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Radial Inertia during Dynamic Loading L I

Dharan and Hauser (1970)

In a compression test with a constant axial velocity: |

¢ At a specific location, particle velocity along lateral (radial) ‘
direction increases with time (or increasing strain/decreasing I
specimen thickness)

% At a specific time, particle at outer diameter moves faster along lateral
(radial) direction than the particle at inner diameter

Radial Confinement ‘



31 Consequence of Radial Inertia L |

s Abnormal stress history

Axial
Compression
I
Soft Materials
Intrinsic material stress-strain response
may be overcome. Additional Radial

Axial Load Expansion

Song, B., Chen, W.W., Ge, Y., Weerasooriya, T., (2007) Radial inertia
effects in Kolsky bar testing of extra-soft materials. Experimental
Mechanics, 47:659-670.

% Change 1n specimen stress
state from uniaxial to triaxial Radial Radial
stress

Confinement Inertia

Brittle Materials

Failure strength and associated strain rate effect may be overestimated.

Li, Q.M., and Meng, H. (2003) About the dynamic strength enhancement of concrete-like materials in a split Hopkinson pressure bar test.
International Journal of Solids and Structures. 40:343-360.



4 | Currently Existing Analysis on Radial Inertia Induced Axial Stress L I

= Compressible Solid = Incompressible Solid I
= Small deformation = Large deformation
» Kolsky (1949) % Dharan and Hauser (1970) ||
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Key Factors to Radial Inertia L

= Compressible Solid = Incompressible Solid
= Small deformation = Large deformation

20, (1-e,) ’ dt
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» Specimen Geometry/Dimensions
» Specimen diameter
» Specimen thickness

» Loading conditions All current analyses are based

4 Imp&.wt Velom.ty on constant Poisson’s ratio.
» Strain rate history

» Specimen strain

What will happen if Poisson’s

> Specimen Material Parameters ratio is no longer a constant?

» Density
> Poisson’s ratio




6 | Comprehensive Radial Inertia Analysis L] I

Mass conservation: M




7| Comprehensive Radial Inertia Analysis

Exactly same as that given by Warren and Forrestal (2010)

for an incompressible solid |



8 | Understanding Radial Inertia L] I

Specimen geometry Strain acceleration Strain rate ||

: : Poisson’s ratio
Specimen density I

Specimen strain (deformation)



Radial Inertia in a Silicone Foam

Brett Sanborn’s earlier presentation

Engineering Stress (MPa)
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10 . Radial Inertia in a Silicone Foam

Average additional stress
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Experimental Verification of Radial Inertia in a Silicone Foam

Quartz Crystal Force Transmission Momentum
Transducers

Striker Bar Incident Bar Bar Bar
— N\ /\ /
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Strain Gage
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12 . Radial Inertia in Foam Materials

Poisson’s Ratio Change
Dominated During
Densification

Experimental Solutions
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Numerical Correction
v' Challenge: It is highly sensitive to
strain-dependent Poisson’s ratio
(derivation) : : 02 03 7 05 06 07

Engineering Strain

Engineering Stress (MPa)




13 . Conclusions

(o]
o

Unique Poisson’s ratio of unique materials, 1.e.,
polymeric foams, results in unique radial inertia
during dynamic tests

—1920s"
——Poisson's Ratio

~
o

[o2]
o

[42]
o

Radial inertia has been comprehensively
analyzed, particularly accounting for the effect of
Poisson’s ratio change
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