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Averse Cell Effects — Fast Charge vs Abuse

Fast Charging
= Cathode

= Heating — Breakdown of active
materials, binder and
electrolyte

= localized Abuse -
Overdelithiation
= Anode
= Lithium Plating

= Electrolyte and Double Layer
issues

Fast Charge adverse effects
resemble some abuse failure
root causes

Overcharge
= High voltage breakdown of

separator, binder,
electrolyte, cathode

m Cathode overdelithiation

= Lithium plating on anode

Thermal Ramp

Cathode instability =
heating = O, release

Separator breakdown
SEI dissolution
Electrolyte breakdown




Initial Study: COTS Fast Charge )

10Ah NMC // Graphite pouch

Supplier: Battery Space m Levels

Spec: 1C Charge/Discharge

Charge Rate 1C 1.5C
Cycles 20 100 300
o Test Over Thermal

P Charge Ramp

= Establish baseline for further study on automotive cells (see slide 4)

= Phase 1: Vary charge rate and cycles, and characterize changes in abuse
response for thermal ramp and overcharge. (in progress)

= Phase 2: Use high precision cycling to track efficiency and EIS over 300 cycles;
identify possible Li plating markers. (lab upgrades complete)

= Standard Charge = 1C, “Fast charge” = 1.5C (All discharge = 1C)
= Higher charge rates produced prohibitively high polarization.
=> Highlights drawback of COTS cells




Design of Experiments for COTS Fast Charge

Thermal Ramp setup

Charge

Condition

il C-Rate | Cycles Abuse
1] n/a 0 OverCh
2| ke 0 TRamp
: 1 20 OverCh
4 1 20 TRamp
> 1 100 OverCh
6| 1 100 TRamp
7 1 300 OverCh
8| 1 300 TRamp
- 1.5 20 OverCh
il 20 TRamp
11} 15 100 OverCh
12] 15 100 TRamp
13| 15 300 OverCh
14 15 300 | TRamp
150 1 300 o
1.5 300 n/a




Importance and Validity of COTS Observations

Material Thicknesses
160% m Cathode
140% mAnode
120% m Cumrent Collector Cathode
0% 0 m Cumrent Collectior Ancde
80%
680%
o L
31 || I| |I I 1.
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= Automotive cells have higher electrode
density, from higher loading and higher
calendaring.

= High compression improves electrical
conductivity but leaves less from
electrolyte — lower ion conductivity.

= Resistance — heat, gradients, plating

= Materials are thinner almost across the
board for automotive vs COTS.

= Thinner: more heat, more delicate

= Automotive cells sport metrics that
suggest fast charge outcomes could be
more pronounced than COTS.

Electrode Density (g/cm3)

oGe I I

m m 3Ah SAh 3Ah SAh
18850 18650 18650#218650#2




Video Results

Overcharge
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Video Results

Thermal Ramp




Typical in-test Data ™

Show a Thermal Ramp and OC test
Point out metrics that are on bar charts, like
initiation SOC, etc.
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Overall COTS behavior
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Revisit Why COTS cells are appropriate (m)

Material Thicknesses
wCathode

= Anode

mCumrent Collecto
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5Ah 10Ah % m 3Ah SAh 3Ah 5Ah
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Electrode Density (g/cm3)

Cathode
200%
150%
100%
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. . Sandia
Conversation on failure markers @&

Issues with depending on cycle-to-cycle changes to predict failure
on a vehicle. Uncontrolled environment, can have big effect on
cells.

Better off looking at in-cycle data, or using controlled diagnostic
testing ahead of time to mitigate rather than anticipate.

Cycling efficiency — thermal chamber Cycling efficiency — no
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