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Abstract—Microgirds (MGs) can operate in islanded mode and 

serve as black-start resources for power system restoration (PSR). 
In this work, a model predictive control based generator start-up 
optimization strategy for PSR is proposed utilizing MGs as 
black-start resources. Firstly, the generator start-up sequence 
(GSUS) optimization is formulated as a mixed integer linear 
programming. Then the uncertainties of microgrid black-start 
resources (MBSRs) are modeled by discretizing the probability 
distribution of the forecast errors, and representative scenarios 
for MBSRs extracted by formulating the probability mass 
transportation problem. Thirdly, the generator start-up 
optimization strategy considering MBSRs is proposed utilizing the 
model predictive control (MPC) technique, in which the 
optimization objective is to maximize the energy capability of the 
power systems and minimize the load curtailment of the MGs in 
each looking-ahead interval. Simulations on the IEEE 118 bus 
system with MGs and Zhejiang provincial power system in China 
verify that the proposed strategy for PSR can successfully restore 
the power system and effectively determine the optimal GSUS.

Index Terms—Black-start, microgrid, model predictive control 
(MPC), power system restoration (PSR), probability mass 
transportation problem (PMTP), scenario reduction

NOMENCLATURE

Subscript Indexes
ω The index of representative scenario. 
ω' The index of original scenario.
i, j, p The indexes of non-black-start units (NBSUs), 

black-start units (BSUs), and buses.
i0 The index of the targeted NBSU.
t The index of time step.
y The index of the MG elements.
Variables and Parameters
Pmax Maximum, or rated, output power.
Pcrk Cranking power of units.
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T Overall restoration time.
w0/w1/w2/w3 0-1 variable representing generation stages.
SBS/SNBS/SB Sets of BSUs/NBSUs/buses of the power system. 
va 0-1 variable for transforming the variable inside 

the absolute value operator (a=1, 2, 3).
ua/za 0-1 variables for restricting va (a=1, 2, 3).
R Ramping rate of units.
tstart Start time of units.
tcrk Cranking time of units.
TR Ramping time of units.
tmin/tmax Critical minimum/maximum time.
PG Output power of units.
Pmain/PMG Output power of the power system/MG.
E Stored energy of energy storage systems (ESSs).
Emin/Emax Minimum/maximum stored energy of ESSs.
Pf Predicted power.
  Forecast errors
N Number of discretized probabilities.
NT Interval with time steps.

/  Coefficients for load curtailment.
PUL/PDL Undispatchable/dispatchable loads in MG.
PcU/PcD Curtailed undispatchable/dispatchable loads
h0/h1/h2/h3 0-1 variable restricting the load curtailment.

I. INTRODUCTION

ITH the extensive applications of advanced automatic 
control technologies (ACTs) and information and 

communication technologies (ICTs) to power systems [1], the 
automation and intelligence level of power systems has been 
greatly improved, the ability to resist and cope with faults 
boosted, and the resilience of power systems enhanced by 
sophisticated and well-designed approaches [2], [3]. However, 
due to the increase of complexities and uncertainties, such as 
the integration of variable renewable energy and the demand 
side dynamics of loads, from the power sources, the power 
networks, and the demand sides, power systems are still at risk 
of major outages or blackouts, which should be paid more 
attention. 

After a blackout, power system restoration (PSR) processes 
should be carried out to recover the system to the normal 
operation state. The PSR problem is a complicated process that 
generally involves multi-objectives, multi-stages and 
combinatorial nonlinear constraints [4]. So far, many research 
works have been conducted to optimize restoration strategies 
for PSR. In [5], the PSR problem is investigated based on the 
artificial neural networks, and several island restoration 
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schemes are presented for developing island restoration plans. 
In [6], the PSR problem is decomposed as various modules 
such as generation capability optimization, constraint checking, 
and transmission path search ones, and a mixed integer linear 
programming (MILP) for the generation capability 
optimization module is proposed to optimize the generator 
start-up sequence (GSUS). The linearization and simplification 
of overall system generation capability (GC) is firstly 
addressed in [6]. Since the proposed MILP is supported by 
multiple modules to attain the optimal GSUS, the GSUS 
optimization strategy in [6] can be deemed as a module based 
mixed integer linear programming (MBMILP). In [7], a 
restoration method based on “generic restoration milestones” 
(GRMs) is proposed, by which customized restoration plans 
can be generated by combining the GRMs. In [8], a black start 
decision-supporting system (DSS) that can automatically 
optimize restoration strategies and visualize the simulation 
results is proposed for isolated power systems. In [9], a 
two-stage adaptive DSS is developed to tackle online 
restoration problem with the constraints such as power flow, 
load modeling, and dynamic reserve incorporated. In [10], a 
framework for PSR focusing on sectionalization of the power 
system and GSUS is proposed, where the optimization 
objective aims to minimize the time when the last 
non-black-start unit (NBSU) is cranked. 

The conventional black-start units (CBSUs) are confronted 
with some limitations. For example, either failures of the power 
plant or shortage of primary resources will result in 
unavailability of cranking power, which causes that the power 
system would not be restored. With the increasing penetration 
of renewable energy into power systems, research works have 
also been conducted considering the participation of renewable 
energy sources (RESs) in PSRs. In [11], a complete PSR 
strategy with the assist of RES is proposed and optimized by 
the firefly algorithm (FA) for reducing the restoration time and 
the unserved loads. Recently, the literature has focused on the 
restoration strategies with the aid of RESs in the form of 
microgird (MG). MG is a relatively small-scale power system 
that can operate in grid-connected mode and islanded mode. 
Integrated with various distributed generators (DGs), such as 
wind turbine (WT), photovoltaic (PV), dispatch unit (DU) and 
energy storage system (ESS), an islanded MG can provide its 
local loads with uninterruptable, stable and reliable power. This 
advantage of islanded operation can be utilized to enhance the 
resilience of power systems. In [12], a resilience-oriented 
two-stage heuristic for critical load restoration in distribution 
systems is proposed utilizing MGs as power sources whose 
uncertainties are described by a Markov chain model. In [13], 
considering a variety of constraints such as transient voltage 
and current limits of the DGs, a resiliency-based service 
restoration method is proposed utilizing MGs to pick up critical 
loads. In [14], a service restoration framework incorporating 
both the power support from MGs and traditional 
reconfiguration is proposed utilizing load data from the 
advanced metering infrastructure meters. It can be seen that 
MGs can play a significant role under emergency conditions 
and operations of distribution systems. 

Since the recent two decades, the installed MW capacity of 
MG has increased significantly to the extent that cranking 
power requirements of NBSUs (generally ranging from several 
MWs to tens of MWs) can be met. Moreover, the utilization of 
ESS in the MG can mitigate and offset the fluctuation and 
randomness of RES and loads, which increases the reliability 
and stability of the islanded MG and its output power. In 
addition, the sophisticated and well-designed control strategies 
for MG facilitate the stable disconnection from the power 
system that suffered a failure and the reliable operations of 
islanded MGs. In summary, the capacities of MGs are sufficient 
enough to meet the cranking power requirements of NBSUs, 
and each element in the MG can be precisely dispatched by 
well-designed control strategies such that the securities of the 
islanded MGs are guaranteed. As a result, it is feasible and 
promising to utilize MGs to assist PSR by providing the 
NBSUs with sufficient and reliable cranking power. Some 
publications have also paid attention to using MGs as BSRs. In 
[15], the coordinated MGs are utilized as black-start resources 
(BSRs) for accelerating the disaster recovery processes of 
power systems. In [16], feasibility analyses on MG resiliency 
resources, i.e. local resource, community resource, and BSR, 
are performed in terms of frequency, in-rush currents, and 
reactive power of the system, which demonstrates that it is 
possible and feasible for MGs to act as BSRs on some 
conditions. 

The CBSUs may be unavailable for PSR on some conditions 
such as failure of the units or lack of primary resources, while 
the incorporation of RESs into power system resilience 
enhancement and restoration has been paid much attention with 
the increasing proportion of RESs in power systems. Although 
some publications [11]-[13] have integrated RESs in the form 
of MGs to enhance the resilience of power systems in 
distribution level by picking-up critical loads or reconfiguring 
the distribution systems, the role of RESs in PSR in 
transmission level has not been fully investigated. The 
complete PSR strategy incorporating RESs [10] does not 
consider the uncertainties of RESs and the optimum cannot be 
guaranteed due to the heuristic optimization algorithm. Due to 
the increasing capabilities of MGs that aggregate RESs, ESSs 
and loads to enhance the resilience and reliability of power 
systems, the literature [14] and [15] has focused on utilization 
of MGs as resiliency resources so as to facilitate the PSR in 
transmission level. However, the restoration strategy utilizing 
coordinated MGs is presented for post-disaster restoration and 
the restoration paths of NBSUs are not optimized [14]. 
Moreover, the concerned MGs in [14] and [15] do not include 
RESs and their intrinsic uncertainties, which undermines the 
effectiveness of utilizing MGs as resiliency resources. 

To further investigate the potential of MGs to assist PSR, a 
model predictive control (MPC) based generator start-up 
optimization strategy is proposed by utilizing the MGs as BSRs. 
The GSUS problem with CBSUs as the only BSRs is first 
addressed and formulated as a MILP model by linearizing the 
generation capability function. In order to utilize MGs as BSRs, 
uncertainties of MGs with multiple microsources (MSs) and 
loads are modeled as scenarios. Then the MPC technique is 
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applied to mitigate the inaccuracy of forecast parameters in 
MGs due to long forecast period, and a model predictive control 
based mixed integer programming (MPC-MILP) model is 
presented so as to incorporate MGs into GSUS optimization 
problem. Compared with the existing publications on PSR with 
participation of RESs and MGs, the proposed MPC-MILP is 
essentially a linear programming model, thus an optimum 
solution for GSUS problem can be attained. Since ignoring the 
fluctuation and randomness of the outputs and loads in MGs 
may undermine the validity of the optimized restoration 
strategies, the uncertainties of RESs and loads in MGs are 
addressed and described as scenarios. Besides, since the errors 
between the forecast uncertain parameters and their actual 
realizations of MGs will become greater as the forecast horizon 
increases, the MPC technique is used to mitigate the inaccuracy 
of forecast parameters of MGs by recursively optimizing the 
GSUS problem with the newly updated information of the 
microgrid black-start resources (MBSRs) and the concerned 
power system.

In summary, the major contributiona of this work can been 
summarized as: 1) a generator start-up optimization strategy is 
proposed and formulated as a MILP model for attaining the 
optimal GSUS; 2) an scenario generation method is proposed to 
model uncertainties of MGs through discretizing the 
probability distribution of forecast errors (PDFEs); 3) based on 
the probability mass transportation problem (PMTP), a linear 
programming scenario reduction (LPSR) method is proposed to 
efficiently deal with a large number of original uncertainty 
scenarios with unequal probabilities, 4) the MPC technique is 
first applied to PSR to mitigate the inaccuracy of the forecast 
power of MGs caused by long forecast time horizon (FTH) and 
a MPC-MILP model for integrating MBSRs into the GSUS 
optimization problem is proposed. 

The rest of this work is structured  as follows. In Section II, a 
novel MILP model for addressing the GSUS problem is 
proposed. The feasibility of MBSRs is analyzed and the 
scenario based uncertainty management algorithms are 
presented in Section III. Section IV introduces the MPC 
technique and presents the MPC based GSUS optimization 
strategy. Simulations are performed in Section V. Discussions 
and comparisons on the proposed methods are made in Section 
VI. Finally, conclusions of this work are highlighted in Section 
VII. 

II. A MILP MODEL FOR GSUS OPTIMIZATION 

At the early stage of restoration, cranking power should be 
provided to NBSUs that are generally thermal power plants as 
soon as possible by black-start units (BSUs) [4]. However, 
NBSUs cannot be restored simultaneously at that stage due to 
restrictions such as the limited megawatt (MW) capacity of 
BSUs and the critical minimum/maximum times of NBSUs. 
Therefore, it is of significance to determine the optimal GSUS 
for maximizing restoration benefits. Generally, the objective of 
the GSUS problem is to maximize the overall energy capability 
in MWh (i.e., the difference between the total system restored 
energy and the required start-up energy of NBSUs) over the 
system restoration time T. In [6], this objective is linearized and 

simplified as
                          (2)

NBS

max crk startmin ( )i i i
i S

P P t



where SNBS represents the set of NBSUs; Pmax i and Pcrk i 
represent the rated output power and cranking power 
requirement of NBSU i, respectively; tstart i represents the start 
time of NBSU i, i.e., the time when NBSU i gets cranking 
power. 

In order to optimize GSUS, the MW capacity of NBSUs and 
BSUs should be first modeled. The MW capacity of a unit can 
be separated into four stages, as shown in Fig. 1. In Fig. 1, the 
black solid line above/below t axis represents the total output 
power/cranking power of the unit, whereas the red solid line is 
the actual output power of the unit synthesized by the total 
output power and cranking power. Then the MW capacity of a 
unit can be expressed by introducing four variables (i.e., 
w0/w1/w2/w3) in each time t, as shown in Fig. 1. Each variable 
corresponds to one stage: if the variable is equal to 1, it means 
that the output power of the unit is in the very stage; otherwise, 
not in this stage. For these variables, the following constraints 
should be respected. 

P

O T tstart crkt tstartt start crk

max
t t

P R




maxP

crkP

0w 1w 2w 3w

Fig. 1.  Generation capability function of units
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Equation (3) represents that each unit could be in only one 
stage at each time t. Equations (4) to (7) restrict the values of 
the variables (i.e., w0/w1/w2/w3) at each stage of units; they 
guarantee that once one unit reaches a specific stage, it will not 
go back and will stay in the corresponding state until it reaches 
the next stage. Equation (7) indicates that all the NBSUs are out 
of service and the cranking power is unavailable at the 
beginning of the restoration. Equation (9) indicates that the 
BSU can be restarted by itself, i.e., the BSU will not undergo 
the first stage corresponding to w0. Equation (10) indicates that 
all the units are restored at the end of the restoration. Equations 
(11) to (13) restrict the times of state changes of different units. 
The state of each unit can only change once or twice. For 
example, if  ( ) of the NBSU changes from 0 to 1, it 1

iw g
2
iw g

cannot change from 1 to 0 until =1 ( =1); once =1 2
iw g

3
iw g

2
iw g

( =1),  ( ) changes from 1 to 0. In other words, the state 3
iw g

1
iw g

2
iw g

of  ( ) of the NBSU changes twice. Similar analyses can 1
iw g

2
iw g

be made for  of the BSU, and the constraint for  of the 2
iw g

2
iw g

BSU is included in (12). According to (3)-(7) and (9),  of 1
0iw

the BSU equals 1. Thus of the BSU can only changes once, 1
iw g

i.e. from 1 to 0, as constrained by (12). Equations (14) to (16) 
restrict the duration time of each stage, i.e., the duration times 
of stages shown in (14), (15), and (16) are restricted by the start 
time, cranking time and ramping time, respectively. Absolute 
value operators (AVOs) in (11) to (13) make the problem 
intractable, so binary variables va it are introduced to represent 
the variables inside AVOs (a=1, 2, 3 for (11), (12), (13) 
respectively). For example, |w1 it–w1 i(t+1)| can be represented 
as v1 it that respects the following constraints.

             (17)

1 1 1 1
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1 1 1 1
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1 1

0 ( ) 2

0 ( ) 2   ( 0,..., 1)

1

it it i t it

it i t it it

it it

v w w z

v w w u t T

u z





    
      


 
Then the output power of a unit can be expressed as: 
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The quadratic term in (18) can also be linearized by 

introducing extra binary variables , then equation (18) can ity
be expressed as:

      (19)
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0
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         (20)
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The overall output power of the system at each time step t 
should be non-negative, as

                            (21)
NBS BS

main G 0  ( 0,..., ).t it
i S S

P P t T


  
U

For the NBSUs, the critical minimum and maximum time 
constraints should be met, as

                                                  (22)min start NBS  ( )i it t i S  

                                                 (23)start max NBS  ( ).i it t i S  
Besides, the generator start-up time should be at least larger 

than the energizing time  of the transmission path from *( , )
 mp i

BSU p to NBSU i, as
                                            (24)*

start NBS
( , )

  ( ).m ip i
t i S


   

The energizing time  of the restoration path can be *( , )
 mp i

attained from the presented path optimization model on the 
basic of the node degree of complex network theory. 

Restoring NBSUs entails an appropriate restoration path. 
The determination of an optimal restoration path for restoring 
NBSU is to find a set of transmission lines connecting buses 
that can minimize the risks of overvoltage resulting from 
energizing unloaded lines and the line energization times. On 
the other hand, the optimization of GSUS problem should not 
only identify an optimal start-up sequence that can maximize 
the restoration benefit, but also facilitate the subsequent 
restoration processes so as to reduce the restoration time of the 
entire power system and the overall unserved energy. In other 
words, appropriate restoration paths of NBSUs should decrease 
the overvoltage of energizing lines, reduce the energization 
time, and facilitate the subsequent restoration. In order to taking 
into account these considerations, the restoration path 
optimization model is proposed. In complex network theory, 
the degree of a node denotes the number of the neighbor nodes 
of that node [17]. The node degree reflects the connectivity 
level of a specific node to other parts of the graph. The larger 
the degree of a node is, the more important that node is. 
However, when the degrees of two nodes are equal to each 
other, it is difficult to identify which node is more important. 
Therefore, the node degree is improved by considering the 
degree contributions of neighbor nodes and then utilized to 
evaluate the bus importance of power system in this work. The 
improved bus (node) degree of power system is defined as: 

                         (25)
nb

imp self self

i

i i j ji
j S

d d d C


  

where dimp i and dself i denotes the improved bus degree and 
bus degree of bus i, respectively [18];  Snb i denotes the set of 
neighbor buses of bus i; the second term of the right side can be 
regarded as degree contributions of the neighbor buses; Cji is a 
coefficient denoting the contribution level of neighbor node j to 
node i. The larger the charging capacitance of a line is, the more 
serious the overvoltage phenomenon is. Thus, the capacitances 
of lines are considered in (25), i.e.,  

nb
1/ [ (1/ )]

j

ij ji pj
p S

C c c


 

where cij represents the capacitance of line (i, j). Since cji=cij, 
the improved node degree can be expressed as:

       (26)
nb

nb

self
imp self B,   ( )

(1/ )
i

j

j
i i

j S ij pj
p S

d
d d i S

c c


   


where SB represents the set of buses of the power system.
The injection power of a bus reflects the capacity of that bus 
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to transfer electric power to other buses. Incorporating the 
improved bus degree and the ratio of the maximum injection 
active power of bus i Pin i to the base power PB (named as 
power transfer factor in this work), the importance of a bus can 
be evaluated by:

                (27)
B B

imp imp Bmax max   ( )i i j i j
j S j S

D d d i S  
 

   

where  represents the power transfer factor of bus i; in B
i iP P 

Di represents the importance of bus i;  is a coefficient. As 
shown in (27) the bus degree and line capacitance are integrated 
into the bus importance index. The bus degree indicates the 
connectivity level of a bus to its neighbor buses, the line 
capacitance is related to the overvoltage caused by energizing 
an unloaded line, and the power transfer factor reflects the 
capacity of a bus to transfer electric power to other buses. Thus 
incorporating the proposed bus importance into restoration path 
optimization can facilitate the subsequent restoration and 
mitigate the overvoltage. With the bus importance and the 
energization time considered, the path optimization model can 
be formulated as (28).

        (28)
( , ) ( , )( , ) ( , ) , ,

min 1 1
  

 
 

  m mm m
jp i p ip i j p i j i p

r D

where  represents the mth restoration path from BSU p ( , )mp i
to NBSU i;  represents the energization time of the mth 

( , )mp i


restoration path from BSU p to NBSU i;  is a coefficient. As 
seen from (28), the value of the first term will decrease and the 
value of the second one will likely increase as the line number 
(or bus number) of a path rises. As a result, the optimal 
restoration path that takes into account the energization time 
and bus importance can be attained by minimizing (28). 

The bus importance, as well as the overall bus importance 
and energization time of one path in (28) can be easily 
calculated.  is the decision variable and the solution ( , )mp i
domain of (28) is a finite and countable set, thus it is tractable to 
attain the minimum of the objective. The index of the solution 
of (28) is denoted as:

                      (29)
( , )( , )

* arg min


 mm p ip i
m r

According to the path optimization model (28), optimal 
restoration paths  can be determined and then the *( , )mp i
energization  time  of that path is imposed upon (24). *( , )

 mp i

Constraints to voltage and reactive power are checked before 
energizing a certain transmission line or cranking a NBSU. If 
the constraints are not respected, it means that the BSRs 
provided by BSUs and NBSUs already restored are insufficient 
at the current time step. Therefore, an extra time constraint can 
be added into the model and it will be re-solved. 

The model in (2)-(24) for the GSUS problem can be 
linearized as a MILP, and then utilized to optimize the GSUS. 
Recently, utilization of MGs to aid PSR has been paid much 
attention [15], [16]. In the following sections, the feasibility of 
MBSRs is analyzed, and then a PDFE and PMTP based 
approach proposed to model the uncertainties of MBSRs. 

Finally, an improved MILP based on MPC is proposed so as to 
incorporate MGs into GSUS optimization problem. 

III.MBSR MODELING BASED ON PDFE AND PMTP

A. Feasibility of Microgrid Black-Start Resources
Although the capacity of a single MG has been increasing 

rapidly such that it can met the cranking power requirements of 
NBSUs, small-scale MGs that are geographically adjacent can 
also be aggregated as multi-microgrid (MMG) or microgrid 
cluster (MGC) that also has a large MW capacity so as to 
provide NBSUs with sufficient cranking power [19]. However, 
the GSUS problem of the PSR is mainly focused on in this work 
and both the MMG and MGC are regarded as a single MG 
despite their differences. On the other hand, the reactive power 
can be provided by not only DUs in the MG but also the 
inverters of MSs of the MG [15], [16], and [20]. Moreover, the 
fluctuation and randomness can be mitigated and offset by the 
ESS in MG to the extent that the reliability and stability of the 
islanded MG are maintained. Therefore, in terms of the MW 
capacity, it is feasible for the MGs to act as BSRs and provide 
enough cranking power to NBSUs after a blackout.

A MG typically consists of four types of MSs, i.e., WT, PV, 
DU, and ESS. The RES (WT and PV) MSs and ESS MS are 
interfaced with MG by inverters. MSs of a MG are controlled 
and managed by the microgird central controller (MGCC) [21]. 
In general, the converter controllers of MSs have three control 
mode: PQ (active power and reactive power) control, Vf 
(voltage and frequency) control, and droop control [22]. When 
a failure of a power system is detected, MGs are disconnected 
from the concerned power system (maingrid) under the control 
of MGCCs and operate in islanded mode. The cranking power 
of NBSUs can be deemed as local loads of an islanded MG. The 
islanded MG is coordinated by adjusting the output power of 
MSs and loads through MGCC to ensure that the restoration 
requirements, such as cranking power of NBSUs, voltage and 
frequency stability of the coalition of the maingrid and MGs, 
are satisfied. Since at least one master inverter with stable 
output power is required for the islanded MG to set voltage and 
frequency references, the RES inverter should operate in PQ 
control mode and the ESS inverter or DU should operate in Vf 
control mode before the maingrid could operate stably [21]. 
After the maingrid could provide the voltage and frequency 
reference, the Vf controlled inverters could be transferred into 
PQ control. The fluctuation and randomness of MSs and loads 
during restoration period can be coordinated and controlled by 
the MGCC through the droop characteristics of inverters. The 
above control strategies guarantee that the MGs can provide the 
NBSUs with cranking power and operate stably during 
restoration. 

In summary, it is feasible, in terms of capacities and control 
strategies, for MGs to act as BSRs so as to provide cranking 
power to NBSUs.

B. Scenario Generation Based on Discretization of PDFE 
Before a MG is utilized as a BSR, the output power of its 

RESs should be forecast over a time period Tp. Only if the 
forecast net power of an islanded MG in a period of time Tf 
(that is at least longer than the cranking time of the targeted 
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NBSU) is large enough, the MG can be utilized as the BSR. 
However, the actual output power of weather-dependent MSs 
in MG is of randomness and intermittency and is usually not the 
same as the predicted values. Moreover, the power supply to 
local loads in the MG might be considered when the restoration 
plan is made and carried out. In order to model the power of 
WT, PV and loads of MGs, a scenario generation method is 
proposed by discretizing PDFE and then representative 
scenarios are selected by formulating and optimizing the 
PMTP.

Considering fluctuations of wind, solar and loads, the actual 
output power can be denoted as the sum of the predicted ones 
and forecast errors (FEs), as

              (30)f
' ' f f f  ( 1, 2,3;  ,..., )yt yt ytP P y t t t T     

where y=1, 2, and 3 represent WT, PV and loads respectively.
Normal distribution can be utilized to describe the FEs 

[23]-[25]. The PDFE of each uncertain variable is discretized 
into intervals and the probability of each interval is equal to the 
cumulative probability in this interval [26], which can be 
expressed as:

(31)1 1
f f f{( , ),..., ( , )}, ( 1, 2,3;  ,..., )y yN N

yt yt y yt y y t t t T      V

                                    (32)err 1 T[ ,..., ]   ( 1, 2,3)y

y

N
y y y  p

where  represents the set of pairs of the FE and probability ytV

;  represents a probability vector and the sum of its ( , )yt y   err
yp

elements is equal to 1. 
Based on the probability discretization from (31) to (32), the 

error scenario space containing the errors of variables 
associated with wind power, solar power and loads can be 
generated by the Monte Carlo method and expressed as: 

                                              (33)
f f

f

e f 1 2 3( ) ( )
t T

t t t
t t

S t



   V V V

where  represents the error scenario space from tf to tf+Tf e f( )S t
with the dimension of Tf×3. 

After the error scenarios are attained, the uncertainty 
scenario space  containing the output power of RESs and 0 f( )S t
load power of the MG can be attained according to (30). The 
probability of each uncertainty scenario can be represented by

            (34)
f f f f

0 ff f

3 3
orig T err T err

' ' '
' ( )1 1

( ) ( )
t T t T

yt y yt y
S tt t y t t y

p  


 

   
    α p α p

where  represents the unit vector for scenario selection, in T
'ytα

which only the entry corresponding to the position of the very 
scenario  is 1, and other entries are 0. '

C. Representative Scenario Selection by PMTP
It can be seen from (33) that the number of scenarios 

increases exponentially. Too many scenarios make intractable 
the problem of modeling and optimization of GSUS with 
MBSRs. In order to improve the computational efficiency, 
representative scenarios that can capture the main 
characteristics of the majority of scenarios should be selected. 
Various scenario reduction methods have been proposed, such 
as the k-means cluster method, the SCENRED2 tool in GAMS 

(The General Algebraic Modeling System) [27] and the fast 
forward selection [28]. However, these methods have their 
limitations. For example, the k-means method cannot tackle 
scenarios with unequal probability, and the SCENRED2 tool 
and fast forward selection are less efficient when the original 
superset of scenarios is large [29], [30]. The PMTP based LPSR 
method can efficiently deal with the unequal probability and a 
large number of original scenarios, and has been applied to 
fields such as Voronoi diagram and chance constrained 
portfolio optimization [30]. Generally, the original uncertainty 
scenarios of MBSRs are characterized as large quantities and 
unequal probabilities, therefore the PMTP based LPSR is firstly 
proposed in power systems to extract a small number of 
representative scenarios of MBSRs. 

The PMTP based LPSR consists of three main steps. The 
first step initializes a subset of representative scenarios by any 
methods such as random selection or k-means method. The 
number of representative scenario is a user-defined value and 
should be pre-specified before this step. Then a subset of the 
desired number of representative scenarios can be attained. The 
representative scenarios can be viewed as cluster center that 
represents a certain number of original scenarios (named as 
scenario cluster) according to their distance to the cluster 
centers. The second step optimizes the transportation plan by 
solving PMTP that minimizes probabilistic distance between 
the original superset of scenarios and the reduced subset of 
representative scenarios. The third step reevaluates the 
probabilistic distance until it converges by altering the cluster 
centers within their scenario clusters. The PMTP based LPSR 
can be illustrated by Fig. 2 utilizing random selection and 
k-means method respectively, wherein the desired number of 
representative scenarios is set as three. 

Fig. 2.  Illustration of the PMTP based LPSR utilizing random selection and 
k-means method respectively

The PMTP that selects representative uncertainty scenarios 
for MBSRs can be formulated as:

                              (35)
f 0 f

' '
( ) ' ( )

min
S t S t

c 
 


 
 

s.t.:                                     (36)
f

orig
' '

( )S t
p 







                                    (37)
0 f

rep
'

' ( )S t
p 







              (38)f 0 f0, ( )  ' ( )i S t S t


      



7

where  represents the representative scenarios space;  f( )S t 'c

represents the transportation cost of moving  to 0 f' ( )S t 

, and is generally called as transportation distance or f( )S t 

cost function;  and  represent the probabilities of the orig
'p

repp

original and representative scenarios, respectively;  is the '
decision variables representing the transportation plan, and is 
the joint probability distribution on ×  [31]. In this f( )S t 0 f( )S t

work, .
3

' ' 21
yt yt

y
c P P  


 

The processes of the PDFE and PMTP based uncertainty 
modeling for MBSR can be shown in Fig. 3. The processes of 
the uncertainty modeling for MBSR can be summarized as 
follows. 

1) generate the error scenario space by discretizing the PDFE 
of uncertainty parameters and the uncertainty scenario space, 
and calculate the probability of uncertainty scenarios;

2) initialize a subset of representative scenarios by k-means 
method from the original superset of uncertainty scenarios;

3) optimize the PMTP, and then the scenario clusters can be 
attained from the transportation plan and the probability  of rep

p
representative scenario from the marginal distribution of  i



on ;f( )S t
4) alter the representative scenario (cluster center) of each 

scenario cluster and identify the one leading to the minimum 
transportation cost within this cluster;

5) update the subset of the identified representative scenarios 

and re-calculate the probabilistic distance (the objective of 
PMTP) utilizing the known transportation plan;

6) if the probabilistic distance converges, the representative 
scenarios of MBSRs can be attained; otherwise, repeat steps 3) 
to 5) until the objective value of PMTP converges.

IV.MPC BASED GSUS OPTIMIZATION WITH MBSRS

A. Model Predictive Control
When restoring the power system, the FEs of wind power, 

solar power and loads of the MBSRs will become larger with 
the increase of FTH. At the end of the FTH, the actual 
black-start power that the MG can provide may not be the same 
as those values at the time step when the restoration model is 
optimized, and the GSUS problem optimized once only in the 
initial time might not be the globally optimal one. In order to 
deal with the inaccuracy of forecast power caused by long FTH, 
the MPC technique is introduced into the restoration strategy. 

The control technique, in which a problem is optimized 
recursively in a finite-moving-horizon of intervals by forecast 
parameters and then only the attained control scheme in the first 
interval is applied to the problem, is called as MPC or receding 
horizon control (RHC) [32]. Recently, the MPC technique has 
been applied to formulate economic dispatch and energy 
management frameworks of MG [33], [34], and voltage 
regulation strategy of ESSs [35]. The MPC technique can 
consider the latest forecast parameters by recursively 
optimizing the relevant problem with the newly updated data, 
thus it can reduce the impacts of uncertainties of MBSRs and 
achieve a globally optimal restoration scheme. Applying the 
MPC technique, the uncertainty parameters in the MG and the 
state of NBSUs in the power system are updated in each time 
interval, and then the GSUS problem can be recursively 
optimized in each interval. Since the overall restoration time of 
the system is finite, and the number of unrestored NBSUs 
optimized in each interval in the look-ahead planning horizon is 
decreasing with the successive restoration scheme, the 
shrinking horizon control (SHC), a variant of the MPC 
technique [36], is utilized in this work to optimize the generator 
start-up strategy with MBSRs. In the SHC technique, the 
look-ahead planning horizon reduces with successive 
restoration schemes, which is more efficient for the GSUS 
problem than the original MPC with fixed planning horizon. 

The proposed SHC technique for GSUS problem can be 
illustrated by Fig. 4. As shown in Fig. 4, the uncertainties of 
WT, PV and loads of MBSRs are managed Tf-NT ahead the kth 
planning horizon T-(k-1)NT. Due to the exponential increase 
of scenario number, the uncertainty scenarios are generated and 
representative scenarios selected Tf-NT ahead the kth planning 
horizon T-(k-1)NT in a relative shorter interval Tf (that should 
be no less than NT), and then each representative scenario is 
extended with the forecast values of the subsequent planning 
horizon T-kNT. After the scenario extension processes, the 
GSUS optimization model is solved for the kth interval NT 
considering a look-ahead planning horizon T-kNT, and a 
sequence of unit start-up and load curtailment schemes is 

Yes

No

Initialize a subset of representative 
scenarios by k-means method

Generate the uncertainty scenario space and 
calculate the probability of uncertainty scenarios

based on Equations (29) to (33).

Solve the probability mass transportation 
problem (PMTP) from (34) to (37)

Obtain scenario clusters based on the 
transportation plan 

Change the representative scenario (scenario center) of 
each scenario cluster and identify the one leading to 

minimum transportation cost within this cluster

Return results.

Does the probabilistic 
distance converge?

Update the subset of the identified representative scenarios
and re-calculate the probabilistic distance as (34).

Fig. 3.  The flow chart of the proposed PMTP based LPSR
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attained but only the attained schemes in the kth interval will be 
carried out. Both uncertainty management and optimization 
solving processes are performed in advance within the period 
Tf-NT so as to reserve enough time to implement the restoration 
actions. The scenario extension processes and the SHC (MPC) 
based GSUS optimization are repeated for GSUS optimization 
until all NBSUs are restored.

Fig. 4.  Schematic diagram of the MPC technique for GSUS optimization

B. MPC Based GSUS Optimization with MBSRs
The power system aims to maximize its energy capability, 

but for the MBSRs the welfare of their local customer should be 
considered. Although the local loads should be sustained by the 
MGs, it might be inevitable for the MG to selectively curtail 
local loads for PSR after a big blackout. Generally, the local 
customer consists of dispatchable loads (DLs) and 
undispatchable loads (ULs) that are with perfect forecast values. 
The energy losses of the curtailed loads over the restoration 
period should be minimized, as:

                        (39) 
f

rep cD cU

0 ( )
min .

T

t t
t S t

p P P  



 

 

The curtailment of DLs and ULs can be expressed as (40) 
and (41) respectively. 

        (40)

UL DL main MG

main MG UL DL

cD DL main MG UL

f

            0

      0
0       
                                ( ( );  0,... )

  

  

   



   


   
   


   


t t t

t t t

t t t t

P P P P

if P P P P

P P if P P P
other

S t t T

    (41)

UL main MG main MG UL

cU

f

      0 
0                            
                                 ( ( );  0,... )

   





     


 
   

t t t t

t

P P P if P P P
P other

S t t T

Equations (40) and (41) can be further modeled as mixed 
integer formulation by introducing binary variables , as: g

twh

            cD 0 DL 1 DL UL main MG 2( )t t t t t t t tP Mh P h P P P P h            

      (42)f( ( );  0,... )S t t T  

 (43)cU UL main MG 1
f( )   ( ( );  0,... )t t t tP P P P h S t t T         

            (44)0 1 2 3
f1  ( ( );  0,... )t t t th h h h S t t T          

               (45)main MG 0
f( ) 0  ( ( );  0,... )t t tP P h S t t T       

    (46)main MG 1 UL
f0 ( )   ( ( );  0,... )t t tP P h P S t t T        

                         UL 2 main MG 2 UL DL 2( ) ( )t t t t t tP h P P h P P h        

      (47)f( ( );  0,... )S t t T  

(48)UL DL 3 main MG 3
f( ) ( )  ( ( );  0,... )t t t t tP P h P P h S t t T          

where M is a big enough positive number and  in (42) is a 0
tMh

penalty for guaranteeing that the constraint to the restoration 
power is respected. Equations (42) to (48) restrict the loads 
curtailment in their corresponding ranges. Constraints to the 
WTs, PVs, DUs and ESSs of MBSRs should also be met [37]. 

Finally, taking into account the energy losses of loads of 
MBSRs, the GSUS optimization model in the kth interval can be 
expressed as a MPC-MILP: 

         (49)
 

1NBS start
0

T f

max crk start

\

cD cU

( ) ( )

min ( )

  


 




 



 



 
Uk

ll

i i i
i S S

t t
t S k S t

P P t

p P P

Subject to:                                                      (50)f T( 1) t k N

      (51)0 1 2 3 BS NBS
T1  ( ;  ( ))      Uit it it itw w w w i S S t S k

      (52)0 0 1 BS NBS
( 1) ( 1) T  ( ;  ( ))     Uit i t i tw w w i S S t S k

      (53)1 1 2 BS NBS
( 1) ( 1) T  ( ;  ( ))     Uit i t i tw w w i S S t S k

      (54)2 2 3 BS NBS
( 1) ( 1) T  ( ;  ( ))     Uit i t i tw w w i S S t S k

                  (55)3 3 BS NBS
( 1) T  ( ;  ( ))   Uit i tw w i S S t S k

                                                    (56)0 NBS
0 1  ( )  iw i S

                                    (57)0 BS
T0  ( ;  ( ))   itw i S t S k

                                          (58)3 BS NBS1  ( )   UiTw i S S

     (59)

1 1 1 1
( 1)

1 1 1 1 NBS
( 1) T

1 1

0 ( ) 2

0 ( ) 2   ( ;  ( ))

1





    
       


 

it it i t it

it i t it it

it it

v w w z

v w w u i S t S k

u z

       (60)

2 1 1 2
( 1)

2 1 1 2 BS
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2 2

0 ( ) 2

0 ( ) 2   ( ;  ( ))

1





    
       


 
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it i t it it

it it

v w w z
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 (61)
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( 1)
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0 ( ) 2

0 ( ) 2   ( ; ( ))

1





    
       

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U
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                                             (62)
1

1 NBS

0
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


  

T
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v i S

                                                (63)
1

2 BS

0
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


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T
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                                    (64)
1

3 BS NBS
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
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                           (65)0 start BS NBS
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                                 (66)1 crk BS NBS

0
  ( )


   U

T

it i
t

w t i S S

                                 (67)2 R BS NBS

0
  ( )


   U

T

it i
t

w T i S S

      (68)
G 1 2 3 crk 2 crk

0
3 max BS NBS
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
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
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         (69)

2 0

0 BS NBS
T
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
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                             (70)
NBS BS

main G
T0  ( ( ))


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t it
i S S

P P t S k

                                                  (71)min start NBS  ( )  i it t i S

                                                 (72)start max NBS  ( )  i it t i S

                                            (73)*
start NBS

( , )
  ( ).


   m ip i

t i S

The objective of the MPC-MILP is represented by (49), 
where = ; ST(k)={(k-1)NT, (k-1)NT+1, (k-1)NT+2, …,T}; start

0S 

i  represents that in each interval NT the units  NBS start1
0\ k

l lS S
U

restored in the previous time interval are removed from the 
NBSU set, and the unrestored units are reserved and their 
start-up sequence will be optimized in the current interval. 

The constraints include (50) to (73) for the concerned power 
system, (42) to (48), wherein t ST(k), for the curtailed loads of 
MBSRs, and the MSs related ones of MBSRs [37]. 

The GSUS is optimized recursively in each interval NT until 
all the NBSUs are restored. The overall procedures of the 
proposed MPC based GSUS optimization strategy can be 
illustrated by Fig. 5. 

V. CASE STUDY

The proposed MPC-MILP for GSUS is solved in this work 
by commercial solver Gurobi 8.0.0 programmed via Python 
language. The modified IEEE 118 bus system with MGs and 
Zhejiang provincial power system in China are served for 
demonstration. The simulations are performed on a personal 
computer with Intel-i7 3.4GHz Xeon CPU and 8 GB RAM. 

A. IEEE 118-Bus System with MGs
The modified IEEE 118-bus system with MGs is utilized to 

illustrate the proposed MPC-MILP for GSUS optimization 
strategy with MBSRs. The sectionalization result of the system 
in [38] (as shown in Fig. 6) is adopted for demonstrating 
parallel restoration strategy based on the proposed methods. 
Parameters of this system are shown in Table I, in which 
CBSUs locate in buses 12, 25, 59, 66 and 100. In the modified 
system, MGs locate in buses 5, 59, 67 and 100, and the installed 
capacities (ICs) of the MSs and the power of loads are shown in 
Table II. The ramping rate of each MG is assumed large enough 
that it can attain maximum output within a time step. The 
charging efficiency, discharging efficiency and the minimum 
energy capacity of ESSs are 0.85, 0.85 and 0.2, respectively. 
The available capacity of ESSs after the blackout is assumed as 
their installed energy capacity. The RESs and DLs are forecast 
based on historical data, whereas the UL in each MG is constant. 
Discretized PDFEs of RESs and loads in Tf are shown in Table 
III. The times of restoration of BSUs, energization of 
transmission lines, synchronization of subsystems, and parallel 
of reactive power compensation facilities (RPCFs) are assumed 
as 10, 5, 20 and 5 minutes, respectively. The NBSUs are 
cranked immediately upon energizing the buses they are 
connected to. An entire simulated blackout occurred at 14:00 
(t=0) in the power system, and all the MGs was transferring into 
islanded operation mode and prepared to assist the PSR. The 
time step is set as 5 min, Tf=60 min, and NT=45 min. 
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Fig. 6.  The IEEE 118-bus system with sectionalization result

The optimized restoration actions using MBSRs are shown 
in Table IV. In Table IV, S1, …, S5 represent the set of 
restoration actions at each time step for subsystems I, …, V. 
The subscript in the action set represents the time delay of 
energizing some transmission line caused by overvoltage. For No

No

Yes

Determine restoration paths of non-
black-start units (NBSUs) based on the 

path optimization model.

Initialize: input parameters of the 
concerned power system.

Are there sufficient 
MBSRs?

Manage the uncertainties of MBSRs in the kth

planning horizon by executing the uncertainty 
modeling processes shown in Fig. 3 over interval Tf.

Extend the representative scenarios over the 
subsequent planning horizon T-kNT, as shown 

in Fig. 4. 

Set k = 1.

Execute the MPC-MILP model (48)-(72) for the 
kth planning horizon, with the constraints to 

voltage and reactive power checked.

Are all the NBSUs 
restored?

Return results.  

Execute the 
proposed MILP 

model (1)-(23) with 
the constraints to 

voltage and reactive 
power checked. k =k+ 1.

Yes

Fig. 5.  Flow chart of the overall procedures of the proposed MPC based GSUS 
optimization strategy
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example, 49-4520 at t=40 in S3 represents a delay of 20 minutes 
caused by overvoltage. In the subsystem I, MG is a backup 
BSR. However, due to the shortage of cranking power, MG 5 
energizes part of transmission lines and parallels the RPCF 
between BSU 12 and NBSU 10, which remarkably accelerates 
the restoration process after BSU 12 is restored. In the 
subsystem II, there is no MBSR and BSU 25 restores this 
section. In the subsystem III, the BSU and MG cooperate with 
each other to restore the subsystem. At the beginning of 
restoration when BSU 66 is unavailable, MG 67 is the only 
BSR and it energizes some transmission lines and provides 
NBSU 49 with cranking power. After BSU 66 is restored, MG 
67 and BSU 66 cooperatively crank the rest units. In the 
subsystem IV, with constraints met, the MBSR provides 
NBSUs 54 and 61 with cranking power immediately after the 
blackout. In the subsystem V, due to the critical minimum time 
requirement, NBSU 103 cannot be restored immediately, but 
part of lines are energized and NBSU 111 is restored first by the 
MBSR. The NBSUs’ start time (ST) is shown in Table I. 

TABLE I
UNIT PARAMETERS OF THE IEEE 118-BUS SYSTEM

Gen. 
No.

Pmax 
(MW)

Pcrk 
(MW)

R(MW
/hr)

tmax 
(min)

tmin 
(min)

tcrk 
(min)

ST 
(min)

10 550 15 200 N/A 30 40 40
12 185 0 90 N/A N/A 20 -
25 320 0 180 N/A N/A 25 -
26 414 12 180 50 N/A 35 45
31 107 3 60 N/A N/A 30 70
46 119 3 60 N/A N/A 25 45
49 304 10 180 N/A N/A 35 15
54 148 5 60 N/A N/A 35 10
59 255 0 90 N/A N/A 20 -
61 260 8 90 N/A N/A 30 10
65 491 12.5 200 N/A 20 35 35
66 492 0 250 N/A N/A 15 -
69 805.2 20 420 120 N/A 40 40
80 577 15 200 N/A N/A 40 55
87 104 3 60 N/A N/A 35 70
89 707 16 400 N/A N/A 40 60
100 352 0 180 N/A N/A 25 -
103 140 4 60 N/A 35 30 40
111 136 4 60 N/A N/A 30 25

TABLE II
MG PARAMETERS OF THE IEEE 118-BUS SYSTEM AND ZPPS

Parm. /No. 5 59 67 100 I II III IV
IC of WT (MW) 4 5 4 10 20 10 0 30
IC of PV (MW) 2 8 2 5 50 30 25 30
IC of DU (MW) 10 12 10 10 20 15 20 10

Pdcmax /Pchmax 4 5 4 5 8 10 10 8
Emax (MWh) 10 10 10 15 32 20 20 20

Max. DL (MW) 10 10 10 12 36 22 28 28
UL (MW) 3 7.5 0 12 15 14 5 16

TABLE III
DISCRETIZED PDFES FOR THE IEEE 118-BUS SYSTEM AND ZPPS

Prob. FE of WT (%) Prob. FE of PV (%) Prob. FE of DL (%)
0.15 -10 0.2 -5 0.3 3
0.3 -5 0.25 -2.5 0.4 0
0.1 0 0.1 0 0.3 3
0.3 5 0.25 2.5 - -
0.15 10 0.2 5 - -

TABLE IV
RESTORATION ACTIONS FOR THE IEEE 118-BUS SYSTEM

Time (min) Restoration Actions
5 S1={MG 5 is islanded, Crank BSU 12}; S2={Crank 

BSU 25}; S3={Crank BSU 66, MG 67 is islanded}; 
S4={MG 59 is islanded}; S5={MG 100 is islanded}

10 S1={Energize line 5-11,5-8}; S3={Energize line 
67-66}; S4={Energize line 59-54, 59-61, Crank NBSU 
54, 61}; S5={Energize line 100-103, 100-92}

15 S1={Parallel RPCF 8}; S3={Energize line 66-49, Crank 
NBSU 49}; S5={Energize line 103-110, Parallel RPCF 
92}

20 S1={Energize line 8-9, 11-12}; S3={BSU 66 is 
cranked}; S5={Parallel RPCF 110}

25 S1={BSU 12 is cranked}; S5={Energize line 110-111, 
Crank NBSU 111}

30 S2={BSU 25 is cranked}; S3={BSU 66 is restored and 
paralleled with MG 67 at bus 66}

35 S1={BSU 12 is restored and paralleled with MG 5 in bus 
12}; S3={Energize line 66-65, Crank NBSU 65}

40 S1={Energize line 9-10, Crank NBSU 10}; S2={BSU 25 
is restored}; S3={Energize line 49-4520, 49-69, Crank 
NBSU 69}; S4={NBSU 61 is restored}; S5={Crank 
NBSU 103}

45 S1={Energize line 12-16}, S2={Energize line 25-26, 
Crank NBSU 26}; S3={Energize line 45-46, 69-77, 
Crank NBSU 46}; S4={NBSU 54 is restored} 

50 S1={Energize line 16-17}; S2={Energize line 25-275}; 
S3={Parallel RPCF 77, NBSU 49 is restored}; 
S5={Energize line 92-89}

55 S2={Parallel RPCF 27}; S3={Energize line 77-80, 
Crank NBSU 80}; S4={Energize line 54-49}; 
S5={Energize line 89-85, NBSU 111 is restored}

60 S2={Energize line 27-32}; S5={Parallel RPCF 85, 
Crank NBSU 89}

65 S2={Parallel RPCF 32}; S5={Energize line 85-86}
70 S2={Energize line 32-31, Crank NBSU 31}; 

S3={NBSU 65 is restored}; S5={Energize line 86-87, 
Crank NBSU 87}

75 S5={Energize line 100-99}
80 S2={NBSU 26 is restored}
85 S2={Energize line 26-30}
90 S2={Energize line 30-38, 30-17}
95 S3={Energize line 65-38, NBSU 80 is restored}
100 S3={Energize line 80-99}

Although the MGs can restore the systems, part of loads of 
MBSRs might be curtailed. The load curtailment of MG 5 is 
near zero. The energy losses of MGs 59 and 67 are about 0.185 
and 0.151 MWh respectively as a result of DLs’ curtailment. 
Although the load losses in MGs 5, 59 and 67 are negligible, 
MG 100 in subsystem V curtails substantial amount of loads. 
The energy losses of MG 100 during restoration are about 
3.173 MWh (2.866 MWh for DLs and 0.307 MWh for ULs). 
The curtailment of loads is a synthesized effect of generation of 
MSs, demand of loads, and the restoration actions. If the output 
of a MBSR is insufficient to satisfy the demands of local loads 
and the cranking power of NBSUs, part of loads of the MBSR 
might be curtailed to restore the system. 

The generator STs optimized in the first interval (k=1) for 
NBSUs 87, 89, 103 and 111 are at 70, 65, 40 and 25 min, 
respectively. However, in the second interval (k=2) along with 
the planning horizon, the GSUS model is re-optimized based on 
the previous NBSU states, the newly forecast parameters and 
generated scenarios. The attained STs of NBSUs 89 and 87 are 
at 60 and 70 min, respectively. Thus in the restoration actions, 
NBSUs 111, 103, 89 and 87 are cranked at 25, 40, 60 and 70 
min, respectively. The load curtailment of the first and second 
intervals is 2.148/0.005 MWh for DLs/ULs and 2.866/0.305 
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MWh for DLs/ULs, respectively. However, the objective 
values of the GSUS model optimized at k=1 and k=2 are 127.93 
and 127.74 respectively, which means that the optimization 
result is improved by the MPC technique. While the MPC 
technique improves optimization result in subsystem V 
effectively, the advantages are not fully reflected in other 
subsystems due to the sufficient cranking power from BSUs 
and/or MBSRs in the subsequent intervals following the first 
one. As a result, the MPC technique can mitigate the inaccuracy 
of forecast power of MBSRs caused by long FTH and improve 
the optimization results. 

It can be concluded that the MGs can effectively restore the 
system by the proposed MPC-MILP. To further demonstrate 
the proposed method, generation capabilities (GCs) and the 
restored energy of the proposed MPC-MILP, MBMILP [6], 
generator startup sequencing model (GSSM) [10], and FA [11], 
attained by utilizing MBSRs, are compared in Fig. 7 and Table 
V, respectively. It can be seen from Fig. 7 that in subsystems I 
and V the GC of MPC-MILP is larger than that attained by the 
MBMILP, FA and GSSM. In subsystem II where no MBSR is 
considered, the MPC-MILP degenerates to the MILP model as 
in Section II and it attains a GC as good as the other three 
methods. In subsystem III, the MPC-MILP method attains the 
same GC as MBMILP and GSSM methods, whereas the least 
GC is attained by the FA. In subsystem IV, all of the four 
methods attain the same GC. In subsystem V, the MPC-MILP 
method outperforms the other three methods, while the 
MBMILP and GSSM achieve moderate GCs and the FA 
method performs the worst and attains the least GC. 

It should be noted that the difference of GC is a synthetized 
effects of the optimization method utilized and the variables, 
parameters and constraints in the model. Since the MPC-MILP, 
MBMILP and GSSM methods are based on linear 
programming models, the optimization results of these three 

methods are optimal for their corresponding models 
respectively and are better than the result of the FA method 
which utilizes heuristic optimization algorithm thus the 
optimum cannot be guaranteed. On the other hand, the 
MPC-MILP, MBMILP and GSSM methods utilize different 
restoration path optimization models to find the restoration 
paths for NBSUs, i.e., the MBMILP method utilizes power 
transfer distribution factor (PTDF) to search restoration paths, 
whereas the GSSM method utilizes the Dijkstra algorithm of 
complex network theory. Since the PTDF may not find the 
shortest restoration path and the Dijkstra algorithm does not 
consider the overvoltage risks of energizing lines although it 
can find the shortest path, these path optimization models may 
be suboptimal on some conditions and may undermine the 
overall GC optimized. For example, the restoration paths for 
the subsystem I optimized by the MPC-MILP, MBMILP and 
GSSM methods are [12→11→5→8→9→10], [12→11→4→5 
→8 →9 →10], and [12 →3 →5 →8 →9 →10], respectively, 
which may result in the differences of GC in subsystem I. In 
subsystem V, the restoration paths for NBSU 89 and 87 are 
optimized as [100→92→89→85→86→87], [100→92→89→
88→85→86→87] and [100→92→89→85→86→87] by the 
MPC-MILP, MBMILP and GSSM methods, respectively. As a 
result, the optimized GCs in subsystem V of the MBMILP and 
GSSM methods are smaller than that of the MPC-MILP method. 
In other words, the differences in optimization methods and 
restoration paths may influence the total GC of the power 
system concerned.

As shown in Table V, the restored energy of the MPC-MILP 
in subsystems is larger than that of other methods. The total 
restored energy attained by the MPC-MILP is 13,021 MWh, 
and is 269, 437 and 179 MWh larger in quantity than that 
attained by the MBMILP, FA and GSSM, respectively, which 

Fig. 7.  Comparisons of GCs of different methods for the IEEE 118 bus system
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means more unserved loads are resupplied. As a result, the 
MPC-MILP outperforms the MBMILP, FA and GSSM. The 
optimal GSUS can be attained and more unserved loads can be 
resupplied by utilizing MPC-MILP. 

TABLE V
THE RESTORED ENERGY OF THE IEEE 118-BUS SYSTEM (UNIT: MWH)

Subsystem I II III IV V Total
MPC-MILP 1329 1368 6188 1248 2888 13021 

MBMILP [6] 1238 1368 6087 1248 2811 12752 
FA [11] 1238 1368 5981 1248 2750 12584 

GSSM [10] 1283 1368 6122 1248 2820 12842 

B. Zhejiang Provincial Power System in China
In order to further validate the effectiveness of the proposed 

restoration strategy in actual power system, simulations on 
Zhejiang provincial power system (ZPPS) in China are 
performed. The capacity of ZPPS is 43, 000 MW, and about 45 
percent of the capacity is required to be restored at early stages 
of PSR. ZPPS consists of 38 NBSUs, 369 buses and 525 
transmission lines, and it is partitioned into four subsystems for 
parallel restoration, as shown in [39]. Four MGs (i.e., MG I, II, 
III, and IV) originated from the actual photovoltaic power 
stations in Zhejiang province are utilized as MBSRs. Details of 
the MBSRs are shown in Table II. Suppose that a blackout 
occurs at 10:00 a.m., and then all the MGs transfer into islanded 
operation mode and begin to restore the system. The GCs of 
different methods are shown in Fig. 8. The restored energy 
during restoration is shown in Table VI. Comparisons with the 
MBMILP, FA and GSSM show that the MPC-MILP attains the 
largest GC and the optimal GSUS. The total restored energy of 
the MPC-MILP over the restoration period is 49,264 MWh, and 
is 942, 1721 and 573 MWh larger than that of the MBMILP, FA 
and GSSM, respectively. In other words, application of the 
proposed GSUS optimization strategy to ZPPS shows that the 
NBSUs can be successfully restored by MBSRs, and that the 
optimal GSUS can be effectively determined and more 
unserved loads resupplied by using that strategy.

Fig. 8.  Comparisons of the total GCs of different methods for ZPPS

TABLE VI
THE RESTORED ENERGY OF ZPPS (UNIT: MWH)

Subsystem I II III IV Total
MPC-MILP 14294 13882 7810 13279 49264 

MBMILP [6] 14107 13450 7633 13132 48322 
FA [11] 13996 13260 7591 12697 47543 

GSSM [10] 14224 13683 7643 13141 48691 

VI.DISCUSSIONS AND COMPARISONS

A. Comparison of LPSR with Fast Forward Selection
The PMTP based LPSR outperforms the SCENRED2 tool 

which is based on forward selection or backward selection 
heuristic by iteratively adding scenarios to an initial set or 
removing scenarios from the initial set [27] and [30]. In order to 
further validate the effectiveness and efficiency of the proposed 
LPSR method, comparisons of the proposed LPSR with fast 
forward selection [28] are performed with multiple uncertainty 
scenario numbers. The uncertainty scenarios are generated 
based on the parameters of MG I in ZPPS. The cardinality of 
subset of representative scenarios is set as 30. Simulation 
results on the LPSR and fast forward selection are illustrated in 
Table VII.

TABLE VII
COMPARISONS OF THE PROPOSED LPSR WITH FAST FORWARD SELECTION

LPSR Fast Forward Selection
Scenario 
number TD CT (s) TD CT (s)

1200 3.2680 7.53 3.3341 77.96
2400 3.2577 24.53 3.2908 281.67
4000 2.5585 62.78 2.5823 879.10
6500 3.2669 70.11 3.2676 2297.24
10000 3.3763 120.63 3.3826 5632.28

TD: transportation distance; CT: computing time.

It can be seen from Table VII that the transportation distance 
of the proposed LPSR is always smaller than that of the fast 
forward selection method. In other words, the LPSR method 
can provide a more representative uncertainty subset since the 
transportation distance is smaller. As the number of uncertainty 
scenarios increases, the computing time of the LPSR method is 
substantially smaller than that of the fast forward selection. 
That is mainly because the distance between each the pair of 
uncertainty scenarios is calculated for the fast forward selection, 
i.e., for a superset of Q original uncertainty scenarios, the fast 
forward selection calculates Q×Q times the distance between 
scenarios; whereas the LPSR calculates only Q ×K times the 
distance between scenarios, where K represents the desired 
number of representative scenarios. As a result, the proposed 
PMTP based LPSR could effectively and efficiently deal with a 
large number of original uncertainty scenarios.

B. Comparison of SHC with MPC
In order to demonstrate the advantages and efficiency of SHC, 

computing times with various planning horizon for MPC and its 
variant SHC are compared, as shown in Table VIII, wherein 
T=60 p.u.. Since the optimization models for the subsystems I 
and II of the IEEE 118 bus system degenerate into a MILP one, 
the comparisons of SHC with MPC are not made for these two 
subsystems.

TABLE VIII
COMPARISONS OF SHC AND MPC WITH DIFFERENT PLANNING HORIZONS 

(UNIT: S)
T 1.25T 1.5T

subsystem SHC MPC SHC MPC SHC MPC
IEEE 118-III 9.01 9.19 13.62 16.82 18.86 26.68
IEEE 118-IV 4.56 4.55 7.00 7.01 9.24 9.31
IEEE 118-V 17.94 20.82 17.51 18.92 25.71 30.9

ZPPS-I 31.68 38.92 51.35 87.02 92.62 152.85
ZPPS -II 29.05 36.05 59.61 86.95 98.74 160.21
ZPPS -III 21.96 31.06 45.98 67.06 70.69 113.47
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ZPPS -IV 15.95 20.36 54.33 66.63 80.44 123.06

As seen from Table VIII, the computing times of SHC are less 
than those of MPC in the three planning horizons for subsystem 
III and V of the IEEE 118 bus system and all the four 
subsystems of ZPPS. In subsystem IV of the IEEE 118 bus 
system, the computing times of SHC in the three planning 
horizons are almost equal to those of MPC, since all the NBSUs 
of this subsystem are cranked within the first time interval, i.e., 
k=1. Since the planning horizons for the SHC and MPC based 
methods when k=1 are the same, the computing times for these 
two methods should be equal to each other in theory. Therefore, 
it seems that the minor errors of computing times between the 
SHC and MPC based methods are not so much from the 
difference between the methods as from the model 
optimizations and executions. A larger planning horizon will 
inevitably result in more variables and parameters of the GSUS 
optimization model, so the computing times for both the SHC 
and MPC will rise as the planning horizons increase, as 
illustrated by Table VIII. Table VIII also demonstrates an 
increasing computing time reduction of the SHC technique. 
Although merely 2% of time is saved with the planning horizon 
of T in subsystem III of the IEEE 118 bus system, about 65.03% 
of time reduction is attainted with the planning horizon of 1.5T 
in subsystem V of the IEEE 118 bus system. In other words, 
utilizing the variant SHC technique in the GSUS optimization 
model is more efficient than utilizing the original MPC one.

VII.CONCLUSION

A generator start-up optimization strategy for PSR with MGs 
is proposed in this work. The GSUS problem is formulated as a 
MILP from a new different perspective. The variable output 
power of MSs and demands of MGs are modeled as scenarios 
based on discretization of PDFEs and formulation of PMTP. 
The MPC technique is utilized to mitigate the impacts of the 
increasing FEs of uncertainty parameters. Numerical 
simulations on the modified IEEE 118-bus system with MGs 
and the ZPPS in China demonstrate that after a big blackout the 
power system can be successfully restored and the GSUS can 
be effectively determined by the proposed MPC-MILP. 
However, the transient processes are not included in this work. 
In future works, attention will be paid to the transient processes 
of MGs, which will further validate the effectiveness. 

REFERENCES

[1] V. C. Güngör, D. Sahin, T. Kocak, S. Ergüt, C. Buccella, C. Cecati, G. P. 
Hancke, “Smart grid technologies: communication technologies and 
standards,” IEEE Trans. Ind. Informat., vol. 7, no. 4, pp. 529–539, Nov. 
2011. 

[2] M. Ayar, S. Obuz, R. D. Trevizan, A. S. Bretas, H. A. Latchman, “A 
distributed control approach for enhancing smart grid transient stability 
and resilience,” IEEE Trans. Smart Grid, vol. 8, no. 6, pp. 3035–3044, 
Nov. 2017.

[3] M. Ayar, R. D. Trevizan, S. Obuz, A. S. Bretas, H. A. Latchman, N. G. 
Bretas, “Cyber-physical robust control framework for enhancing transient 
stability of smart grids,” IET Cyber-Phys. Syst., Theory Appl., vol. 2, no. 
4, pp. 198–206, Dec. 2017.

[4] J. Feltes and C. Grande-Moran, “Down, but not out: A brief overview of 
restoration issues,” IEEE Power Energy Mag., vol. 12, no. 1, pp. 34–43, 
Jan./Feb. 2014. 

[5] A. S. Bretas, A. G. Phadke, “Artificial neural networks in power system 
restoration,” IEEE Trans. Power Del., vol. 18, no. 4, pp. 1181–1186, Oct. 

2003.
[6] W. Sun, C.-C. Liu, and L. Zhang, “Optimal start-up strategy for bulk power 

system restoration,” IEEE Trans. Power Syst., vol. 26, no. 3, pp. 
1357–1366, Aug. 2011.

[7] Y. Hou, C.-C. Liu, K. Sun, P. Zhang, S. Liu, D. Mizumura, “Computation 
of milestones for decision support during system restoration,” IEEE Trans. 
Power Syst., vol. 26, no. 3, pp. 1399–1409, Jun. 2011.

[8] Y.-T Chou, C.-W. Liu, Y.-J. Wang, C.-C Wu, C.-C. Lin, “Development of 
a black start decision supporting system for isolated power systems.” IEEE 
Trans. Power Syst., vol. 28, no. 3, pp.2202–2210, Aug. 2013. 

[9] A. Golshani, W. Sun, Q. Zhou, Q. P. Zheng, J. Tong, “Two-stage adaptive 
restoration decision support system for a self-healing power grid,” IEEE 
Trans. Ind. Informat., vol. 13, no. 6, pp. 2802-2812, Dec. 2017.

[10] F. Qiu, and P. Li, “An integrated approach for power system restoration 
planning,” Proc. IEEE, vol. 105, no. 7, pp. 1234–1252, Jul. 2017. 

[11] A. M. El-Zonkoly, “Renewable energy sources for complete optimal 
power system black-start restoration,” IET Gener. Transm. Distrib., vol. 9, 
no. 6, pp. 531–539, 2015. 

[12] H. Gao, Y. Chen, Y. Xu, and C.-C. Liu, “Resilience-oriented critical load 
restoration using microgrids in distribution systems,” IEEE Trans. Smart 
Grid, vol. 7, no. 6, pp. 2837–2848, Nov. 2016.

[13] Y. Xu, C.-C. Liu, K. P. Schneider, F. K. Tuffner, D. T. Ton, “Microgrids 
for service restoration to critical load in a resilient distribution system,” 
IEEE Trans. Smart Grid, vol. 9, no. 1, pp. 426–437, Jan. 2018. 

[14] Z. Wang, J. Wang, “Service restoration based on AMI and networked 
microgrids under extreme weather events,” IET Gener. Transm. Distrib., 
vol. 11, no. 2, pp. 401–408, 2017.

[15] A. Castillo, “Microgrid provision of blackstart in disaster recovery for 
power system restoration,” in Proc. 2013 IEEE Int. Conf. Smart Grid 
Commun., Vancouver, BC, Canada, 2013, pp. 534–539.

[16] K. P. Schneider, F. K. Tuffner, M. A. Elizondo, C.-C. Liu, Y. Xu, and D. 
Ton, “Evaluating the feasibility to use microgrids as a resiliency resource,” 
IEEE Trans. Smart Grid, vol. 8, no. 2, pp. 687–696, Mar. 2017.

[17] R. Diestel, Graph Theory, 4th ed. Berlin, Germany: Springer, 2017. 
[18] Z. Ren, F. Shao, J. Liu, Q. Guo, B. Wang, “Node importance 

measurement based on the degree and clustering coefficient information,” 
Acta Phys. Sin., vol. 62, no. 12, pp. 128901, 2013. 

[19] S. Moayedi and A. Davoudi, “Distributed tertiary control of DC 
microgrid clusters,” IEEE Trans. Power Electron., vol. 31, no. 2, pp. 
1717–1733, Feb. 2016.

[20] A. J. von Appen, C. Marnay, M. Stadler, I. Momber, D. Klapp, A. von 
Scheven., “Assessment of the economic potential of microgrids for 
reactive power supply,” in Proc. IEEE 8th Int. Conf. Power Electron. 
ECCE Asia (ICPE & ECCE), Jeju, Korea, 2011, pp. 809–816. 

[21] C. L. Moreira, F. O. Resende, and J. A. P. Lopes, “Using low voltage 
MicroGrids for service restoration,” IEEE Trans. Power Syst., vol. 22, no. 
1, pp. 395–403, Feb. 2010.

[22] W. Liu, W. Gu, Y. Xu, Y. Wang, K. Zhang, “General distributed 
secondary control for multi-microgrids with both PQ-controlled and 
droop-controlled distributed generators,” IET Gener. Transm. Distrib., 
vol. 11, no. 3, pp. 707–718, 2017.

[23] A. Fabbri, T. G. S. Roman, J. R. Abbad, and V.M. Quezada, “Assessment 
of the cost associated with wind generation prediction errors in a lib- 
eralized electricity market,” IEEE Trans. Power Syst., vol. 20, no. 3, pp. 
1440–1446, Aug. 2005. 

[24] M. Peik-Herfeh, H. Seifi, and M. Sheikh-El-Eslami, “Decision making of 
a virtual power plant under uncertainties for bidding in a day-ahead 
market using point estimate method,” Int. J. Elect. Power Energy Syst., 
vol. 44, no. 1, pp. 88–98, 2013. 

[25] Q. Zhao, Y. Shen, and M. Li, “Control and bidding strategy for virtual 
power plants with renewable generation and inelastic demand in 
electricity markets,” IEEE Trans. Sustain. Energy, vol. 7, no. 2, pp. 
562–575, Apr. 2016.

[26] A. Y. Saber and G. K. Venayagamoorthy, “Resource scheduling under 
uncertainty in a smart grid with renewables and plug-in vehicles,” IEEE 
Syst. J., vol. 6, no. 1, pp. 103–109, Mar. 2012. 

[27] H. Heitsch, and W. Römisch, “Scenario reduction algorithms in stochastic 
programming,” Comput. Optim. Appl., vol. 24, no. 2–3, pp. 187–206, Feb. 
2003.

[28] N. Growe-Kuska, H. Heitsch, and W. Romisch, “Scenario reduction and 
scenario tree construction for power management problems,” in Proc. 
IEEE Bologna Power Tech Conf., Bologna, Italy, 2003, pp. 1–7. 

[29] Y. Wang, Y. Liu, and D. S. Kirschen, “Scenario reduction with 
submodular optimization,” IEEE Trans. Power Syst., vol. 32, no. 3, pp. 
2479–2480, May 2017.



14

[30] Z. Z. Li, and Z. K. Li, “Linear programming-based scenario reduction 
using transportation distance,” Comput. Chem. Eng., vol. 88, pp. 50–58, 
May 2016. 

[31] R. M. Kovacevic and A. Pichler, “Tree approximation for discrete time 
stochastic processes: a process distance approach,” Ann. Oper. Res., vol. 
235, no. 1, pp. 395–421, Sep. 2015.  

[32] F. Allgower, R. Findeisen, and Z. K. Nagy, “Nonlinear model predictive 
control: From theory to application,” J. Chin. Inst. Chem. Eng., vol. 35, no. 
3, pp. 299–315, 2004. 

[33] A. Parisio and L. Glielmo, “Stochastic model predictive control for 
economic/environmental operation management of microgrids,” in Proc. 
Eur. Control Conf., Zürich, Switzerland, Jul. 2013, pp. 2014–2019.

[34] D. E. Olivares, J. D. Lara, C. A. Cañizares, and M. Kazerani, “Stochastic 
predictive energy management system for isolated microgrids,” IEEE 
Trans. Smart Grid, vol. 6, no. 6, pp. 2681–2693, Nov. 2015. 

[35] K. Meng, Z. Y. Dong, Z. Xu, S. R. Weller, “Cooperation-driven 
distributed model predictive control for energy storage systems,” IEEE 
Trans. Smart Grid, vol. 6, no. 6, pp. 2583–2585, Nov. 2015. 

[36] M. M. Thomas, J. L. Kardos, and B. Joseph, “Shrinking horizon model 
predictive control applied to autoclave curing of composite laminate 
materials,” in Proc. Amer. Control Conf., vol. 1. Baltimore, MD, USA, 
Jun. 1994, pp. 505–509. 

[37] S. Talari, M. Yazdaninejad, and M.-R. Haghifam, “Stochastic-based 
scheduling of the microgrid operation including wind turbines, 
photovoltaic cells, energy storages and responsive loads,” IET Gener. 
Transm. Distrib., vol. 9, no. 12, pp. 1498–1509, 2015.

[38] W. Liu, Z. Lin, F. Wen, C. Y. Chung, Y. Xue, G. Ledwich, 
“Sectionalizing strategies for minimizing outage durations of critical 
loads in parallel power system restoration with bi-level programming,” 
Int. J. Elec. Power, vol. 71, pp. 327–334, Oct. 2015. 

[39] L. Sun, C. Zhang, Z. Lin, F. Wen, Y. Xue, M. A. Salam, S. P. Ang, 
“Network partitioning strategy for parallel power system restoration,” 
IET Gener. Transm. Distrib., vol. 10, no. 8, pp. 1883–1892, 2016. 

Yuxuan Zhao received the B.E. degree in electrical 
engineering from Northeast Electric Power University, 
Jilin, China, in 2013. He is currently pursuing his PhD 
degree in electrical engineering in the College of 
Electrical Engineering at Zhejiang University, 
Hangzhou, China. His current research interests are 
renewable energy operation and planning, and power 
system restoration.

Zhenzhi Lin received the Ph.D. degree in electrical 
engineering from South China University of 
Technology, Guangzhou, China, in 2008. 
    He was a Research Assistant in the Department of 
Electrical Engineering at The Hong Kong Polytechnic 
University from 2007 to 2008, a Research Scholar in 
the Min Kao Department of Electrical Engineering 
and Computer Science at the University of Tennessee 
from 2010 to 2011, and a Research Associate in 
School of Engineering and Computing Sciences at 
Durham University from 2013 to 2014. He is currently 

an Associate Professor in the School of Electrical Engineering, Zhejiang 
University, Hangzhou, China. His research interests include power system 
wide-area monitoring and control, controlled islanding and power system 
restoration.

Yi Ding (M'12) received the B.Eng. degree from 
Shanghai Jiaotong University, Shanghai, China, in 
2000, and the Ph.D. degree from Nanyang 
Technological University (NTU), Singapore, in 2007, 
both in electrical engineering. 
    He is a Professor in the College of Electrical 
Engineering, Zhejiang University (ZJU), China. 
Before joining ZJU, he was an Associate Professor in 
the Department of Electrical Engineering, Technical 

University of Denmark (DTU), Denmark. He also held research and teaching 
positions in University of Alberta, Canada and NTU. He was a Consultant as 
Energy Economist for Asian Development Bank in 2010. He is editorial 
member of international journals of Electric Power System Research and 
Journal of Modern Power Systems and Clean Energy. He is also a Guest Editor 
for the special section of IEEE Trans. on Power Systems. He is a member of 
IEC working groups for micro-grid standards. His research areas include power 
system planning and reliability evaluation, smart grid and complex system risk 
assessment.

Yilu Liu  received the B.S. degree from Xian Jiaotong 
University, Xi’an, China, and the M.S. and Ph.D. 
degrees from the Ohio State University, Columbus, 
OH, USA, in 1986 and 1989, respectively. 
She was currently the Governor’s Chair with the 
University of Tennessee, Knoxville, TN, USA, and 
Oak Ridge National Laboratory (ORNL). She was 
elected as the member of National Academy of 
Engineering in 2016. She is also the Deputy Director 
of the DOE/NSF co-funded engineering research 
center CURENT. Prior to joining UTK/ORNL, she 

was a Professor at Virginia Tech. She led the effort to create the North 
American power grid frequency monitoring network at Virginia Tech, which is 
now operated at UTK and ORNL as Grid-Eye. Her current research interests 
include power system wide-area monitoring and control, large 
interconnection-level dynamic simulations, electromagnetic transient analysis, 
and power transformer modeling and diagnosis.

Lei Sun received his Ph.D. degree in electrical 
engineering from Zhejiang University, China, in 2017. 
He was a visiting Ph.D. student at Technical 
University of Denmark from 2015 to 2016. He is 
currently a lecturer in the School of Electrical 
Engineering and Automation, Hefei University of 
Technology, China. 
His research interests include power system 
restoration, distribution automation and reliability 
analysis.

Yong Yan received the B.S. and the M.S. degrees 
from Chongqing University, Chongqing, China,  and 
South China University of Technology, Guangzhou, 
China, in 2006 and 2009, respectively. He is currently 
pursuing his PhD degree in electrical engineering in 
the College of Energy and Electrical Engineering at 
Hohai University, China. His current research 
interests are blockchain, artificial intelligence, and 
power system.


