
1 DOI: 10.1002/((please add manuscript number))

2 Article type: Communication

3

4 Ruthenium-Based Single Atom Alloy with High Electrocatalytic Activity for Hydrogen
5 Evolution

6

7 *Cui-Hong Chen, Deyao Wu, Zhe Li, Rui Zhang, Chun-Guang Kuai, Xue-Ru Zhao, Cun-Ku Dong,
8 Shi-Zhang Qiao, Hui Liu*, and Xi-Wen Du**

9

10 C. Chen, D. Wu, Dr. Z. Li, Dr. R. Zhang, Dr. C. Kuai, Prof. C. Dong, Prof. H. Liu, Prof. X. Du, Prof.
11 S. Qiao

12 Institute of New-Energy Materials

13 School of Materials Science and Engineering

14 Key Laboratory for Advanced Ceramics and Machining

15 Technology of Ministry of Education

16 Tianjin University

17 Tianjin 300072, China

18 E-mail: hui_liu@tju.edu.cn; xwdu@tju.edu.cn

19 Prof. S. Qiao

20 School of Chemical Engineering

21 The University of Adelaide

This is the author manuscript accepted for publication and has undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the [Version of Record](#). Please cite this article as [doi: 10.1002/aem.201803913](https://doi.org/10.1002/aem.201803913).

This article is protected by copyright. All rights reserved.

1 Adelaide, SA 5005, Australia

2

3 Keywords: single-atom alloys, hydrogen evolution reaction, pulsed laser ablation,
4 electrocatalyst, synergistic effect

5

6 Highly efficient and stable catalysts for hydrogen evolution reaction (HER), especially in alkaline
7 conditions is very crucial for the practical demands of electrochemical water splitting. Here, we report
8 the synthesis of a novel RuAu single-atom alloy (SAA) by laser ablation in liquid (LAL). The SAA
9 exhibits a high stability and a low overpotential, $24 \text{ mV}@10 \text{ mA cm}^{-2}$, which is much lower than that
10 of Pt/C catalyst (46 mV) in alkaline media. Moreover, the turnover frequency of RuAu SAA is 3 times
11 that of Pt/C catalyst. Density functional theory computation indicates the excellent catalytic activity of
12 RuAu SAAs originates from the relay catalysis of Ru and Au active sites. Our work opens a new
13 avenue towards high-performance SAAs via fast quenching of immiscible metals.

14

15 **1. Introduction**

16 Electrochemical water splitting is an effective way to convert electric energy into clean
17 and renewable hydrogen with high energy density, where active catalysts are very crucial to
18 realize highly efficient conversion at a low overpotential.^[1-5] So far, Pt is regarded as the
19 most effective catalyst for hydrogen evolution reaction (HER) in acidic media, because of its
20 appropriate adsorption of H atoms.^[6,7] However, the catalysts for oxygen evolution reaction
21 (OER) on the counter electrode are mainly composed of oxides which remain stable merely
22 in basic or neutral conditions, and in these media, the performance of Pt-based catalysts is

1 dramatically depressed.^[8-10] In theory, HER in basic or neutral media involves water
2 dissociation and then hydrogen evolution, and the first step is much sluggish, leading to the
3 conversion efficiency about two or three orders of magnitude lower than that in acidic
4 media.^[11-13] Consequently, it remains a big challenge to fabricate HER catalysts with high
5 performance and low price for working in alkaline solution.

6 Ruthenium, as a member of platinum-group metals with 1/30 price of Pt,^[14] has been
7 proved to be a promising catalyst for HER in alkaline solution due to its high efficiency on
8 water dissociation,^[15-18] however, the strong interaction between Ru and H atoms impedes
9 the subsequent hydrogen evolution because of the well-known scaling relationship for
10 heterogeneous catalysts.^[17,19-21] Many efforts had been devoted to constructing Ru-based
11 heterostructures (e.g. Ru/carbon quantum dots,^[22] Ru/C₂N,^[18] RuCo/nitrogen-doped
12 graphene,^[23] fcc-Ru/C₃N₄/C,^[17] Ru/nitrogen-doped carbon,^[24] Ru/graphene^[25]), which show
13 great advantages on promoting water dissociation by synergistic effect. Nevertheless, less
14 attention was paid on the improvement of hydrogen adsorption. Recently, single-atom
15 alloys (SAAs), which comprise separated solute atoms in metallic matrix, show great
16 potential on circumventing scaling relationships.^[23,26,27] meanwhile, the interaction between
17 the solute atoms and matrix can modify their electronic structure,^[26,28,29] leading to a

1 suitable adsorption energy for hydrogen. Consequently, constructing Ru-based SAAs opens a
2 new avenue towards high HER performance.

3 Herein we reported the synthesis of RuAu SAAs through a laser ablation in liquid (LAL)
4 technique, which possesses strong quenching effect so as to fabricate metastable
5 nanostructures with novel properties.^[30,31] We choose Au as the alloying element on the
6 basis of the following considerations: first, Au is known as an inert metal with weak
7 hydrogen adsorption thus can counteract the strong hydrogen adsorption of Ru matrix.
8 Second, the immiscibility between Au and Ru may create a unique geometric and electronic
9 structures in RuAu SAAs.^[32,33] Finally, chemically inert Au favors long-term durability during
10 the reaction. As such, the as-prepared RuAu catalyst exhibits a low overpotential, 24
11 mV@10 mA cm⁻², which is much lower than Pt/C (46 mV@10 mA cm⁻²) in alkaline media.
12 Moreover, the turnover frequency (TOF) of RuAu SAAs is 3 times that of the Pt/C catalyst.
13 Density functional theory (DFT) computation reveals that the high performance originates
14 from the relay catalysis of Ru host (for water dissociation) and Au dopant (for hydrogen
15 evolution). To the best of our knowledge, this is the first report on the synthesis of RuAu
16 SAAs with outstanding HER performance in alkaline media. Furthermore, the idea of the
17 mixing immiscible metallic elements by LAL can be facilely extended to other material
18 systems for engineering novel catalysts with extraordinary properties.

1 **2. Results and discussion**

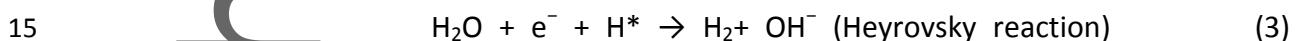
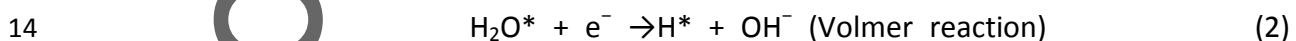
2 The synthetic route is schematically illustrated in **Figure 1a**. First, a Ru target was
3 immersed in an aqueous solution containing 0.2 mM HCl and HAuCl₄ with varied
4 concentration (0.1, 0.2, 0.3 and 0.5 mM), and the corresponding products are designated as
5 Ru, RuAu-0.1, RuAu-0.2, RuAu-0.3 and RuAu-0.5 SAAs. A nanosecond laser with a pulse
6 width of 7 ns was employed to irradiate the Ru target, leading to the vaporization of the
7 solid target, thermal decomposition of HAuCl₄, and formation of SAAs during the
8 subsequent fast quenching.

9 **Figure 1b** presents a typical transmission electron microscopic (TEM) image of RuAu-0.2
10 nanoparticles with an average size of 8 nm (inset of **Figure 1b**). Energy dispersive
11 spectrometer (EDS) elemental mapping analysis indicates that Ru and Au atoms are
12 distributed evenly throughout the particle (**Figure 1c-f**). High-angle annular dark
13 field-scanning transmission electron microscopy (HAADF-STEM) analysis gives more details
14 on the elemental distribution. As shown in **Figure 1g**, Au atoms (in red circles) show higher
15 contrast due to their large atomic number, and disperse individually in Ru host. The
16 magnified HAADF-STEM images (**Figure 1h**, **Figure S1**) reveal clearly that Au atoms occupy
17 the positions of Ru atoms, which is further proved by the profile of integrated pixel intensity
18 along the white solid line in **Figure 1h**. For comparison, the HAADF-STEM of Ru is displayed

1 in **Figure S2**. To confirm the scattered distribution Au atoms in the single atom alloys, X-ray
2 absorption near-edge structure (XANES) and extended X-ray absorption fine structure
3 (EXAFS) analyses were conducted for RuAu-0.2, Au foil, and Ru foil. As shown in the XANES
4 spectra, Au L₃-edge and Ru K-edge of RuAu-0.2 are similar to these of Au and Ru foils,
5 respectively (**Figures S3a** and **S3b**), indicating the metallic state of Au and Ru atoms.
6 RuAu-0.2 exhibit a prominent peak at ~2.2 Å in the Au-L₃ edge k^3 -weighted EXAFS spectra in
7 k-space (**Figure S3c**), which is different from the Au-Au characteristic peak (~2.7 Å) of Au
8 foil, and could be attributed to the Ru-Au bonds, thus revealing the dispersion of isolated Au
9 atoms in Ru nanoparticles. Moreover, the Ru-Ru bond length of RuAu-0.2 is same with that
10 of Ru foil (**Figure S3d**). By tuning the concentration of HAuCl₄, RuAu SAAs with different
11 contents of Au are prepared (**Figure S4**). As illustrated by the inductively coupled plasma
12 (ICP) results shown in **Table S1**, the Au contents for RuAu-0.1, RuAu-0.2, RuAu-0.3 and
13 RuAu-0.5 SAAs are 9.91 at.%, 15.35 at.%, 21.06 at.%, 36.53 at.%, respectively. X-ray
14 diffraction (XRD) patterns provide further evidence on the increase in Au content. As shown
15 in **Figure S5**, the diffraction peaks of RuAu-0.1 and RuAu-0.2 match well the hexagonal
16 close-packed (hcp) phase of Ru (PDF no. 70-0274), and no diffraction peaks related to Au are
17 detected. While for RuAu-0.3 and RuAu-0.5, diffraction peaks of Au (220) are found in the
18 XRD patterns. Correspondingly, Au clusters emerge in RuAu-0.5 SAAs (**Figure S6**). These
19 results illustrate that there is an upper limit for Au atoms dissolved in RuAu SAAs.

1 The HER performance of RuAu-0.2 SAAs is tested in 1 M KOH solution. For comparison,
2 the electrocatalytic properties of pure Ru, commercial Pt/C and Au/C (20 wt%) are also
3 tested under the same conditions. The iR compensated linear sweep voltammetry (LSV)
4 polarization curves illuminate that RuAu-0.2 has the highest catalytic activity among the four
5 catalysts (**Figure 2a**). The overpotential at 10 mA cm⁻² for RuAu-0.2 is as low as 24 mV, being
6 22 and 34 mV lower than that of Pt/C and Ru, respectively. The Tafel slope of RuAu-0.2 is 37
7 mV dec⁻¹, quite lower than that of Ru (68 mV dec⁻¹), Au (155 mV dec⁻¹) and Pt (49 mV dec⁻¹)
8 (**Figure 2b**). Besides, the electrochemical impedance spectra (EIS) illustrate that the charge
9 transfer resistance of RuAu-0.2 is even smaller than Pt/C, suggesting more efficient electron
10 transfer at the interface of RuAu-0.2 and electrolyte (**Figure 2c**). The number of active sites
11 was estimated by copper underpotential deposition (Cu-upd) method (**Figure S7**), and then
12 was adopted to calculate TOF.^[34, 35] As shown in **Figure 2d**, RuAu-0.2 exhibits an exceedingly
13 high TOF of 2.18 s⁻¹ at the overpotential of 50 mV, which is 3 times that of Pt/C, and 3.6
14 times that of Ru/C. The performance of RuAu-0.2 is the highest in alkaline media among the
15 recently reported metallic catalysts (**Table S2**). Moreover, Au content can influence HER
16 performance of SAAs remarkably, and RuAu-0.2 exhibits the best catalytic performance
17 among RuAu SAAs with various gold contents (**Figure S8**).

1 The electrocatalytic stability of RuAu-0.2 is evaluated by a long-term cycling test. As
2 shown in **Figure 2e**, there is only a negligible increase (about 2 mV) in the overpotential of
3 RuAu-0.2 after 1000 cycles. In comparison, the overpotential of Pt/C increases by about 10
4 mV. The electrochemical stability of RuAu-0.2 is further proved by the chronoamperometry
5 test (**Figure 2f**). After 10 h continuous testing, the catalytic current density shows a slight
6 drop of 8%. In addition, no obvious change was found in the structure (**Figure S9**) and
7 composition (**Figure S10**) after the durability test. Moreover, the Faradaic yield keeps 100%
8 during the durability test, indicating the current observed is fully attributed to HER (**Figure**
9 **2f**).



10 We further carried out X-ray photoelectron spectroscopy (XPS) analysis on RuAu SAAs to
11 reveal their electron structure (**Figures 3a** and **S11**). The Ru 3d_{5/2} peak (280.7 eV) of
12 RuAu-0.2 shifts towards high binding energy by 0.18 eV as compared with that of pure Ru.^[36]
13 Meanwhile, the Au 4f peak shows a negative shift by 0.2 eV after alloying (**Figure 3b**).
14 These opposite shifts are ascribed to electron transfer from Ru to Au, which was further
15 confirmed by Bader charge analysis shown in **Figures 3c** and **3d**. Interestingly, the extents of
16 peak shift of RuAu-0.3 and RuAu-0.5 are smaller than that of RuAu-0.2 (**Figures S11** and
17 **S12**), indicating the phase separation of Au particles from the Ru host in the alloys with
18 higher Au contents. The change of electronic structures for Ru and Au will lead to the

1 change of their d-band filling. For Ru, the d-band filling decreases due to the loss of
 2 electrons, while for Au atoms, the d-band filling increases after the gain of electrons from
 3 Ru. Both of the changes could influence the absorption of H according to the d-band center
 4 theory.^[38]

5 Next we performed DFT calculations both from the thermodynamics and kinetics aspects
 6 to explore the origin of the superior HER activity of RuAu SAAs. RuAu(001), Ru(001) and
 7 Pt(111) facets, commonly adopted for theoretical studies,^[17,18,39,40] were modeled to
 8 represent RuAu-0.2 SAAs, Ru and Pt catalysts, respectively (**Figure S13**). In alkaline medium,
 9 HER usually experiences three steps. The first step involves the adsorption of water
 10 molecules on catalyst surface,

12 then the adsorbed water molecule dissociates to supply hydrogen atoms. Based on the Tafel
 13 slope of SAAs, the HER should follow Volmer-Heyrovsky process:^[19]

16 From the thermodynamic aspect, for water adsorption (step 1), the binding energies of
 17 H_2O on Pt(111), Ru(001), and RuAu(001) facets were determined as 0.173, 0.042, 0.025 eV,

1 respectively, and the optimal binding sites are the Ru atoms around Au atoms on RuAu(001)
2 facets (**Figure S14**).

3 For Volmer reaction (step 2), the driving force (Gibbs free energy change, ΔG_T) increases
4 in the order of Pt (111) (0.53 eV), RuAu(001), (0.09 eV), and Ru(001) (-0.60 eV), while for
5 Heyrovsky reaction (step 3), the driving force increases in an opposite order, namely,
6 Ru(001) (0.60 eV), RuAu(001) (-0.09 eV) and Pt (111) (-0.53 eV) (**Figures 4a and 4b**). On
7 Pt(111), a high energy barrier (0.53 eV) must be overcome in Volmer step due to the poor
8 adsorption of H_2O (**Figure S14**), and on Ru(001), an energy barrier of 0.60 eV appears in
9 Heyrovsky step due the excessively tight hydrogen adsorption (**Figure S15**). In contrast, the
10 energy barrier for RuAu(001) plane is merely 0.09 eV (in Volume step) due to the
11 appropriate H adsorption on Au sites and OH^- adsorption on Ru sites. The excellent
12 adsorption capability of Au sites is proved by the performance of RuAu SAAs in an acidic
13 solution which merely involves the adsorption of hydrogen. As shown in **Figure S16**, pure Au
14 or pure Ru nanoparticles display very poor HER performance, once Ru matrix was doped
15 with Au atoms, the HER performance of the RuAu nanoparticles was remarkably improved,
16 and the higher Au content, the better HER performance. This phenomenon can be
17 rationalized as below: in RuAu SAAs, Au atom gains electrons from Ru matrix, leading to the
18 increase in the filling of Au d-band, as verified by XPS results and Bader charge analysis

1 (Figure 3). The change of electronic structure promotes the interaction between Au atom
2 and intermediate, thus makes the Au atom as the active site for HER.

3 Moreover, Ru sites in RuAu(001) show a weaker attraction to OH⁻ radicals than Ru(001)
4 (Figure S17), which facilitates the regeneration of active site and thus accelerates the whole
5 HER process. In consideration of all the above three steps, RuAu (001) plane exhibits
6 appropriate adsorption of water molecules (on Ru atoms) and hydrogen atoms (on Au
7 atoms). Hence, from the thermodynamic point of view, RuAu (001) should be the best HER
8 catalyst in alkaline solution among the three models.

9 In terms of kinetic, DFT calculations were made to investigate the activation energies for
10 water dissociation (ΔG_B). As shown in **Figures 4a, 4b** and **S18**, RuAu(001) and Ru(001)
11 exhibit lower activation energies (0.98 eV and 0.79 eV, respectively) as compared with
12 Pt(111) (1.05 eV), indicating the dissociation of H₂O on RuAu(001) and Ru(001) facets are
13 easier than Pt(111) facet. The higher energy barrier on RuAu(001) than that on Ru(001)
14 should be attributed to the electronic structure change caused by Au alloying. In order to
15 exclude the occasionality of a certain facet, we also calculated the case of RuAu(101) plane
16 (Figures S19 and S20). After being doped with Au single atom, the RuAu(101) plane shows
17 similar thermodynamic and kinetics behaviors with RuAu(001) plane.

1 Based on the above, the high HER performance of RuAu SAAs can be understood as
2 below. The electron transfer from Ru to Au atoms in RuAu SAAs leads to positive Ru atoms
3 and negative Au atoms which are favorable to adsorb water molecules and hydrogen atoms,
4 respectively, thus accelerating the whole HRE process in alkaline conditions. The details are
5 shown in **Figures 5a-5d**. Firstly, water molecules are captured by the Ru atoms around Au
6 atoms which possess higher adsorption energy than other Ru atoms and Au atoms (**Figure**
7 **5a**). The adsorbed water molecules then dissociate into H^+ and OH^- radicals, the released H^+
8 ions are immediately captured and reduced by the adjacent Au atom with appropriate
9 adsorption energy (**Figure 5b**). Simultaneously, another water molecule is activated on a Ru
10 atom around the Au atom (**Figure 5c**), then reacts with the adsorbed H atom on Au site
11 giving rise to hydrogen molecule following the Heyrovsky reaction (**Figure 5d**). Eventually,
12 the hydrogen molecule desorbs from Au site to close the hydrogen evolution circle.
13 Obviously, there exists a relay catalysis in RuAu SAAs, namely, Ru atoms work as the first
14 active site to capture and split water molecules, subsequently, Au atoms act as the second
15 active site for absorption of protons and desorption of H_2 gas, as such, the RuAu SAAs
16 achieve a perfect balance on the adsorption of water molecule and proton, thus realizing
17 ultralow overpotential for HER in alkaline media.

1 To test the universality of synthesis of SAAs by LAL, RuAg SAAs were prepared by the
2 same procedure although Ru and Ag are immiscible in solid state. RuAg-0.2, RuAg-0.4,
3 RuAg-0.7 and RuAg-1 were obtained by laser ablation of a Ru target immersed in AgNO_3
4 aqueous solutions with concentration of 0.2, 0.4, 0.7 and 1.0 mM, respectively. TEM
5 observation indicates that the products are homogenous nanoparticles with high
6 crystallinity (**Figure S21a-b**). EDS elemental mapping shows that Ru and Ag are evenly
7 distributed throughout the particle (**Figure S21c-f**). XRD pattern illustrates that silver is
8 mixed with ruthenium at the atomic level to form a homogenous alloy (**Figure S21g**). The
9 HER performance of above catalysts was tested in both basic and acidic media (**Figure S22**).
10 The catalytic activity of RuAg SAAs first increases and then decreases with the increase of
11 the silver content, being similar to RuAu SAAs. The lowest overpotentials at 10 mA cm^{-2} in
12 basic and acidic media are 37 and 61 mV, respectively, demonstrating that RuAg SAAs are
13 good HER catalysts under alkaline conditions. Therefore, LAL technique can be applied for
14 the production of various alloy catalysts whose parent metals are immiscible in solid state.

15 **3. Conclusion**

16 We, for the first time, synthesized RuAu single-atom alloys whose parent metals are
17 immiscible by laser ablation in liquid. The RuAu SAAs exhibit outstanding electrocatalytic
18 properties (overpotential 24 mV@ 10 mA cm^{-2}) and high stability in alkaline media. The

1 conceptually new RuAu SAAs outperform the state-of-art Pt/C catalyst in terms of both
2 performance and price (1/30 of Pt), thus show huge advantage for practical and scalable
3 application. According to experimental data and theoretical calculation, RuAu SAAs
4 accelerate HER in the alkaline media by relay catalysis, namely, Ru atoms capture and split
5 water molecules, and Au atoms absorb protons and promote the formation of hydrogen
6 gas, as such, the RuAu SAAs realize an ultralow overpotential for HER in alkaline media.
7 More importantly, our work demonstrates that laser ablation in liquid is an effective
8 strategy on producing novel single atom alloys which show exciting properties for catalytic
9 application.

10 **4. Experimental Section**

11 *Material Synthesis*: The Ru target (5 mm thick, purity quotient 99.99%) was polished and
12 washed 3 times with ultra-pure water, then immersed into 20 ml HAuCl₄ aqueous solutions
13 in an 80 mL breaker. The concentration of the HAuCl₄ aqueous solutions were fixed at 0.1
14 mM, 0.2 mM, 0.3 mM and 0.5 mM, respectively. For comparison, 0.2 mM HCl were selected
15 as the reference. A nanosecond pulsed Nd:YAG laser with wavelength 1064 nm, repetition
16 frequency 15 Hz and pulse width 7 ns was adopted to ablate the target immersed in the
17 beaker for 30 min. The suspension was centrifuged and washed with deionized water for

1 four times, subsequently dried by lyophilization. 5 mg as-obtained powders were then
2 mixed 20 mg carbon black to serve as HER catalysts.

3 *Materials characterization:* The morphology and structure were determined by JEOL
4 ARM-200F equipped with a cold field emission gun and a Cs corrector (CEOS) for probing
5 lenses at the operation voltage of 200 kV. EDS mapping were carried out on a JEOL
6 JEM-2100F transmission electron microscope. XRD characterization was performed on a
7 Siemens-Bruker D5000 X-ray diffractometer with Cu K α radiation. The X-ray-absorption
8 spectra were recorded using the synchrotron radiation provided by the DCI storage ring at
9 the beamline 12 BM of Advanced Photon Source (APS) in Argonne National Laboratory. The
10 synchrotron radiation was produced by a storage ring operated with 1.85 GeV positrons and
11 with a maximum beam intensity of ca. 300 mA. The measurements were performed with
12 the EXAFS III spectrometer that uses a double crystal silicon (311) monochromator and were
13 carried out in the transmission mode with ionization chambers in front and behind the
14 absorber. Analysis of the XAS spectra was carried out by using Athena and Artemis software
15 packages. The XPS data for surface states of the samples were collected by the X-ray
16 photoelectron spectroscopy (XPS, ESCALAB 250 Xi) with an ESCALAB 250Xi spectrometer
17 (Thermo Fisher Scientific) by using an Al K α (1486.6 eV) excitation source. The relative

1 content of gold and ruthenium is determined by inductively coupled plasma mass
2 spectrometry (ICP-MS, Agilent 7700X).

3 *Electrochemical characterization:* Electrochemical measurements were performed in a
4 three-electrode electrochemical cell on a CHI 600E electrochemical workstation in
5 N₂-saturated 1 M KOH and in 0.5 M H₂SO₄ electrolytes. 5 mg the catalyst was dispersed in 1
6 ml water containing 40 µL Nafion. Then 4 µL of the aqueous dispersion was transferred onto
7 a glassy carbon electrode with a 3 mm diameter serving as a working electrode. The
8 reference electrode was a saturated calomel electrode (SCE) and the counter electrode was
9 a graphite rod. All potentials were converted to reversible hydrogen electrode (RHE) by
10 using pure hydrogen calibration (**Figure S23**). The polarization curves were recorded with a
11 scan rate of 5 mV s⁻¹ and all data were corrected with the iR correction. The electrochemical
12 impedance spectroscopy (EIS) was tested under -0.03 V in 1 M KOH and -0.05 V in 0.5 M
13 H₂SO₄ with the frequency from 0.1 to 10⁶ Hz. The turnover frequency (TOF) was calculated
14 by copper underpotential deposition (Cu-upd) method following the standard
15 equation:^[17,18,34,35]

$$TOF = \frac{i}{2Fn} \quad (1)$$

$$n = \frac{Q_{Cu}}{2F} \quad (2)$$

1 where i is the current (mA) at $\eta = 50$ mV; n (mmol) the mole number of the active metal
2 atoms, F the Faraday constant (96485 C mol⁻¹), Q_{Cu} the UPD copper stripping charge. The
3 coefficient 1/2 in **Equation (2)** is because it takes 2 electrons to form a hydrogen molecule.

4 The Q_{Cu} is measured under the deposition potential of copper (Cu²⁺/Cu) is ~ 0.23V vs.
5 RHE.^[35] First, the electrode was cycled between 0.26 and 0.9 V for several times in 0.25 M
6 H₂SO₄. Then, the electrode was transferred to the electrolyte containing 0.25 M H₂SO₄ and
7 10 mM CuSO₄ and being saturated with N₂. For our alloy, the anodic peak is about 0.39 V,
8 which is attributed to the Cu stripping peak,^[34,35] thus the Q_{Cu} of RuAu-0.2 is 1.2mC. While
9 the Q_{Cu} of Pt and Ru is 1.1mC and 0.86mC, respectively. The number of active metal atoms n
10 can be calculated through the **Equation (2)**. Then the TOF can be obtained according to the
11 **Equation (1)**.

12 The catalytic durability was performed at a constant current density of 10 mA cm⁻².
13 Accelerated durability test was performed by 1000 potential cycles in 1 M KOH solution
14 from 0.14 to -0.26 V (versus RHE). Faradaic efficiency was tested at - 0.03 V vs reversible
15 hydrogen electrode.

16 **Supporting Information**
17 Supporting Information is available from the Wiley Online Library or from the author.

1 **Acknowledgements**

2 This work was supported by the Natural Science Foundation of China (Nos. 51871160,
3 51671141, 51471115, 51402084 and 51471079).

4

5 **References**

6 [1] L. Schlapbach, *Nature* **2009**, *460*, 809.

7 [2] M. S. Dresselhaus, I. L. Thomas, *Nature* **2001**, *414*, 332.

8 [3] Z. Chen, R. Wu, Y. Liu, Y. Ha, Y. Guo, D. Sun, M. Liu, F. Fang, *Adv. Mater.* **2018**, *30*,
9 1802011.

10 [4] W. Hao, R. Wu, R. Zhang, Y. Ha, Z. Chen, L. Wang, Y. Yang, X. Ma, D. Sun, F. Fang, Y. Guo,
11 *Adv. Energy Mater.* **2018**, *8*, 1801372.

12 [5] F. Li, G. Han, H. Noh, Y. Lu, J. Xu, Y. Bu, Z. Fu, J. Baek, *Angew. Chem. Int. Ed.* **2018**, *57*,
13 14139.

14 [6] J. Greeley, T. F. Jaramillo, J. Bonde, I. B. Chorkendorff, J. K. Norskov, *Nat. Mater.* **2006**, *5*,
15 909.

1 [7] J. D. Benck, T. R. Hellstern, J. Kibsgaard, P. Chakthranont, T. F. Jaramillo, *ACS Catal.* **2014**,

2 4, 3957.

3 [8] J. Durst, A. Siebel, C. Simon, F. Hasch'e, J. Herranz, H. A. Gasteiger, *Energy Environ. Sci.*

4 **2014**, 7, 2255.

5 [9] T. R. Cook, D. K. Dogutan, S. Y. Reece, Y. Surendranath, T. S. Teets, D. G. Nocera, *Chem.*

6 *Rev.* **2010**, *110*, 6474.

7 [10] M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. X. Mi, E. A. Santori, N. S.

8 Lewis, *Chem. Rev.* **2010**, *110*, 6446.

9 [11] P. J. Rheinländer, J. Herranz, J. Durst, H. A. Gasteiger, *J. Electrochem. Soc.* **2014**, *161*,

10 F1448.

11 [12] Z. F. Huang, J. Song, K. Li, M. Tahir, Y. T. Wang, L. Pan, L. Wang, X. Zhang, J. J. Zou, *J. Am.*

12 *Chem. Soc.* **2016**, *138*, 1359.

13 [13] J. Staszak-Jirkovsky, C. D. Malliakas, P. P. Lopes, N. Danilovic, S. S. Kota, K. C. Chang, B.

14 Genorio, D. Strmcnik, V. R. Stamenkovic, M. G. Kanatzidis, N. M. Markovic, *Nat. Mater.* **2016**,

15 15, 197.

1 [14] R. Ye, Y. Liu, Z. Peng, T. Wang, A. S. Jalilov, B. I. Yakobson, S. H. Wei, J. M. Tour, *ACS Appl. Mater. Interfaces* **2017**, *9*, 3785.

2 [15] J. Greeley, M. Mavrikakis, *Nat. Mater.* **2004**, *3*, 810.

3 [16] G. S. Karlberg, *Phys. Rev. B* **2006**, *74*, 153414.

4 [17] Y. Zheng, Y. Jiao, Y. Zhu, L. H. Li, Y. Han, Y. Chen, M. Jaroniec, S. Z. Qiao, *J. Am. Chem. Soc.* **2016**, *138*, 16174.

5 [18] J. Mahmood, F. Li, S. M. Jung, M. S. Okyay, I. Ahmad, S. J. Kim, N. Park, H. Y. Jeong, J. B. Baek, *Nat. Nanotechnol.* **2017**, *12*, 441.

6 [19] P. Jiang, Y. Yang, R. Shi, G. Xia, J. Chen, J. Su, Q. Chen, *J. Mater. Chem. A* **2017**, *5*, 5475.

7 [20] J. L. Liu, F. R. Lucci, M. Yang, S. Lee, M. D. Marcinkowski, A. J. Therrien, C. T. Williams, E. C. H. Sykes, M. Flytzani-Stephanopoulos, *J. Am. Chem. Soc.* **2016**, *138*, 6396.

8 [21] P. Wang, F. Chang, W. Gao, J. Guo, G. Wu, T. He, P. Chen, *Nat. Chem.* **2016**, *9*, 64.

9 [22] W. D. Li, Y. Liu, M. Wu, X. L. Feng, S. A. T. Redfern, Y. Shang, X. Yong, T. L. Feng, K. F. Wu, Z. Y. Liu, B. J. Li, Z. M. Chen, J. S. Tse, S. Y. Lu, B. Yang, *Adv. Mater.* **2018**, 1800676.

10 [23] J. Su, Y. Yang, G. Xia, J. Chen, P. Jiang, Q. Chen, *Nat. Commun.* **2017**, *8*, 14969.

1 [24] J. Zhang, P. Liu, G. Wang, P. P. Zhang, X. D. Zhuang, M. W. Chen, I. M. Weidinger, X. L.
2 Feng, *J. Mater. Chem. A* **2017**, *5*, 25314.

3 [25] F. Li, G. Han, H. Noh, I. Ahmad, I. Jeon, J. Baek, *Adv. Mater.* **2018**, *30*, 1803676.

4 [26] M. T. Greiner, T. E. Jones, S. Beeg, L. Zwiener, M. Scherzer, F. Girgssdies, S. Piccinin, M.
5 Armbruster, A. Knop-Gericke, R. Schlogl, *Nat. Chem.* **2018**, *10*, 1008.

6 [27] G. Kyriakou, M. B. Boucher, A. D. Jewell, E. A. Lewis, T. J. Lawton, A. E. Baber, H. L.
7 Tierney, M. Flytzani-Stephanopoulos, E. C. H. Sykes, *Science* **2012**, *335*, 1209.

8 [28] J. Ge, D. He, W. Chen, H. Ju, H. Zhang, T. Chao, X. Wang, R. You, Y. Lin, Y. Wang, J. Zhu, H.
9 Li, B. Xiao, W. Huang, Y. Wu, X. Hong, Y. Li, *J. Am. Chem. Soc.* **2016**, *138*, 13850.

10 [29] T. Chao, X. Luo, W. Chen, B. Jiang, J. Ge, Y. Lin, G. Wu, X. Wang, Y. Hu, Z. Zhuang, Y. Wu,
11 X. Hong, Y. Li, *Angew. Chem.* **2017**, *129*, 16263.

12 [30] H. Liu, P. Jin, Y. M. Xue, C. Dong, X. Li, C. C. Tang, X. W. Du, *Angew. Chem. Int. Edit.* **2015**,
13 *54*, 7051.

14 [31] J. Xiao, P. Liu, C. X. Wang, G. W. Yang, *Progress in Materials Science* **2017**, *87*, 140.

15 [32] L. E. Chinchilla, C. M. Olmos, A. Villa, A. Carlsson, L. Prati, X. Chen, G. Blanco, J. J. Calvino,
16 A. B. Hungría, *Catalysis Today* **2015**, *253*, 178.

1 [33] E. P. Maris, W. C. Ketchie, M. Murayama, R. J. Davis, *Journal of Catalysis* **2007**, 251, 281.

2 [34] C. L. Green, A. Kucernak, *J. Phys. Chem. B* **2002**, 106, 1036.

3 [35] L. Colmenares, Z. Jusys, R. J. Behm, *Langmuir* **2006**, 22, 10437.

4 [36] J. Liu, Y. Zheng, D. Zhu, A. Vasileff, T. Ling, S. Z. Qiao, *Nanoscale* **2017**, 9, 16616.

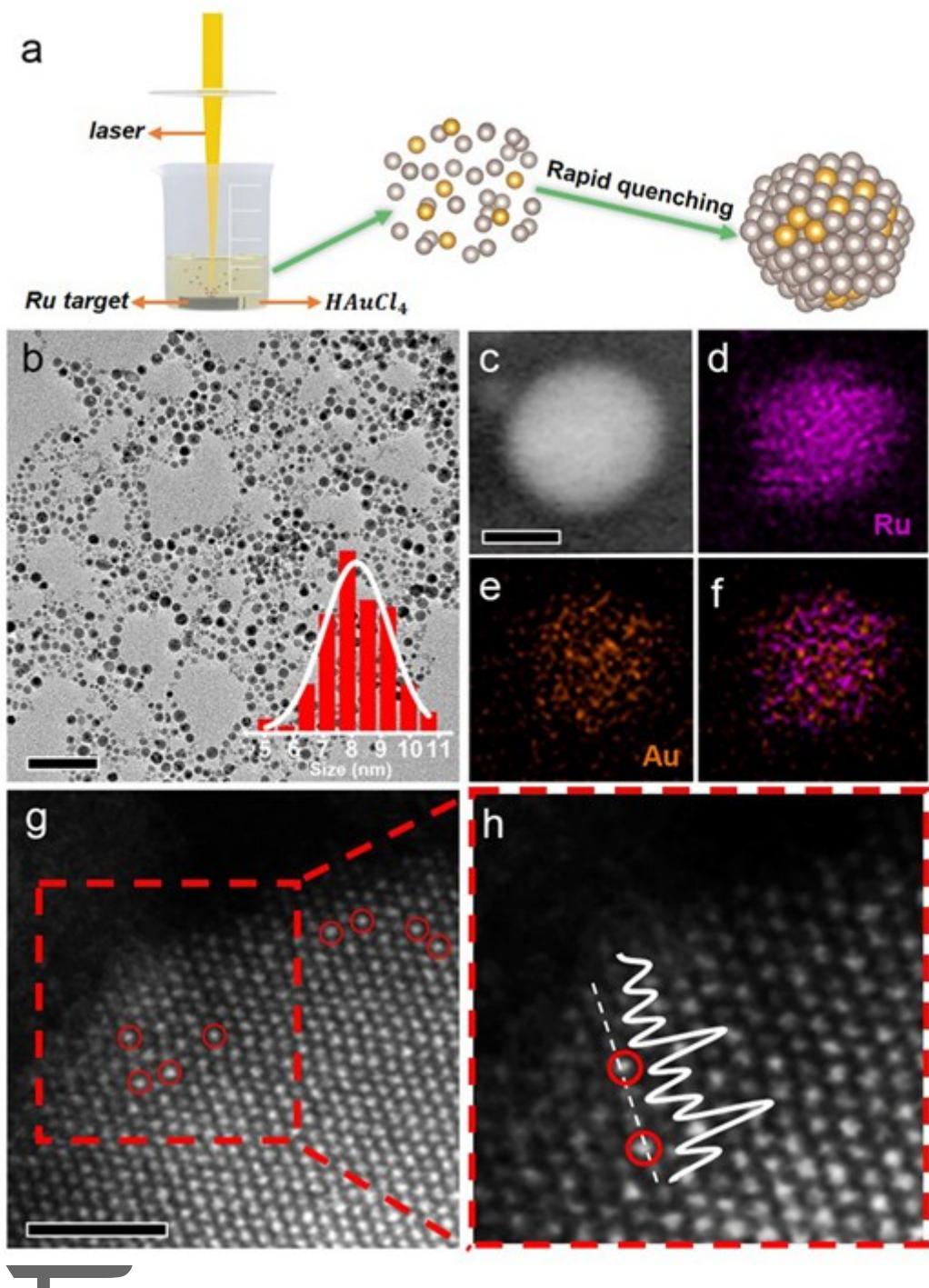
5 [37] W. Luo, M. Sankar, A. M. Beale, Q. He, C. J. Kiely, P. C. Bruijnincx, B. M. Weckhuysen,

6 *Nat. Commun.* **2015**, 6, 6540.

7 [38] B. Hammer, J. K. Nørskov, *Advances in Catalysis* **2000**, 45, 71.

8 [39] J. K. Nørskov, T. Bligaard, A. Logadottir, J. R. Kitchin, J. G. Chen, S. Pandelov, U. Stimming,

9 *J. Am. Chem. Soc.* **2005**, 127, 152.

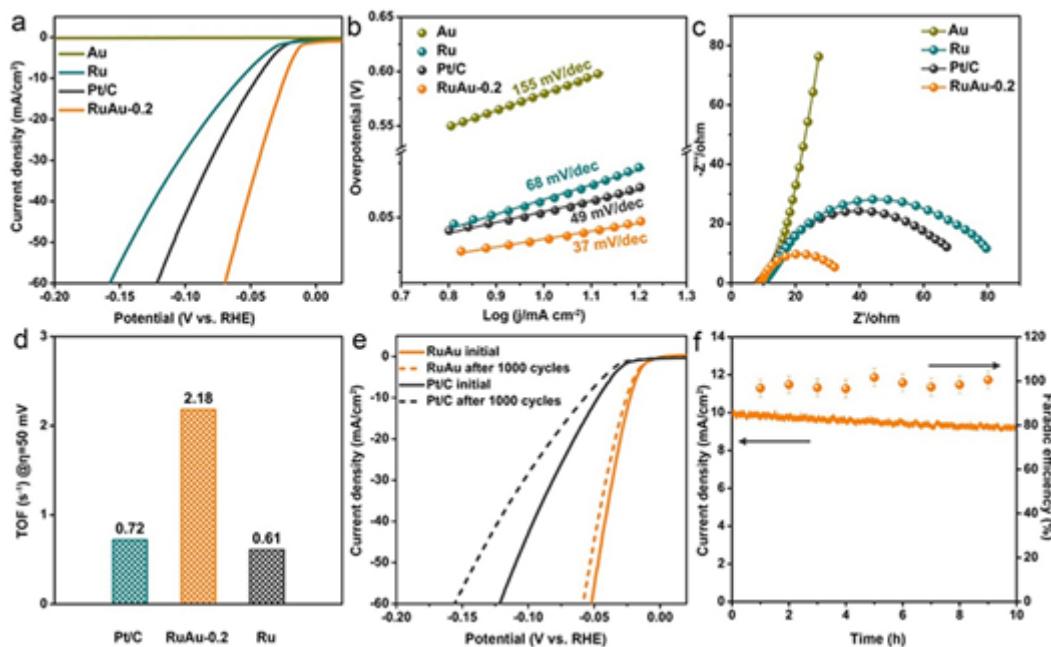

10 [40] P. J. Feibelman, *Science* **2002**, 295, 99.

11

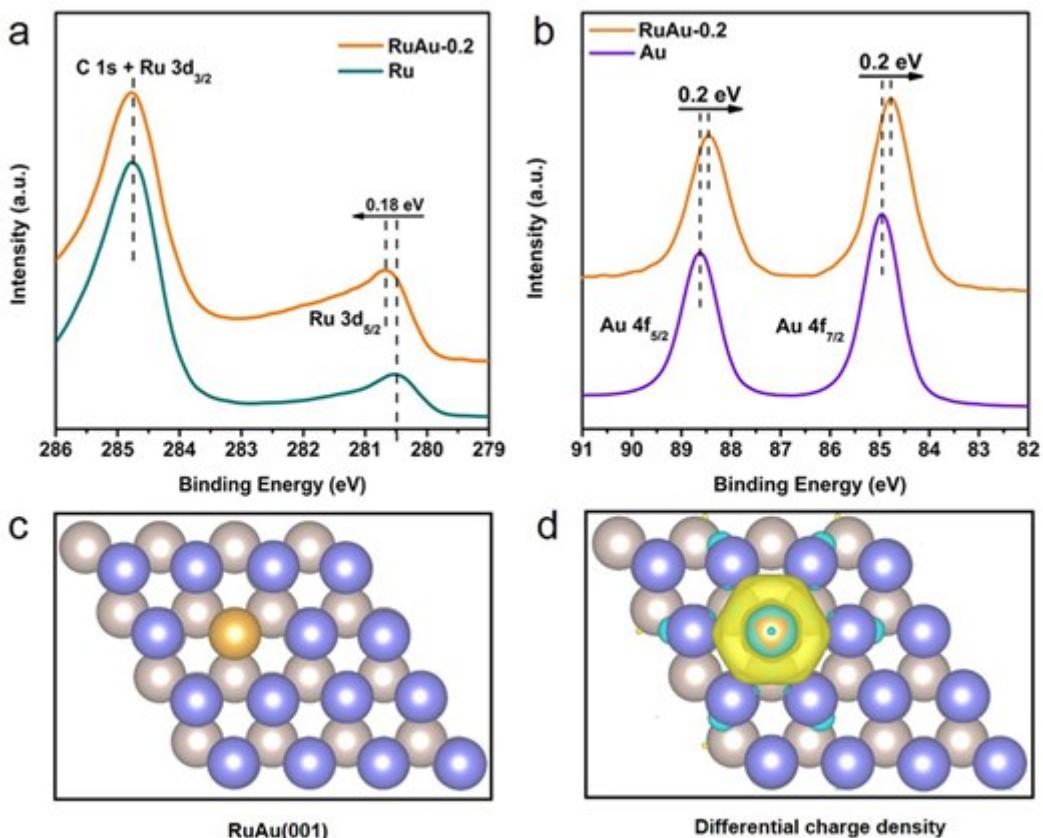
12

Author Manuscript

This article is protected by copyright. All rights reserved.

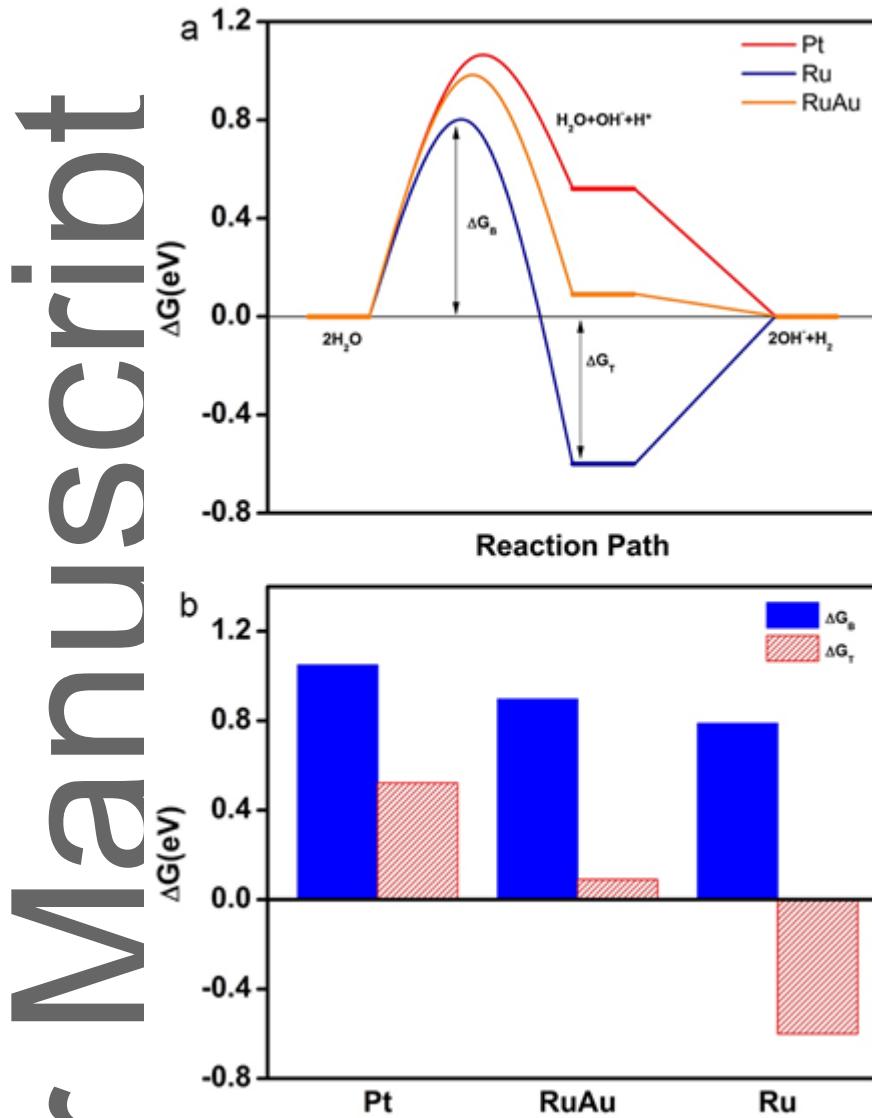


1 **Figure 1.** The synthesis of RuAu SAAs and characterizations on RuAu-0.2. (a) The schematic
2 setup of PLAL and the formation process of SAA nanoparticles. (b) TEM of RuAu-0.2. Inset,
3

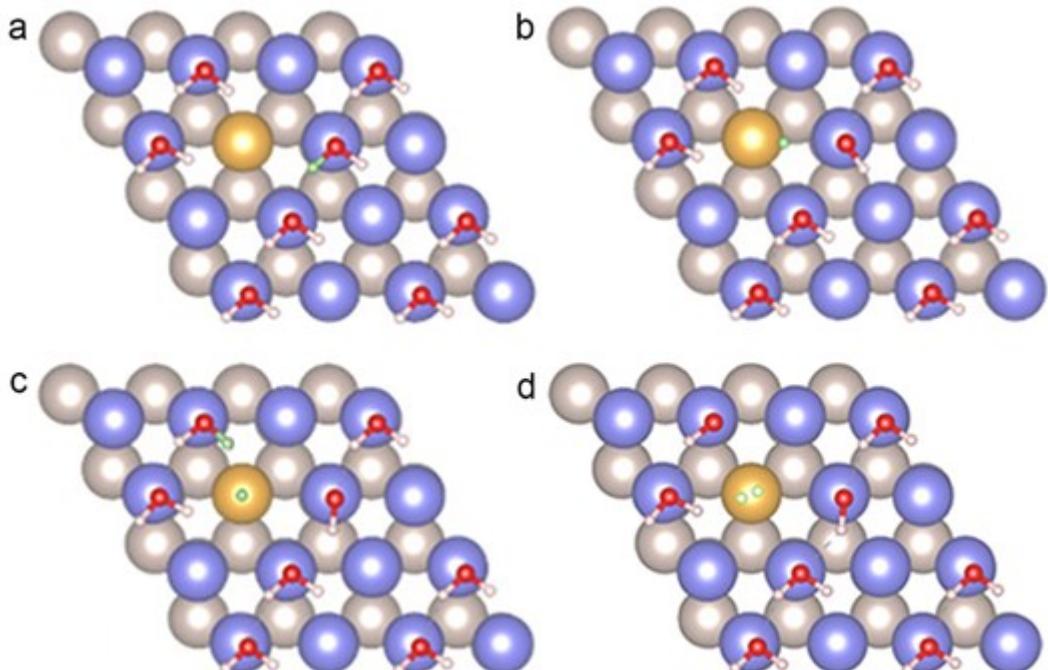

A

This article is protected by copyright. All rights reserved.

1 particle size distribution. Scale bar, 50 nm. (c-f) HAADF image and elemental mapping of Ru
 2 and Au. Scale bar, 5 nm. (g) Atomic-resolution HAADF-STEM image, Au atoms (marked by
 3 red circles) are uniformly distributed throughout the particle. Scale bar, 1 nm. (h) Magnified
 4 image in red dotted rectangle of (g), Au atoms were marked with red circles. The white solid
 5 curve is the integrated pixel intensity along the white dotted line.


7 **Figure 2.** HER activity and stability in 1M KOH solution. (a) Linear sweep voltammetry (LSV)
 8 polarization curves (iR compensated) at scan rate of 5 mV s^{-1} ; (b) Tafel slopes derived from
 9 (a); (c) EIS data; (d) TOF at 50 mV overpotential; (e) Durability test; (f) Chronoamperometric
 10 curve at an overpotential of 10 mA cm^{-2} (left) and Faradaic efficiency (right).

1


2 **Figure 3.** Charge redistribution in RuAu alloy. (a) Ru3d XPS spectra of Ru and RuAu-0.2. (b)
 3 Au4f XPS spectra of Au and RuAu-0.2. (c) Atomic model of RuAu (001) surface, yellow ball
 4 represents Au atom, and deep blue and silver gray indicate the top and bottom layers of
 5 Ru respectively. (d) Differential charge densities of RuAu (001) surface. Yellow and blue
 6 contours represent electron accumulation and depletion, respectively.

7

1
2 **Figure 4.** Thermodynamic and kinetics barriers for hydrogen evolution on three catalysts. (a)
3 Gibbs free energy profile of HER on Pt (111), Ru(001) and RuAu(001) surfaces. ΔG_T
4 represents the energy barrier for Heyrovsky reaction. ΔG_B represents the activation energy
5 of water dissociation. (b) ΔG_T and ΔG_B values on the surface of the three models.
6

1

2

3 **Figure 5.** Schematic maps on the hydrogen evolution on RuAu SAAs. (a) H_2O adsorption on
4 Ru atom, (b) H_2O dissociation on Ru atom and H adsorption on Au atom, (c) H_2O activation
5 on the another adjacent Ru atom, (d) H_2 formation on Au atom. Color codes: deep blue and
6 silver gray represent the top and bottom layers of Ru respectively. Golden and red are Au
7 and oxygen respectively. White and green are hydrogen.

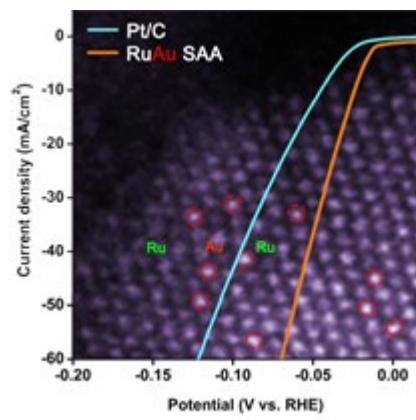
Author

Author Manuscript

1

2 **Ruthenium-Based Single Atom Alloy with High Electrocatalytic Activity for Hydrogen
3 Evolution**

4


5 **Keyword**

6 single-atom alloys, hydrogen evolution reaction, pulsed laser ablation, electrocatalyst,
7 synergistic effect

8

9 ToC figure ((Please choose one size: 55 mm broad \times 50 mm high **or** 110 mm broad \times 20 mm
10 high. Please do not use any other dimensions))

11

12

13

14

This article is protected by copyright. All rights reserved.