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2 Radial Inertia during Dynamic Loading
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Dharan and Hauser (1970)

In a compression test with a constant axial velocity:

• At a specific location, particle velocity along lateral (radial)
direction increases with time (or increasing strain/decreasing
specimen thickness)

• At a specific time, particle at outer diameter moves faster along lateral
(radial) direction than the particle at inner diameter

Radial Confinement



3 Consequence of Radial Inertia

• Abnormal stress history

Soft Materials
Intrinsic material stress-strain response
may be overcome.

Song, B., Chen, W.W, Ge, Y, Weerasooriya, T., (2007) Radial inertia
effects in Kolsky bar testing of extra-soft materials. Experimental
Mechanics, 47:659-670.

• Change in specimen stress
state from uniaxial to triaxial
stress
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Brittle Materials

Failure strength and associated strain rate effect may be overestimated. 

Li, Q.M., and Meng, H. (2003) About the dynamic strength enhancement of concrete-like materials in a split Hopkinson pressure bar test.
International Journal of Solids and Structures. 40:343-360.



4 Currently Existing Analysis on Radial Inertia lnduced Axial Stress

• Compressible Solid
• Small deformation

> Kolsky (1949)
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> Forrestal et al. (2007)

• Incompressible Solid
• Large deformation

• Dharan and Hauser (1970)
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5 Key Factors to Radial Inertia

Compressible Solid
• Small deformation
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> Specimen Geometry/Dimensions
> Specimen diameter
> Specimen thickness

> Loading conditions
> Impact velocity Ir--
> Strain rate history
> Specimen strain

> Specimen Material Parameters
> Density
> Poisson's ratio

•

• Incompressible Solid
• Large deformation
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All current analyses are based
on constant Poisson's ratio.

What will happen if Poisson's
ratio is no longer a constant?



6 Comprehensive Radial inertia Analysis

Mass conservation:
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7 Comprehensive Radial inertia Analysis

Radial inertia in a solid with a constant Poisson's ratio

for incompressible solid

Exactly same as that given by Warren and Forrestal (2010)
for an incompressible solid



8 Understanding Radial Inertia

Specimen geometry
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Specimen density
Poisson's ratio

Specimen strain (deformation)



9 Radial Inertia in a Silicone Foam

Brett Sanborn's earlier presentation
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10 Radial Inertia in a Silicone Foam

Average additional stress
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11 Experimental Verification of Radial Inertia in a Silicone Foam
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12 Radial Inertia in Foam Materials •

a2 t (t
)0(0

2(

(

1

)-

- e x

r2

(t))

) dv

de x ( )

a2 -
a 1, (r ,t) = o (t)

2

((

1

t)

- e 

x1/.(2t(t) 

))

dv (e x

de x ( )

Experimental Solutions

✓ Constant strain rate
✓ Annular specimen?
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✓ Challenge: It is highly sensitive to

strain-dependent Poisson's ratio
(derivation)
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13 Conclusions

> Unique Poisson's ratio of unique materials, i.e.,
polymeric foams, results in unique radial inertia
during dynamic tests

➢ Radial inertia has been comprehensively
analyzed, particularly accounting for the effect of
Poisson's ratio change

➢ Key factors dominating different regions

➢ Strain acceleration

- before strain rate achieves a constant

➢ Large deformation

- after specimen is densified at large
deformation

➢ Poisson's ratio change

- during specimen densification

➢ More significant at higher strain rates

>Suggested solutions
➢ Numerical correction

➢ Experimental solution
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