by the start
time, cranking time and ramping time, respectively. Absolute
value operators (AVOs) in (11) to (13) make the problem
intractable, so binary variables va if are introduced to represent
the variables inside AVOs (a=1, 2, 3 for (11), (12), (13)

respectively). For example, [wl it—w1 i(t+1)| can be represented
as vl it that respects the following constraints.
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Then the output power of a unit can be expressed as:
PS =—(W, +w. + WHP™ + W R (t =™ +1—£™) + w) P™
(VieS®US™S; t=0,...,T). (18)
The quadratic term in (18) can also be linearized by
introducing extra binary variables y, , then equation (18) can

be expressed as:
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where y, =w.w! should respect the following constraint.
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The overall output power of the system at each time step ¢
should be non-negative, as
P = PS>0 (t=0,..7).

it =
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For the NBSUs, the critical minimum and maximum time
constraints should be met, as

Lmin < tistan (Vl c SNBS)

i
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i

(22)
(23)

Besides, the generator start-up time should be at least larger
than the energizing time 7_ of the transmission path from

BSU p to NBSU i, as
<p (Vie SN

(p,i)'"'

24

T "
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The energizing time 7 of the restoration path can be

(p.i)"
attained from the presented path optimization model on the
basic of the node degree of complex network theory.

Restoring NBSUs entails an appropriate restoration path.
The determination of an optimal restoration path for restoring
NBSU is to find a set of transmission lines connecting buses
that can minimize the risks of overvoltage resulting from
energizing unloaded lines and the line energization times. On
the other hand, the optimization of GSUS problem should not
only identify an optimal start-up sequence that can maximize
the restoration benefit, but also facilitate the subsequent
restoration processes so as to reduce the restoration time of the
entire power system and the overall unserved energy. In other
words, appropriate restoration paths of NBSUs should decrease
the overvoltage of energizing lines, reduce the energization
time, and facilitate the subsequent restoration. In order to taking
into account these considerations, the restoration path
optimization model is proposed. In complex network theory,
the degree of a node denotes the number of the neighbor nodes
of that node [17]. The node degree reflects the connectivity
level of a specific node to other parts of the graph. The larger
the degree of a node is, the more important that node is.
However, when the degrees of two nodes are equal to each
other, it is difficult to identify which node is more important.
Therefore, the node degree is improved by considering the
degree contributions of neighbor nodes and then utilized to
evaluate the bus importance of power system in this work. The
improved bus (node) degree of power system is defined as:

diimp _ disclf i z d;cn‘cﬁ

jes®

(25)

where dimp i and dself i denotes the improved bus degree and
bus degree of bus i, respectively [18]; Snb i denotes the set of
neighbor buses of bus 7; the second term of the right side can be
regarded as degree contributions of the neighbor buses; C;; is a
coefficient denoting the contribution level of neighbor node j to
node i. The larger the charging capacitance of a line is, the more
serious the overvoltage phenomenon is. Thus, the capacitances
of lines are considered in (25), i.e., C;=1/[c; >, (1/c,)]
pesi®
where c; represents the capacitance of line (7, j). Since c;=cy,

the improved node degree can be expressed as:
self

d™ =d*" + Y ——L — (VieS®)  (26)

jese ey 2, (1 ey)

peS'/-lb
where SP represents the set of buses of the power system.
The injection power of a bus reflects the capacity of that bus



to transfer electric power to other buses. Incorporating the
improved bus degree and the ratio of the maximum injection
active power of bus i Pin i to the base power PB (named as
power transfer factor in this work), the importance of a bus can
be evaluated by:
D, =d"™ [maxd™ + 2 g./m?gc g, (VieS®)
JE€

1
jes®

@7

where &, = P" / P® represents the power transfer factor of bus i;

D; represents the importance of bus i; A4 is a coefficient. As
shown in (27) the bus degree and line capacitance are integrated
into the bus importance index. The bus degree indicates the
connectivity level of a bus to its neighbor buses, the line
capacitance is related to the overvoltage caused by energizing
an unloaded line, and the power transfer factor reflects the
capacity of a bus to transfer electric power to other buses. Thus
incorporating the proposed bus importance into restoration path
optimization can facilitate the subsequent restoration and
mitigate the overvoltage. With the bus importance and the
energization time considered, the path optimization model can
be formulated as (28).

YD,

min 7 = l/rn(p’l_),,, +y > (28)

a(p.)" jea(p.i)" ., j#i,p
where o(p,i)" represents the m™ restoration path from BSU p

to NBSU i; L represents the energization time of the mt™

restoration path from BSU p to NBSU i; y is a coefficient. As

seen from (28), the value of the first term will decrease and the
value of the second one will likely increase as the line number
(or bus number) of a path rises. As a result, the optimal
restoration path that takes into account the energization time
and bus importance can be attained by minimizing (28).

The bus importance, as well as the overall bus importance
and energization time of one path in (28) can be easily
calculated. o(p,i)" is the decision variable and the solution

domain of (28) is a finite and countable set, thus it is tractable to
attain the minimum of the objective. The index of the solution
of (28) is denoted as:

% _ .
m*T=arg min r -
g o (p,i)" a(p,i)

According to the path optimization model (28), optimal

29)

restoration paths o (p,i)”" can be determined and then the

energization time 7_ - of that path is imposed upon (24).

(pii

Constraints to voltage and reactive power are checked before
energizing a certain transmission line or cranking a NBSU. If
the constraints are not respected, it means that the BSRs
provided by BSUs and NBSUs already restored are insufficient
at the current time step. Therefore, an extra time constraint can
be added into the model and it will be re-solved.

The model in (2)-(24) for the GSUS problem can be
linearized as a MILP, and then utilized to optimize the GSUS.
Recently, utilization of MGs to aid PSR has been paid much
attention [15], [16]. In the following sections, the feasibility of
MBSRs is analyzed, and then a PDFE and PMTP based
approach proposed to model the uncertainties of MBSRs.

Finally, an improved MILP based on MPC is proposed so as to
incorporate MGs into GSUS optimization problem.

III.MBSR MODELING BASED ON PDFE AND PMTP

A. Feasibility of Microgrid Black-Start Resources

Although the capacity of a single MG has been increasing
rapidly such that it can met the cranking power requirements of
NBSUs, small-scale MGs that are geographically adjacent can
also be aggregated as multi-microgrid (MMG) or microgrid
cluster (MGC) that also has a large MW capacity so as to
provide NBSUs with sufficient cranking power [19]. However,
the GSUS problem of the PSR is mainly focused on in this work
and both the MMG and MGC are regarded as a single MG
despite their differences. On the other hand, the reactive power
can be provided by not only DUs in the MG but also the
inverters of MSs of the MG [15], [16], and [20]. Moreover, the
fluctuation and randomness can be mitigated and offset by the
ESS in MG to the extent that the reliability and stability of the
islanded MG are maintained. Therefore, in terms of the MW
capacity, it is feasible for the MGs to act as BSRs and provide
enough cranking power to NBSUs after a blackout.

A MG typically consists of four types of MSs, i.e., WT, PV,
DU, and ESS. The RES (WT and PV) MSs and ESS MS are
interfaced with MG by inverters. MSs of a MG are controlled
and managed by the microgird central controller (MGCC) [21].
In general, the converter controllers of MSs have three control
mode: PQ (active power and reactive power) control, Vf
(voltage and frequency) control, and droop control [22]. When
a failure of a power system is detected, MGs are disconnected
from the concerned power system (maingrid) under the control
of MGCCs and operate in islanded mode. The cranking power
of NBSUs can be deemed as local loads of an islanded MG. The
islanded MG is coordinated by adjusting the output power of
MSs and loads through MGCC to ensure that the restoration
requirements, such as cranking power of NBSUs, voltage and
frequency stability of the coalition of the maingrid and MGs,
are satisfied. Since at least one master inverter with stable
output power is required for the islanded MG to set voltage and
frequency references, the RES inverter should operate in PQ
control mode and the ESS inverter or DU should operate in Vf
control mode before the maingrid could operate stably [21].
After the maingrid could provide the voltage and frequency
reference, the VT controlled inverters could be transferred into
PQ control. The fluctuation and randomness of MSs and loads
during restoration period can be coordinated and controlled by
the MGCC through the droop characteristics of inverters. The
above control strategies guarantee that the MGs can provide the
NBSUs with cranking power and operate stably during
restoration.

In summary, it is feasible, in terms of capacities and control
strategies, for MGs to act as BSRs so as to provide cranking
power to NBSUs.

B.  Scenario Generation Based on Discretization of PDFE
Before a MG is utilized as a BSR, the output power of its
RESs should be forecast over a time period 7;,. Only if the
forecast net power of an islanded MG in a period of time 7}
(that is at least longer than the cranking time of the targeted



NBSU) is large enough, the MG can be utilized as the BSR.
However, the actual output power of weather-dependent MSs
in MG is of randomness and intermittency and is usually not the
same as the predicted values. Moreover, the power supply to
local loads in the MG might be considered when the restoration
plan is made and carried out. In order to model the power of
WT, PV and loads of MGs, a scenario generation method is
proposed by discretizing PDFE and then representative
scenarios are selected by formulating and optimizing the
PMTP.

Considering fluctuations of wind, solar and loads, the actual
output power can be denoted as the sum of the predicted ones
and forecast errors (FEs), as

Py =Py +8,, (y=1,23t=t..1; +T})

ytw' ytw' (30)
where y=1, 2, and 3 represent WT, PV and loads respectively.
Normal distribution can be utilized to describe the FEs
[23]-[25]. The PDFE of each uncertain variable is discretized
into intervals and the probability of each interval is equal to the
cumulative probability in this interval [26], which can be

expressed as:

V, = {8 o)) (B o W (r=1L2,3; t =1t +T;) (31)
Py =[P} 1T (=1,23) (32)

where V, represents the set of pairs of the FE and probability

(65,p;); P, represents a probability vector and the sum of its

elements is equal to 1.

Based on the probability discretization from (31) to (32), the
error scenario space containing the errors of variables
associated with wind power, solar power and loads can be
generated by the Monte Carlo method and expressed as:

i +T¢

Se(tf) = H (Vlt XVZ: ><V3t)

t=t;

(33)

where S, (¢;) represents the error scenario space from #¢to #+7%

with the dimension of 7¢X 3.
After the error scenarios are attained, the uncertainty
scenario space S, (¢;) containing the output power of RESs and

load power of the MG can be attained according to (30). The

probability of each uncertainty scenario can be represented by
4Ty 3 4T 3

po =111,/ X [111e,,p)

t=t; y=1 w'eSy(t;) t=t; y=1

(34

T . . . .
where @, represents the unit vector for scenario selection, in

which only the entry corresponding to the position of the very
scenario @' is 1, and other entries are 0.

C. Representative Scenario Selection by PMTP

It can be seen from (33) that the number of scenarios
increases exponentially. Too many scenarios make intractable
the problem of modeling and optimization of GSUS with
MBSRs. In order to improve the computational efficiency,
representative  scenarios that can capture the main
characteristics of the majority of scenarios should be selected.
Various scenario reduction methods have been proposed, such
as the k-means cluster method, the SCENRED?2 tool in GAMS

(The General Algebraic Modeling System) [27] and the fast
forward selection [28]. However, these methods have their
limitations. For example, the k-means method cannot tackle
scenarios with unequal probability, and the SCENRED?2 tool
and fast forward selection are less efficient when the original
superset of scenarios is large [29], [30]. The PMTP based LPSR
method can efficiently deal with the unequal probability and a
large number of original scenarios, and has been applied to
fields such as Voronoi diagram and chance constrained
portfolio optimization [30]. Generally, the original uncertainty
scenarios of MBSRs are characterized as large quantities and
unequal probabilities, therefore the PMTP based LPSR is firstly
proposed in power systems to extract a small number of
representative scenarios of MBSRs.

The PMTP based LPSR consists of three main steps. The
first step initializes a subset of representative scenarios by any
methods such as random selection or k-means method. The
number of representative scenario is a user-defined value and
should be pre-specified before this step. Then a subset of the
desired number of representative scenarios can be attained. The
representative scenarios can be viewed as cluster center that
represents a certain number of original scenarios (named as
scenario cluster) according to their distance to the cluster
centers. The second step optimizes the transportation plan by
solving PMTP that minimizes probabilistic distance between
the original superset of scenarios and the reduced subset of
representative scenarios. The third step reevaluates the
probabilistic distance until it converges by altering the cluster
centers within their scenario clusters. The PMTP based LPSR
can be illustrated by Fig. 2 utilizing random selection and
k-means method respectively, wherein the desired number of
representative scenarios is set as three.

.. .. .. . =\
=
®eo o N P

3" Step: change the

cluster center

nd

2% Step: optimize
the PMTP

Superset of original
uncertainty scenarios

1 Step: initialize by
random selection

DN

~rd

3" Step: change the
cluster center

2" Step: optimize
the PMTP

1* Step: initialize by ~Subset of represent-
k-means method ative scenarios

®  Original uncertainty scenario L]

Fig. 2. Illustration of the PMTP based LPSR utilizing random selection and
k-means method respectively

Representative scenario

The PMTP that selects representative uncertainty scenarios
for MBSRs can be formulated as:

min z Z c(uw‘ﬂ.ww' (35)
weS(t;) 0'eSy(t;)
St Y T, =Pt (36)
weS(t;)
Z ﬂ-mm' = p::p (37)
'Sy (1)
z  20,YoeSEt) Yo'eS, () (38)



where S(7;) represents the representative scenarios space; c,,.
represents the transportation cost of moving w'e S,(#;) to
® e S(t;), and is generally called as transportation distance or
cost function; p%® and p* represent the probabilities of the

is the
decision variables representing the transportation plan, and is
the joint probability distribution on S(#;) X S,(¢;) [31]. In this

original and representative scenarios, respectively; 7,

o'

3
Work’ c(ua)' = Z

y=1

The processes of the PDFE and PMTP based uncertainty
modeling for MBSR can be shown in Fig. 3. The processes of
the uncertainty modeling for MBSR can be summarized as
follows.

1) generate the error scenario space by discretizing the PDFE
of uncertainty parameters and the uncertainty scenario space,
and calculate the probability of uncertainty scenarios;

2) initialize a subset of representative scenarios by k-means
method from the original superset of uncertainty scenarios;

3) optimize the PMTP, and then the scenario clusters can be

attained from the transportation plan and the probability p.* of

P, —-P

ytw yto'

)

representative scenario from the marginal distribution of 7_ |

on S(t);

4) alter the representative scenario (cluster center) of each
scenario cluster and identify the one leading to the minimum
transportation cost within this cluster;

5) update the subset of the identified representative scenarios

Generate the uncertainty scenario space and
calculate the probability of uncertainty scenarios
based on Equations (29) to (33).

Initialize a subset of representative
scenarios by k-means method

v

Solve the probability mass transportation
problem (PMTP) from (34) to (37)
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Obtain scenario clusters based on the
transportation plan

v

Change the representative scenario (scenario center) of
each scenario cluster and identify the one leading to
minimum transportation cost within this cluster

v

Update the subset of the identified representative scenarios
and re-calculate the probabilistic distance as (34).

Does the probabilistic
distance converge?

Return results.

Fig. 3. The flow chart of the proposed PMTP based LPSR

and re-calculate the probabilistic distance (the objective of
PMTP) utilizing the known transportation plan;

6) if the probabilistic distance converges, the representative
scenarios of MBSRs can be attained; otherwise, repeat steps 3)
to 5) until the objective value of PMTP converges.

IV.MPC BASED GSUS OPTIMIZATION WITH MBSRS
A. Model Predictive Control

When restoring the power system, the FEs of wind power,
solar power and loads of the MBSRs will become larger with
the increase of FTH. At the end of the FTH, the actual
black-start power that the MG can provide may not be the same
as those values at the time step when the restoration model is
optimized, and the GSUS problem optimized once only in the
initial time might not be the globally optimal one. In order to
deal with the inaccuracy of forecast power caused by long FTH,
the MPC technique is introduced into the restoration strategy.

The control technique, in which a problem is optimized
recursively in a finite-moving-horizon of intervals by forecast
parameters and then only the attained control scheme in the first
interval is applied to the problem, is called as MPC or receding
horizon control (RHC) [32]. Recently, the MPC technique has
been applied to formulate economic dispatch and energy
management frameworks of MG [33], [34], and voltage
regulation strategy of ESSs [35]. The MPC technique can
consider the latest forecast parameters by recursively
optimizing the relevant problem with the newly updated data,
thus it can reduce the impacts of uncertainties of MBSRs and
achieve a globally optimal restoration scheme. Applying the
MPC technique, the uncertainty parameters in the MG and the
state of NBSUs in the power system are updated in each time
interval, and then the GSUS problem can be recursively
optimized in each interval. Since the overall restoration time of
the system is finite, and the number of unrestored NBSUs
optimized in each interval in the look-ahead planning horizon is
decreasing with the successive restoration scheme, the
shrinking horizon control (SHC), a variant of the MPC
technique [36], is utilized in this work to optimize the generator
start-up strategy with MBSRs. In the SHC technique, the
look-ahead planning horizon reduces with successive
restoration schemes, which is more efficient for the GSUS
problem than the original MPC with fixed planning horizon.

The proposed SHC technique for GSUS problem can be
illustrated by Fig. 4. As shown in Fig. 4, the uncertainties of
WT, PV and loads of MBSRs are managed 7Ny ahead the k&
planning horizon T- (k~1)Nt. Due to the exponential increase
of scenario number, the uncertainty scenarios are generated and
representative scenarios selected TNt ahead the & planning
horizon T~ (k-1)Nr in a relative shorter interval T; (that should
be no less than Ny), and then each representative scenario is
extended with the forecast values of the subsequent planning
horizon T-kNr. After the scenario extension processes, the
GSUS optimization model is solved for the k" interval N
considering a look-ahead planning horizon 7-kNt, and a
sequence of unit start-up and load curtailment schemes is



attained but only the attained schemes in the 4™ interval will be
carried out. Both uncertainty management and optimization
solving processes are performed in advance within the period
T+Nr so as to reserve enough time to implement the restoration
actions. The scenario extension processes and the SHC (MPC)
based GSUS optimization are repeated for GSUS optimization
until all NBSUs are restored.

Scenario extension process (k=1)
Representative

; Extended scenarios
scenarios \

NN T Active power

l—T— T—kN, T
R p—
GSUS optimization based on MPC (SHC)
nnttnniianlloniinaiinallaninainnlloninning 44 anioaina ool
N, IN, 3N, (k-DN, T
| | | 1 | S
k=1 Planning horizon 1

I I I B d
k=2 Planning horizon

| | | J
k=3 Planning horizon i

Fig. 4. Schematic diagram of the MPC technique for GSUS optimization

B. MPC Based GSUS Optimization with MBSRs

The power system aims to maximize its energy capability,
but for the MBSRs the welfare of their local customer should be
considered. Although the local loads should be sustained by the
MGs, it might be inevitable for the MG to selectively curtail
local loads for PSR after a big blackout. Generally, the local
customer consists of dispatchable loads (DLs) and
undispatchable loads (ULs) that are with perfect forecast values.
The energy losses of the curtailed loads over the restoration
period should be minimized, as:

T
mind ¥ pi7 (B +y Ry )
t=0 weS(t;)

The curtailment of DLs and ULs can be expressed as (40)
and (41) respectively.

PUL +E5L _Pmain _RL\:IG

tw

l:f O<E$ain +Pm]\:l0 _PUL <PDL

tw

(39)

B =B if BI4EYC P <0 (40)
0 other
VMoeS(), t=0,.T)
PUL _Rzain _BZIG lf‘ }):;ain +1)[ZIG _PUL < 0
P =40 other (41)

VweS(); t=0,.T)
Equations (40) and (41) can be further modeled as mixed
integer formulation by introducing binary variables %° , as:

w
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to

(VoeS(); t=0,.T) (42)
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B +h +h +h =1 VoeS{t); t=0,..T) (44)
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NVweS@); t=0,..T) (47)

(P + P2 <(PM" + PNOYh) (Vwe S(t,); t=0,..T) (48)

to tw
where M is a big enough positive number and M#~’, in (42) is a

penalty for guaranteeing that the constraint to the restoration
power is respected. Equations (42) to (48) restrict the loads
curtailment in their corresponding ranges. Constraints to the
WTs, PVs, DUs and ESSs of MBSRs should also be met [37].

Finally, taking into account the energy losses of loads of
MBSRs, the GSUS optimization model in the & interval can be
expressed as a MPC-MILP:

min (P[max _ Picrk )t[stan
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= ‘ ‘ (49)
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The objective of the MPC-MILP is represented by (49),
where S, =0 ; St(k)={(k-1)Nr, (k-1)N1+1, (k-1)Ny+2, ..., T};

ie S"\UZ, S represents that in each interval Ny the units

restored in the previous time interval are removed from the
NBSU set, and the unrestored units are reserved and their
start-up sequence will be optimized in the current interval.

The constraints include (50) to (73) for the concerned power
system, (42) to (48), wherein ¢ € St(k), for the curtailed loads of
MBSRs, and the MSs related ones of MBSRs [37].

The GSUS is optimized recursively in each interval Nt until
all the NBSUs are restored. The overall procedures of the
proposed MPC based GSUS optimization strategy can be
illustrated by Fig. 5.

Initialize: input parameters of the
concerned power system.

v

Determine restoration paths of non-
black-start units (NBSUs) based on the
path optimization model.

No Ate there sufficic
MBSRs?

Manage the uncertainties of MBSRs in the ™
planning horizon by executing the uncertainty — |[€—

y modeling processes shown in Fig. 3 over interval 7}.
Execute the l
proposed MILP

model (1)-(23) with Extend the representative scenarios over the
the constraints to subsequent planning horizon 7-kNr, as shown
voltage and reactive in Fig. 4.

power checked. l

Execute the MPC-MILP model (48)-(72) for the
k™ planning horizon, with the constraints to
voltage and reactive power checked.

fe all the NB
restored?

Return results.

Fig. 5. Flow chart of the overall procedures of the proposed MPC based GSUS
optimization strategy
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V. CASE STUDY

The proposed MPC-MILP for GSUS is solved in this work
by commercial solver Gurobi 8.0.0 programmed via Python
language. The modified IEEE 118 bus system with MGs and
Zhejiang provincial power system in China are served for
demonstration. The simulations are performed on a personal
computer with Intel-i7 3.4GHz Xeon CPU and 8 GB RAM.

A. IEEE 118-Bus System with MGs

The modified IEEE 118-bus system with MGs is utilized to
illustrate the proposed MPC-MILP for GSUS optimization
strategy with MBSRs. The sectionalization result of the system
in [38] (as shown in Fig. 6) is adopted for demonstrating
parallel restoration strategy based on the proposed methods.
Parameters of this system are shown in Table I, in which
CBSU s locate in buses 12, 25, 59, 66 and 100. In the modified
system, MGs locate in buses 5, 59, 67 and 100, and the installed
capacities (ICs) of the MSs and the power of loads are shown in
Table II. The ramping rate of each MG is assumed large enough
that it can attain maximum output within a time step. The
charging efficiency, discharging efficiency and the minimum
energy capacity of ESSs are 0.85, 0.85 and 0.2, respectively.
The available capacity of ESSs after the blackout is assumed as
their installed energy capacity. The RESs and DLs are forecast
based on historical data, whereas the UL in each MG is constant.
Discretized PDFEs of RESs and loads in 77 are shown in Table
III. The times of restoration of BSUs, energization of
transmission lines, synchronization of subsystems, and parallel
of reactive power compensation facilities (RPCFs) are assumed
as 10, 5, 20 and 5 minutes, respectively. The NBSUs are
cranked immediately upon energizing the buses they are
connected to. An entire simulated blackout occurred at 14:00
(#=0) in the power system, and all the MGs was transferring into
islanded operation mode and prepared to assist the PSR. The
time step is set as 5 min, 7;=60 min, and Nt=45 min.

O Substation
@® NBSU

O BSR

— Transmission Ling

Fig. 6. The IEEE 118-bus system with sectionalization result

The optimized restoration actions using MBSRs are shown
in Table IV. In Table IV, S1, ..., S5 represent the set of
restoration actions at each time step for subsystems I, ..., V.
The subscript in the action set represents the time delay of
energizing some transmission line caused by overvoltage. For



example, 49-45,, at =40 in S3 represents a delay of 20 minutes
caused by overvoltage. In the subsystem I, MG is a backup
BSR. However, due to the shortage of cranking power, MG 5
energizes part of transmission lines and parallels the RPCF
between BSU 12 and NBSU 10, which remarkably accelerates
the restoration process after BSU 12 is restored. In the
subsystem II, there is no MBSR and BSU 25 restores this
section. In the subsystem III, the BSU and MG cooperate with
each other to restore the subsystem. At the beginning of
restoration when BSU 66 is unavailable, MG 67 is the only
BSR and it energizes some transmission lines and provides
NBSU 49 with cranking power. After BSU 66 is restored, MG
67 and BSU 66 cooperatively crank the rest units. In the
subsystem IV, with constraints met, the MBSR provides
NBSUs 54 and 61 with cranking power immediately after the
blackout. In the subsystem V, due to the critical minimum time
requirement, NBSU 103 cannot be restored immediately, but
part of lines are energized and NBSU 111 is restored first by the
MBSR. The NBSUs’ start time (ST) is shown in Table I.

TABLE I
UNIT PARAMETERS OF THE IEEE 118-BUS SYSTEM
Gen. Ppmax Perk R(MW fmax min ferk ST
No. MW)  (MW) /hr) (min) (min) (min)  (min)
10 550 15 200 N/A 30 40 40
12 185 0 90 N/A N/A 20 -
25 320 0 180 N/A N/A 25 -
26 414 12 180 50 N/A 35 45
31 107 3 60 N/A N/A 30 70
46 119 3 60 N/A N/A 25 45
49 304 10 180 N/A N/A 35 15
54 148 5 60 N/A N/A 35 10
59 255 0 90 N/A N/A 20 -
61 260 8 90 N/A N/A 30 10
65 491 12.5 200 N/A 20 35 35
66 492 0 250 N/A N/A 15 -
69 805.2 20 420 120 N/A 40 40
80 577 15 200 N/A N/A 40 55
87 104 3 60 N/A N/A 35 70
89 707 16 400 N/A N/A 40 60
100 352 0 180 N/A N/A 25 -
103 140 4 60 N/A 35 30 40
111 136 4 60 N/A N/A 30 25
TABLE II
MG PARAMETERS OF THE IEEE 118-BUS SYSTEM AND ZPPS
Parm. /No. 5 59 67 100 1 11 111 v

IC of WT (MW) 4 5 4 10 20 10 0 30
IC of PV (MW) 2 8 2 5 50 30 25 30
ICofDUMW) 10 12 10 10 20 15 20 10

pema. /pehmax 4 5 4 5 8 10 10 8

Em (MWh) 10 10 10 15 32 20 20 20

Max. DL(MW) 10 10 10 12 36 22 28 28

UL (MW) 3 075 0 12 15 14 5 16
TABLE III

DISCRETIZED PDFES FOR THE IEEE 118-BUS SYSTEM AND ZPPS
Prob. FE of WT (%) Prob. FE of PV (%) Prob. FE of DL (%)

0.15 -10 0.2 -5 0.3 3

0.3 -5 0.25 -2.5 0.4 0

0.1 0 0.1 0 0.3 3

0.3 5 0.25 2.5 - -

0.15 10 0.2 5 - -
TABLE IV

RESTORATION ACTIONS FOR THE IEEE 118-BUS SYSTEM

10

Time (min) Restoration Actions
5 S1={MG 5 is islanded, Crank BSU 12}; S2={Crank
BSU 25}; S3={Crank BSU 66, MG 67 is islanded};
S4={MG 59 is islanded}; S5={MG 100 is islanded}
10 S1={Energize line 5-11,5-8}; S3={Energize line
67-66}; S4={Energize line 59-54, 59-61, Crank NBSU
54, 61}; S5={Energize line 100-103, 100-92}

15 S1={Parallel RPCF 8}; S3={Energize line 66-49, Crank
NBSU 49}; S5={Energize line 103-110, Parallel RPCF
92}

20 S1={Energize line 8-9, 11-12}; S3={BSU 66 is
cranked}; S5={Parallel RPCF 110}

25 S1={BSU 12 is cranked}; S5={Energize line 110-111,
Crank NBSU 111}

30 S2={BSU 25 is cranked}; S3={BSU 66 is restored and
paralleled with MG 67 at bus 66}

35 S1={BSU 12 is restored and paralleled with MG 5 in bus
12}; S3={Energize line 66-65, Crank NBSU 65}

40 S1={Energize line 9-10, Crank NBSU 10}; S2={BSU 25

is restored}; S3={Energize line 49-45,,, 49-69, Crank
NBSU 69}; S4={NBSU 61 is restored}; S5={Crank
NBSU 103}

45 S1={Energize line 12-16}, S2={Energize line 25-26,
Crank NBSU 26}; S3={Energize line 45-46, 69-77,
Crank NBSU 46}; S4={NBSU 54 is restored}

50 S1={Energize line 16-17}; S2={Energize line 25-275};
S3={Parallel RPCF 77, NBSU 49 is restored};
S5={Energize line 92-89}

55 S2={Parallel RPCF 27}; S3={Energize line 77-80,
Crank NBSU 80}; S4={Energize line 54-49};
S5={Energize line 89-85, NBSU 111 is restored}

60 S2={Energize line 27-32}; S5={Parallel RPCF 85,
Crank NBSU 89}

65 S2={Parallel RPCF 32}; S5={Energize line 85-86}

70 S2={Energize line 32-31, Crank NBSU 31};
S3={NBSU 65 is restored}; S5={Energize line 86-87,
Crank NBSU 87}

75 S5={Energize line 100-99}

80 S2={NBSU 26 is restored}

85 S2={Energize line 26-30}

90 S2={Energize line 30-38, 30-17}

95 S3={Energize line 65-38, NBSU 80 is restored }

100 S3={Energize line 80-99}

Although the MGs can restore the systems, part of loads of
MBSRs might be curtailed. The load curtailment of MG 5 is
near zero. The energy losses of MGs 59 and 67 are about 0.185
and 0.151 MWh respectively as a result of DLs’ curtailment.
Although the load losses in MGs 5, 59 and 67 are negligible,
MG 100 in subsystem V curtails substantial amount of loads.
The energy losses of MG 100 during restoration are about
3.173 MWh (2.866 MWh for DLs and 0.307 MWh for ULs).
The curtailment of loads is a synthesized effect of generation of
MSs, demand of loads, and the restoration actions. If the output
of a MBSR is insufficient to satisfy the demands of local loads
and the cranking power of NBSUs, part of loads of the MBSR
might be curtailed to restore the system.

The generator STs optimized in the first interval (k=1) for
NBSUs 87, 89, 103 and 111 are at 70, 65, 40 and 25 min,
respectively. However, in the second interval (k=2) along with
the planning horizon, the GSUS model is re-optimized based on
the previous NBSU states, the newly forecast parameters and
generated scenarios. The attained STs of NBSUs 89 and 87 are
at 60 and 70 min, respectively. Thus in the restoration actions,
NBSUs 111, 103, 89 and 87 are cranked at 25, 40, 60 and 70
min, respectively. The load curtailment of the first and second
intervals is 2.148/0.005 MWh for DLs/ULs and 2.866/0.305



MWh for DLs/ULs, respectively. However, the objective
values of the GSUS model optimized at k=1 and k=2 are 127.93
and 127.74 respectively, which means that the optimization
result is improved by the MPC technique. While the MPC
technique improves optimization result in subsystem V
effectively, the advantages are not fully reflected in other
subsystems due to the sufficient cranking power from BSUs
and/or MBSRs in the subsequent intervals following the first
one. As a result, the MPC technique can mitigate the inaccuracy
of forecast power of MBSRs caused by long FTH and improve
the optimization results.

It can be concluded that the MGs can effectively restore the
system by the proposed MPC-MILP. To further demonstrate
the proposed method, generation capabilities (GCs) and the
restored energy of the proposed MPC-MILP, MBMILP [6],
generator startup sequencing model (GSSM) [10], and FA [11],
attained by utilizing MBSRs, are compared in Fig. 7 and Table
V, respectively. It can be seen from Fig. 7 that in subsystems I
and V the GC of MPC-MILP is larger than that attained by the
MBMILP, FA and GSSM. In subsystem II where no MBSR is
considered, the MPC-MILP degenerates to the MILP model as
in Section II and it attains a GC as good as the other three
methods. In subsystem III, the MPC-MILP method attains the
same GC as MBMILP and GSSM methods, whereas the least
GC is attained by the FA. In subsystem IV, all of the four
methods attain the same GC. In subsystem V, the MPC-MILP
method outperforms the other three methods, while the
MBMILP and GSSM achieve moderate GCs and the FA
method performs the worst and attains the least GC.
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methods are optimal for their corresponding models
respectively and are better than the result of the FA method
which utilizes heuristic optimization algorithm thus the
optimum cannot be guaranteed. On the other hand, the
MPC-MILP, MBMILP and GSSM methods utilize different
restoration path optimization models to find the restoration
paths for NBSUs, i.e., the MBMILP method utilizes power
transfer distribution factor (PTDF) to search restoration paths,
whereas the GSSM method utilizes the Dijkstra algorithm of
complex network theory. Since the PTDF may not find the
shortest restoration path and the Dijkstra algorithm does not
consider the overvoltage risks of energizing lines although it
can find the shortest path, these path optimization models may
be suboptimal on some conditions and may undermine the
overall GC optimized. For example, the restoration paths for
the subsystem I optimized by the MPC-MILP, MBMILP and
GSSM methods are [12—>11—>5—8—>9—10], [12—11—~4—5
—-8 —>9 —10], and [12 =3 —5 —8 —9 —10], respectively,
which may result in the differences of GC in subsystem 1. In
subsystem V, the restoration paths for NBSU 89 and 87 are
optimized as [100—92—89—>85—86—87], [100—~92—~89—
88 —85—86—87] and [100 =92 -89 — 85— 86 —87] by the
MPC-MILP, MBMILP and GSSM methods, respectively. As a
result, the optimized GCs in subsystem V of the MBMILP and
GSSM methods are smaller than that of the MPC-MILP method.
In other words, the differences in optimization methods and
restoration paths may influence the total GC of the power
system concerned.
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Fig. 7. Comparisons of GCs of different methods for the IEEE 118 bus system

It should be noted that the difference of GC is a synthetized
effects of the optimization method utilized and the variables,
parameters and constraints in the model. Since the MPC-MILP,
MBMILP and GSSM methods are based on linear
programming models, the optimization results of these three

As shown in Table V, the restored energy of the MPC-MILP
in subsystems is larger than that of other methods. The total
restored energy attained by the MPC-MILP is 13,021 MWh,
and is 269, 437 and 179 MWh larger in quantity than that
attained by the MBMILP, FA and GSSM, respectively, which



means more unserved loads are resupplied. As a result, the
MPC-MILP outperforms the MBMILP, FA and GSSM. The
optimal GSUS can be attained and more unserved loads can be
resupplied by utilizing MPC-MILP.

TABLE V
THE RESTORED ENERGY OF THE IEEE 118-BUS SYSTEM (UNIT: MWH)
Subsystem 1 11 111 v \ Total
MPC-MILP 1329 1368 6188 1248 2888 13021
MBMILP [6] 1238 1368 6087 1248 2811 12752
FA[11] 1238 1368 5981 1248 2750 12584
GSSM [10] 1283 1368 6122 1248 2820 12842

B.  Zhejiang Provincial Power System in China

In order to further validate the effectiveness of the proposed
restoration strategy in actual power system, simulations on
Zhejiang provincial power system (ZPPS) in China are
performed. The capacity of ZPPS is 43, 000 MW, and about 45
percent of the capacity is required to be restored at early stages
of PSR. ZPPS consists of 38 NBSUs, 369 buses and 525
transmission lines, and it is partitioned into four subsystems for
parallel restoration, as shown in [39]. Four MGs (i.e., MG I, 11,
III, and 1V) originated from the actual photovoltaic power
stations in Zhejiang province are utilized as MBSRs. Details of
the MBSRs are shown in Table II. Suppose that a blackout
occurs at 10:00 a.m., and then all the MGs transfer into islanded
operation mode and begin to restore the system. The GCs of
different methods are shown in Fig. 8. The restored energy
during restoration is shown in Table VI. Comparisons with the
MBMILP, FA and GSSM show that the MPC-MILP attains the
largest GC and the optimal GSUS. The total restored energy of
the MPC-MILP over the restoration period is 49,264 MWh, and
is 942, 1721 and 573 MWh larger than that of the MBMILP, FA
and GSSM, respectively. In other words, application of the
proposed GSUS optimization strategy to ZPPS shows that the
NBSUs can be successfully restored by MBSRs, and that the
optimal GSUS can be effectively determined and more
unserved loads resupplied by using that strategy.
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VI.DISCUSSIONS AND COMPARISONS

Comparison of LPSR with Fast Forward Selection

The PMTP based LPSR outperforms the SCENRED?2 tool
which is based on forward selection or backward selection
heuristic by iteratively adding scenarios to an initial set or
removing scenarios from the initial set [27] and [30]. In order to
further validate the effectiveness and efficiency of the proposed
LPSR method, comparisons of the proposed LPSR with fast
forward selection [28] are performed with multiple uncertainty
scenario numbers. The uncertainty scenarios are generated
based on the parameters of MG I in ZPPS. The cardinality of
subset of representative scenarios is set as 30. Simulation
results on the LPSR and fast forward selection are illustrated in
Table VII.

TABLE VII
COMPARISONS OF THE PROPOSED LPSR WITH FAST FORWARD SELECTION
LPSR Fast Forward Selection
Snf;’;;r;f TD CT (s) D CT (s)
1200 3.2680 7.53 3.3341 77.96
2400 3.2577 24.53 3.2908 281.67
4000 2.5585 62.78 2.5823 879.10
6500 3.2669 70.11 3.2676 2297.24
10000 3.3763 120.63 3.3826 5632.28

TD: transportation distance; CT: computing time.

It can be seen from Table VII that the transportation distance
of the proposed LPSR is always smaller than that of the fast
forward selection method. In other words, the LPSR method
can provide a more representative uncertainty subset since the
transportation distance is smaller. As the number of uncertainty
scenarios increases, the computing time of the LPSR method is
substantially smaller than that of the fast forward selection.
That is mainly because the distance between each the pair of
uncertainty scenarios is calculated for the fast forward selection,
i.e., for a superset of Q original uncertainty scenarios, the fast
forward selection calculates Q X Q times the distance between
scenarios; whereas the LPSR calculates only O X K times the
distance between scenarios, where K represents the desired
number of representative scenarios. As a result, the proposed
PMTP based LPSR could effectively and efficiently deal with a
large number of original uncertainty scenarios.

B.  Comparison of SHC with MPC

In order to demonstrate the advantages and efficiency of SHC,
computing times with various planning horizon for MPC and its
variant SHC are compared, as shown in Table VIII, wherein
T=60 p.u.. Since the optimization models for the subsystems I
and II of the IEEE 118 bus system degenerate into a MILP one,
the comparisons of SHC with MPC are not made for these two

subsystems.
Time (p.u.) TABLE VIII
Fig. 8. Comparisons of the total GCs of different methods for ZPPS COMPARISONS OF SHC AND MP(CUWITH ]))IFFERENT PLANNING HORIZONS
NIT: §
TABLE VI T 1.25T 1.5T

THE RESTORED ENERGY OF ZPPS (UNIT: MWH) subsystem SHC MPC SHC MPC SHC MPC

Subsystem 1 11 111 v Total IEEE 118-III 9.01 9.19 13.62 16.82 18.86 26.68

MPC-MILP 14294 13882 7810 13279 49264 IEEE 1181V 456 455 7.00 701 924 931
FA [11] 13996 13260 7591 12697 47543 ZPPS-1 3168 3892 5135 87.02  92.62 15285
ZPPS -11 29.05 36.05 59.61 86.95 98.74 160.21

GSSM [10 14224 13683 7643 13141 48691

[10] ZPPS -1II 21.96  31.06 4598  67.06  70.69 113.47




ZPPS -IV 1595 2036 5433  66.63 8044  123.06

As seen from Table VIII, the computing times of SHC are less
than those of MPC in the three planning horizons for subsystem
IIl and V of the IEEE 118 bus system and all the four
subsystems of ZPPS. In subsystem IV of the IEEE 118 bus
system, the computing times of SHC in the three planning
horizons are almost equal to those of MPC, since all the NBSUs
of this subsystem are cranked within the first time interval, i.e.,
k=1. Since the planning horizons for the SHC and MPC based
methods when k=1 are the same, the computing times for these
two methods should be equal to each other in theory. Therefore,
it seems that the minor errors of computing times between the
SHC and MPC based methods are not so much from the
difference between the methods as from the model
optimizations and executions. A larger planning horizon will
inevitably result in more variables and parameters of the GSUS
optimization model, so the computing times for both the SHC
and MPC will rise as the planning horizons increase, as
illustrated by Table VIII. Table VIII also demonstrates an
increasing computing time reduction of the SHC technique.
Although merely 2% of time is saved with the planning horizon
of T'in subsystem III of the IEEE 118 bus system, about 65.03%
of time reduction is attainted with the planning horizon of 1.5T
in subsystem V of the IEEE 118 bus system. In other words,
utilizing the variant SHC technique in the GSUS optimization
model is more efficient than utilizing the original MPC one.

VII.CONCLUSION

A generator start-up optimization strategy for PSR with MGs
is proposed in this work. The GSUS problem is formulated as a
MILP from a new different perspective. The variable output
power of MSs and demands of MGs are modeled as scenarios
based on discretization of PDFEs and formulation of PMTP.
The MPC technique is utilized to mitigate the impacts of the
increasing FEs of wuncertainty parameters. Numerical
simulations on the modified IEEE 118-bus system with MGs
and the ZPPS in China demonstrate that after a big blackout the
power system can be successfully restored and the GSUS can
be effectively determined by the proposed MPC-MILP.
However, the transient processes are not included in this work.
In future works, attention will be paid to the transient processes
of MGs, which will further validate the effectiveness.
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