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This study explores the effects of plasma shaping on magnetohydrodynamic mode stability and

rotational stabilization in a tokamak, including both plasma and wall resistivity. Depending upon

the plasma shape, safety factor, and distance from the wall, the b-limit for rotational stabilization is

given by either the resistive-plasma ideal-wall (tearing mode) limit or the ideal-plasma resistive-

wall (resistive wall mode) limit. In order to explore this broad parameter space, a sharp-boundary

model is developed with a realistic geometry, resonant tearing surfaces, and a resistive wall. The

b-limit achievable in the presence of stabilization by rigid plasma rotation, or by an equivalent

feedback control with imaginary normal-field gain, is shown to peak at specific values of elonga-

tion and triangularity. It is shown that the optimal shaping with rotation typically coincides with

transitions between tearing-dominated and wall-dominated mode behavior. Published by AIP
Publishing. https://doi.org/10.1063/1.4991873

I. INTRODUCTION

Increasing b, the volume-averaged ratio of the plasma

pressure to the magnetic pressure, increases the fusion power

in a tokamak but also drives resistive and ideal magnetohydro-

dynamic (MHD) instabilities that can destroy the plasma con-

finement. Focusing on resistive wall modes (RWMs),

stabilization methods include but are not limited to plasma

rotation with respect to a resistive wall1–11 and feedback con-

trol.12–23 The aim of this paper is to explore the extent to

which rotation can raise the MHD b-limit of a resistive plasma

surrounded by a resistive wall in shaped toroidal geometry.

The study examines the linear onset of MHD instabil-

ities with a broad poloidal harmonic spectrum and fixed

toroidal harmonic n¼ 1, in a plasma that is stable at zero b
and destabilized at finite b. Following Brennan and Finn,23

four b-limits calculated without rotation or feedback control

are used to evaluate the extent to which rotation or feedback

control can raise the least stable b limit—the first of the four

limits to go unstable as b increases—in a resistive plasma

surrounded by a resistive wall. Starting with an ideal-plasma

ideal-wall (ip-iw) system, raising b produces a kink mode

that goes unstable at a relatively high limit, denoted bip�iw,

with a fast growth rate characterized by the Alfv�en timescale

sA. Wall resistivity allows the perturbed magnetic flux to

penetrate the wall on a resistive timescale sw, introducing a

slower growing instability known as the resistive wall mode

(RWM), which goes unstable at the ideal-plasma resistive-
wall (ip-rw) limit bip�rw < bip�iw. Similarly, plasma resistiv-

ity in a system with an ideal wall introduces yet another non-

ideal instability known as the tearing mode (TM), which

grows on a tearing timescale st and is also destabilized at a

resistive-plasma ideal-wall (rp-iw) limit brp�iw < bip�iw.

Lastly, a toroidal system containing both wall resistivity and

plasma resistivity become unstable at a resistive-plasma
resistive-wall (rp-rw) limit brp�rw, below the other three lim-

its. The least stable mode (without rotation) appears when b
crosses brp�rw, and the mode grows on a timescale that

depends upon both sw and st, coupling the resistive-wall and

the tearing processes by their comparable timescales as well

as their similar physics and their mutually inductive per-

turbed currents. Rather than referring to separate modes, the

present unified approach suggests that common designations

such as kink, RWM, and TM should be thought of as refer-

ring to the dominant MHD mode behavior in different

domains of the parameter space. This unified approach was

pioneered in a cylindrical study by Finn24 and a toroidal cir-

cular cross-section study by Betti,9 who independently

developed models to study MHD stability over a range of b,

encompassing both TM and RWM behavior. The approach

of keeping both plasma and wall resistivity allows the domi-

nant mode behavior to transition smoothly at each of the lim-

its described above; brp�rw; brp�iw; bip�rw, and bip�iw.

For a circular cross-section tokamak, a typical b-limit

ordering in this 4-b analysis was found to be brp�rw

< brp�iw < bip�rw < bip�iw in both the cylindrical model by

Finn24 and the high aspect-ratio toroidal model by Betti.9

Richardson, Finn, and Delzanno25 found that the same order-

ing also applies in a typical reversed field pinch, with the

current density parameter k0 � J � b=B2ðr ¼ 0Þ in place of

b. Building upon the 4-b approach, Brennan and Finn23 con-

structed a cylindrical tokamak model with feedback control,

to show that the plasma response to rotation and/or feedback

control is characterized by the four b domains associated

with the four above-mentioned b-limits calculated without
rotation or feedback. With cylindrical geometry that
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typically satisfies the b-limit ordering mentioned above, the

study by Brennan and Finn indicates that the limit brp�rw can

be raised by rotation up to the next limit brp�iw. It was

shown22 that feedback proportional to the radial field with

complex gain is exactly equivalent to rotation of the resistive

wall in a cylinder, and therefore to rigid plasma rotation in

the opposite direction. The equivalence was shown to be

approximate but still useful in the toroidal geometry. Earlier

work in Ref. 16 had shown that with two resistive walls,

rotating sufficiently fast relative to each other, resistive wall

stability can be achieved because the flux cannot penetrate

the two walls. A method called the fake rotating shell

approach of Ref. 17 uses a feedback array to obtain similar

stabilization. In Ref. 22, it was discussed that the equiva-

lence of imaginary gain and wall rotation shows that imagi-

nary gain with two resistive walls can stabilize completely.

While feedback with complex tangential and normal

field gains can further stabilize the mode, the present study

focuses on the parameter space that permits mode stabiliza-

tion by rotation, or by an equivalent feedback control with

imaginary normal-field gain. By varying tokamak parameters

such as the wall radius (or closeness of the wall to the plasma

boundary), safety factor, elongation, triangularity, and verti-

cal asymmetry, this study examines the maximum extent to

which rigid plasma rotation can raise the b-limit of the least

stable mode. The parameter space where a non-rotating

unstable plasma can be stabilized by rigid rotation is referred

to as the rotationally stabilizable domain. Stabilizing rotation

rates are typically on the order of sw or st. A general rule,

first demonstrated in the present study, is that the b-domain

of rotational stabilization is bounded by the lowest ideal

b-limit, which can be given by either brp�iw or bip�rw. This

rule was examined for the specific case of varying wall dis-

tance in studies by Finn24 and Betti.9 This finding has impli-

cations for the type of ensuing linear mode behavior. In the

common terminology, brp�iw < bip�rw implies rotational sta-

bilization up to the linear onset of a TM-dominated instabil-

ity, whereas the reversed case bip�rw < brp�iw implies

rotational stabilization up to the linear onset of a RWM-

dominated instability. The two different stability limit order-

ings, brp�iw < bip�rw and bip�rw < brp�iw, play important

roles in the present study and will be discussed at length later

on. We suggest that the nature of the linear b-limit (brp�iw or

bip�rw) determines the dominant type of non-linear behavior

(TM or RWM) observed in experiments.

Rotational stabilization of the least stable mode (occur-

ring when b crosses brp�rw) can be understood in the context

of a coupled-mode picture. Namely, a TM with finite flux at

the tearing layer and zero flux at the wall and a RWM with

finite flux at the wall and zero flux at the tearing layer.23 Any

system of two coupled modes exhibits a mode interaction

which depends upon the proximity of the roots in the com-

plex plane. Plasma rotation in the present plasma-wall sys-

tem produces a relative phase-shift of the complex roots

which changes the coupling of the two modes. This effect

tends to raise the brp�rw when the tearing layer and the wall

have comparable timescales, with similar rotation time-

scales. (There is an important exception of destabilization by

low rotation when tearing layers have real frequencies.26,27)

Rotational stabilization has been verified experimentally1–3

and explained theoretically using a number of dissipation

mechanisms including sound wave damping,4 resistivity,5,6

and viscosity,7,8 as well as kinetic effects such as the reso-

nance between mode rotation and the precession drift fre-

quency of trapped particles.10,11

The RWM-TM interaction is further modified by the

geometric mode-coupling induced by the shaped toroidal

geometry. In the past, geometric mode-coupling effects of

cross-sectional shaping in toroidal geometry have been stud-

ied separately for ideal-plasma (kink) modes, and for

resistive-plasma (tearing) modes. Early shaping studies

focused on the ideal external kink instability, applying a

sharp-boundary model with no rational surfaces and no wall.

Using a sharp-boundary model with a high aspect-ratio and

elliptical cross-section, Freidberg and Haas28 found maxi-

mum stability for an elongation (height to width ratio) of 2.2.

An extension by Freidberg and Grossmann29 to a more gen-

eral shape showed triangularity to be destabilizing in the

absence of elongation.

Including internal rational surfaces in a diffuse plasma

profile - but still neglecting resistive wall effects - a number

of ideal MHD numerical shaping studies of the DIII-D

experiment were undertaken by Lazarus et al.,30 Turnbull

et al.31 and Kessel et al.,32 Ferron et al.33 and Holcomb

et al.34 Similar studies were conducted by Menard et al.,35

Miller et al.36 and Turnbull et al.,37 to test for stability in a

low aspect-ratio tokamak such as NSTX. These numerical

studies all suggest that cross-sectional shaping - most nota-

bly a combination of elongation and triangularity - can help

raise the stability limit, but generally included relatively few

data points to discern an optimal shape or to analyze the

physics trends from shaping. In contrast to the domain domi-

nated by the external kink resonance, analytic studies by

Bondeson and Bussac38 and by Lutjens, Bondeson, and

Vlad39 showed that the internal kink mode, with toroidal

number n¼ 1 and low poloidal m-numbers (typically m¼ 2),

is destabilized by vertical elongation. More extensive models

by Eriksson and Wahlberg40 and by Martynov, Graves, and

Sauter41 showed that triangularity, on the other hand, stabil-

izes the internal kink.

Shaping studies focused on resistive plasma behavior

showed that the TM is generally stabilized by both elonga-

tion and triangularity. A semi-analytic model known as the

T7 code was developed by Fitzpatrick et al.42 and recently

revisited by Ham et al.,43 who demonstrated a stabilizing

effect of shaping on tearing modes surrounded by an ideal

wall. The present paper presents the first shaping study of

coupled RWM and TM phenomena spanning a wide range of

b values.

To explore the effects of plasma shaping on the intrinsic

stability limit as well as the limit of rotational stabilization,

we have developed a shaped sharp-boundary model in toroi-

dal geometry including resistive resonant surfaces and a

resistive wall. The sharp-boundary approach makes it conve-

nient to scan stability over an individual parameter (such as

b, safety factor, wall distance, elongation, triangularity or

vertical asymmetry) while keeping the rest fixed. In this

manner, a space of �103 stability eigenvalues—including
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different geometries—can be generated in approximately

1 h. The resulting qualitative study of a broad parameter

space is designed to supplement and guide investigation by

quantitative stability codes such as MARS44 or DCON.45

The new model is based on a study by Fitzpatrick46

which incorporated tearing surfaces into a sharp-boundary

formulation to examine the effects of shaping on error-field

response. In the present model, the geometry in Ref. 46 is

generalized to include vertical asymmetry, in order to cap-

ture the shape of a single-null diverted plasma. Additionally,

the model incorporates toroidal curvature corrections based

on an ideal stability model by Freidberg and Grossmann,29

retained up to the first order in an expansion in the inverse

aspect-ratio �. The development of a resistive wall boundary

condition facilitates the generalization of the Brennan-Finn23

4-b analysis to the shaped toroidal geometry. Using the 4-b
framework, the new sharp-boundary model reveals qualita-

tive trends of stability and rotational stabilization over a

broad range of b, safety factor, wall location, elongation, tri-

angularity, and vertical asymmetry.

A main result of this study is that plasma shaping can

cause an interchange of the rp-iw and ip-rw b-limits, modify-

ing the b-limit ordering from brp�rw < brp�iw < bip�rw

< bip�iw to brp�rw < bip�rw < brp�iw < bip�iw. While brp�rw

is always the lowest (least stable) limit and bip�iw sets the

upper bound, there is no constraint on the order of the two

middle limits brp�iw and bip�rw. The discovery of alternate

b-limit orderings introduced by shaping becomes important

in the context of previous observations that the lower of

these two ideal limits, brp�iw and bip�rw, sets the upper bound

for rotational stabilization,9,23,24 with small exceptions dis-

cussed in Secs. IV B and V.

For a circular cross-section, an interchange of brp�iw and

bip�rw was observed by varying the wall radius in stability

studies by Finn24 and Betti.9 The present study reaffirms the

mode interchange induced by varying the wall radius, and

goes on to demonstrate likewise interchanges induced by

varying the safety factor, elongation, and triangularity. This

discovery shows that different domains of the tokamak

parameter space exhibit rotational stabilization bounded by

either TM or RWM type behavior. An optimal shape for sta-

bilization by rotation—or an equivalent feedback with imag-

inary normal-field gain—was found to typically reside in a

window around the transition from TM-limited to RWM-

limited domains, which we identify by an interchange of b-

limits.

The remainder of the paper is structured as follows: Sec.

II outlines the new features of the sharp-boundary model,

adapted from the formulation of Fitzpatrick.46 Section III

introduces a new resistive-plasma resistive-wall dispersion

relation including effects of shaped toroidal geometry. Section

IV presents the resulting growth rate and stability limit calcu-

lations for the case of a circular cross-section toroidal plasma.

Section V shows how the stability limits are affected by cross-

sectional shaping, including first observations of b-limit inter-

changes as the shape is varied. Section VI illuminates a key

distinction between ideal b-limits in the sharp-boundary

model with and without resonant surfaces, and how they relate

to ideal b-limits in present day simulations. Section VII details

a preliminary verification of the qualitative stability features

presented in this paper via numerical simulations with

NIMROD47 and DCON.45 Section VIII summarizes the

results of the paper. Appendixes A and B provide additional

mathematical details of the model geometry and tearing layer

response, respectively.

II. MODIFICATIONS TO THE FITZPATRICK SHARP-
BOUNDARY MODEL

The present formulation builds on a resistive-MHD

sharp-boundary model developed by Fitzpatrick46 to study

the effect of plasma shaping on error-field response. We gen-

eralize the geometry in Ref. 46 with vertical asymmetry to

emulate a single-null diverted plasma (Sec. II A), as well as

Oð�Þ toroidal curvature based on an ideal-MHD model by

Freidberg and Grossmann29 (Sec. II B). Here, � ¼ a=R is the

usual toroidal inverse aspect ratio. Lastly, the addition of a

resistive wall (Sec. II C) facilitates the formulation of a new

resistive-plasma resistive-wall dispersion relation in the

shaped toroidal geometry (Sec. III).

The sharp-boundary model makes it efficient to scan

individual equilibrium parameters—defined at the plasma

boundary—without having to adjust the entire plasma pro-

file. This is achieved by approximating the tokamak equilib-

rium current to consist of a skin-current at the plasma

boundary, which results in a discontinuity in the tangential

magnetic field. The jump in magnetic pressure across the

plasma boundary is balanced by a jump in the fluid pressure,

which follows a step function profile. In contrast with the

analytic model in Ref. 23 which employed a reduced-MHD

scaling (i.e., dominant constant Bz with small dBz) that

allowed for a step-function profile in both the pressure and

current density, we relax the reduced-MHD scaling assump-

tion so that a pressure step must be balanced by a step in

B2=2, thus requiring a delta-function profile for the current

density.

Stability calculations in the new model are outlined as

follows: the perturbed field response is solved by numeri-

cally integrating the vacuum-like magnetic potential, subject

to boundary conditions at three surfaces: (i) the plasma

boundary obeys the standard ideal MHD conditions of the

sharp-boundary theory,28,29,46,48–52 enforcing ideal Ohm’s

law on either side of the perturbed boundary. (ii) The tearing

layers, following Fitzpatrick,46 are set just outside of the

sharp plasma boundary where the presence of a poloidal field

produces a finite safety factor q. The external region can be

thought of as a cold plasma with no equilibrium current and

a vacuum-like q-profile, as portrayed by Finn.6 Following

Fitzptatrick,46 the resonant layers are compacted near the

plasma boundary for numerical convenience without qualita-

tively modifying the physics of the TM response. While the

model is constructed to accept any tearing layer regime, pre-

sent calculations apply a constant-w visco-resistive53,54 (VR)

layer condition. (iii) A resistive thin-wall boundary condi-

tion, conformal to a flux surface, is constructed similar to the

VR tearing boundary condition but incorporating all poloidal

harmonics rather than just a resonant component.
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Using the solution of the linear perturbed field problem,

the perturbed energy is formulated as a multi-harmonic resis-

tive-plasma resistive-wall dispersion relation. The present

calculations use 45 poloidal harmonics (�22 < m < 22),

comparable with the number used in Refs. 46 and 29, and a

fixed toroidal harmonic n¼ 1. The growth rate and mode

structure of the dominant mode are found by numerically

solving the resulting non-linear eigenvalue problem (i.e.,

contains different powers of c multiplying the system matri-

ces, as discussed later on). A similar method was imple-

mented by Betti9 for the case of step-function current and

pressure profiles in a circular cross-section torus. By includ-

ing only the necessary ingredients for studying tearing and

resistive wall physics in the shaped toroidal geometry, the

sharp-boundary model facilitates broad qualitative studies,

intended to gain physical insights and to guide the investiga-

tion using larger quantitative codes.

A. Vertical asymmetry in cross-section

The new model generalizes the geometry of Fitzpatrick46

with a vertically asymmetric cross-section, allowing for

shapes that emulate a single-null diverted plasma. As in Ref.

46, the model applies a set of right-handed cylindrical polar

coordinates ðR;/; ZÞ, with length scales normalized by a, the

minor radius in the case of a circular cross-section. To

describe a shaped cross-section, R and Z are related to the cur-

vilinear coordinates r and h, representing a radial-like coordi-

nate relative to the magnetic axis r¼ 0 and a poloidal angle-

like coordinate h in the cross-sectional plane. The plasma

boundary r¼ 1 is parametrized by

RaðhÞ ¼ 1=�þ cos ðhÞ þ dx cos ð2hÞ � dy sin ð2hÞ; (1)

ZaðhÞ ¼ j sin ðhÞ � dx sin ð2hÞ � dy cos ð2hÞ; (2)

independent of the toroidal angle of symmetry /.

Throughout the paper, subscript “a” denotes a function eval-

uated at the plasma boundary. Figure 1 depicts these coordi-

nates for a typical shaped cross-section. Appendix A

explains how the radial extension of this parametrization

(Rðr; hÞ; Zðr; hÞ) is obtained from a high aspect-ratio expan-

sion of the Grad-Shafranov equation, following Connor and

Hastie.55

The coordinate basis is defined by the normalized contra-

variant derivatives, êr � $r=j$rj; êh � $h=j$hj; ê/ � $/=
j$/j. The elongation parameter j follows the standard defini-

tion, being the height to width ratio of the plasma cross-

section. The other cross-sectional shaping parameters dx and

dy, can be analytically related to top triangularity dt and bot-

tom triangularity db as defined later in Eq. (26) via Taylor

expansion of the plasma surface near the points h ¼ 0,

h ¼ p=2, and h ¼ �p=2, respectively

d̂t ¼
jþ 2

jþ 4dy
dx; d̂b ¼

jþ 2

j� 4dy
dx: (3)

These “model” definitions of up and down triangularity are

used throughout the remainder of the paper, and agree with

the standard geometric definitions in Eq. (26), in the limit

ðdt=jÞ2 � ðdb=jÞ2 � 1.

To approximate reasonable equilibrium bounds of the

shaping parameters, the cross-section is required to maintain

a positive curvature. For the vertically symmetric case where

dy ¼ 0, this requirement is expressed as @Ra

@h jh!p� < 0. The

resulting bound for triangularity is found to be d̂ < 0:54 (or

dx < 1=4), compatible with the typical range of ITER base-

line scenarios56 with elongation 1:7 < j < 2:0, triangularity

0:3 < d < 0:5, and vertical symmetry.

B. Toroidal curvature corrections

In addition to vertical asymmetry, the present geometry

extends the applicability of Fitzpatrick’s model46 with toroidal

curvature corrections, following Freidberg and Grossmann.29

The toroidal field, both inside and outside of the plasma

boundary, falls off as R0=R ¼ 1=ð1þ �gðr; hÞÞ. The geomet-

ric function gðr; hÞ (see Appendix A) appears throughout the

present formulation, containing the Oð�Þ effects of the shaped

toroidal geometry on the equilibrium, as well as the perturbed

field calculations described in Sec. II C below.

All magnetic field magnitudes are scaled by the vacuum

on-axis toroidal field strength B0. The internal domain

(r< 1) contains only a toroidal field since the bulk of the

equilibrium current is confined to the plasma boundary

(r¼ 1). A constant Bi defines the relative magnitude of the

internal magnetic field along the magnetic axis (h ¼ p=2).

With a step-function pressure terminating at r¼ 1, the

boundary poloidal field is determined by the equilibrium

pressure balance B̂
2ðr ¼ 1þ; hÞ ¼ 2l0pþ B2ðr ¼ 1�; hÞ,

with Brðr ¼ 1Þ ¼ 0 and the pressure p constant on the flux

surface r¼ 1. This equilibrium condition, based on the free

parameters p and Bi, as well as the inverse aspect ratio and

cross-sectional shape parameters, is used to determine the

FIG. 1. Vertically asymmetric plasma cross-sectional coordinates, normal-

ized by the minor radius in the case of a circular cross-section, with the

boundary defined by r¼ 1. The shape is characterized by elongation

j ¼ 1:8, top triangularity d̂ t ¼ 0:35, and bottom triangularity d̂b ¼ 0:26,

parametrized by Eq. (3) values j ¼ 1:8; dx ¼ 0:14, and dy ¼ �0:07. The

geometric top and bottom triangularities for this shape are dt ¼ 0:46 and

db ¼ 0:38.
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poloidal field distribution just outside of the plasma

boundary

B̂
2

pðhÞ ¼ B2
i

aab
1� b

þ 1

ð1þ �gaðhÞÞ2

 !
� 1

ð1þ �gaðhÞÞ2
: (4)

Here, aa is a geometric constant resulting for a flux sur-

face average. The constant Bi is computed by fixing a value

of the edge safety factor

qa ¼
1

2p

ð2p

0

1

B̂pðh; BiÞ
haðhÞdh

ð1þ �gaðhÞÞ2
(5)

and numerically solving this transcendental equation. Thus,

the equilibrium is characterized by b and qa, as well as the

shape parameters �, j, dx, and dy.

C. Perturbed field response including a resistive wall

The third major extension to the Fitzpatrick46 sharp-

boundary model is the addition of a resistive-wall, designed

to be conformal to a flux surface r¼ rw, geometrically simi-

lar to an ideal-wall formulation by Goedbloed.51

Similar to Ref. 46, the perturbed magnetic field both

inside and outside of the plasma boundary is characterized

by a scalar potential dB ¼ i$V. The sharp-boundary current

profile results in a curl-free perturbed field satisfying

Laplace’s equation everywhere except for the layers of sur-

face current. These current sheets, which in Ref. 46 include

the plasma boundary and the resonant tearing layers, are now

joined by a thin resistive-wall boundary condition

@

@h
�

h2

@V

@h

� �rwþ

rw�

¼ �cswð1þ �gðr; hÞÞr
@V

@r

����
rw

; (6)

r
@V

@r

� �rwþ

rw�

¼ 0: (7)

The condition in Eq. (6), expressed in terms of the wall dissi-

pation time sw, is derived analogously to Fitzpatrick’s tearing

condition except with no rotation-induced Doppler shift

since the wall is stationary. The resistive wall is induced

with perturbed currents in response to all poloidal harmonics,

in contrast with the tearing layers which each respond to

only a single resonant harmonic. Shape dependence of the

geometric coefficients gðr; hÞ and hðr; hÞ, defined in

Appendix A, introduces coupling of the poloidal harmonics.

The second condition, Eq. (7), enforces continuity of dBr.

Expanded in the standard Fourier basis, the wall bound-

ary condition in Eq. (6) becomes

X
k

ŝ wallð Þ
mk

� ��1

Vk½ �rwþ
rw�
¼ csw

X
k

U wallð Þ
mk r

dVk

dr

����
rw

: (8)

The shaped wall coupling matrices

U wallð Þ
mk � Lmk 1þ �gwðhÞ

� �
; (9)

ŝ wallð Þ
mk

� ��1

� Lmk
mk�

h2
wðhÞ

	 

(10)

are expressed in terms of a Fourier coupling operator

Lmk yf g �
1

2p

ð2p

0

yðhÞ exp iðk � mÞh½ �dh: (11)

In the vertically symmetric case d̂t ¼ d̂b ¼ d̂, it suffices to

calculate Fourier integrals over 0 < h < p and take only the

real (cosine) component, while the general asymmetric

geometry requires evaluation over the entire circumference

and inclusion of the imaginary (sine) component. An impor-

tant feature of the coupling matrix UðwallÞ is the presence of

the geometric terms gwðhÞ � gðrw; hÞ and hwðhÞ ¼ hðrw; hÞ,
which couple wall currents of different harmonic structures.

In addition, the wall boundary condition contains a geomet-

ric time factor ŝðwallÞ associated with the wall time sw. Both

the toroidicity matrix UðwallÞ and the geometric time factor

matrix ŝðwallÞ become diagonal in the cylindrical limit.

Geometric coupling in the wall plays a key role in this sharp-

boundary model, where the total mode structure is strongly

affected by the interdependence of the tearing layer and the

wall. The harmonic structure of the wall currents is now cap-

tured by the jump of the tangential field

Vm½ �rwþ
rw�
¼
X

k

C wallð Þ
mk ðcswÞr

dVk

dr

����
rw

(12)

written in terms of the resistive wall response matrix

C wallð Þ
mk ¼ csw

X
m0

ŝ wallð Þ
mm0 U wallð Þ

m0k : (13)

The wall jump condition in Eq. (12) along with the dBr con-

tinuity condition in Eq. (7) enter the csw-dependent resistive-

wall vacuum response matrix

C
vac-wð Þ

mk ðcswÞ ¼ C
vacð Þ

mk � r�2jkj
w W�1

mk ðcswÞ (14)

with the wall contribution given by

Wmk ¼
jmj
2
ð1� r�2jmj

w Þdmk þ C wallð Þ�1
mk ðcswÞ: (15)

The first term in Eq. (14) represents the no-wall vacuum

response, recovered in the limit rw !1. The ideal wall

limit sw !1 forces the condition dBrðrwÞ ¼ 0 at the wall.

In this case, the second term in Eq. (15) vanishes. The

uncoupled ideal-wall response of Freidberg and Haas48 is

recovered in the present formulation by taking the cylindrical

limit, whereby

C
vac-wð Þ

mk ! �jmj�1 1þ r�2jmj
w

1� r
�2jmj
w

dmk: (16)

Since the magnitude of the wall factor above is larger than

unity, the vacuum gains a positive contribution to the per-

turbed energy and the effect of the ideal wall is always

stabilizing.

Similar plasma boundary and tearing surface conditions

are derived by taking different limits of the induction equa-

tion. The total perturbed field response is solved by numeri-

cally integrating the vacuum-like magnetic potential, subject
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to boundary conditions at three surfaces: (i) the ideal plasma

boundary as in Ref. 29, (ii) the tearing layers as in Ref. 46

(see Appendix B for more details), and (iii) the new resistive

thin-wall boundary condition. The response on either side of

the plasma boundary is expressed as a multi-harmonic rela-

tion between the perturbed tangential and normal fields

Vmð1�Þ ¼
X

k

C
plasð Þ

mk r
dVk

dr

����
1�

; (17)

Vmð1þÞ ¼
X

k

C
vac-wð Þ

mk ðcswÞ � C tearð Þ
mk ðcDstÞ

� �
r
dVk

dr

����
r¼1þ

:

(18)

The geometric terms define the Fourier-expanded Laplace

equation which is expressed by geometric coupling matrices,

calculated by FFT (see Appendix A). In the limit of a cylindri-

cal plasma with no wall and no resonant surfaces, internal rjmj

and external r�jmj solutions lead to the diagonal response

matrices C
ðplasÞ
mk ¼ jmj�1dmk and C

ðvacÞ
mk ¼ �jmj�1dmk, respec-

tively. These simple solutions define a basis for the radially

launched solutions for each harmonic in order to span the

solution space. Broken into a set of coupled first-order ODEs,

the system is integrated for each initial condition by a fourth

order Runge-Kutta algorithm.

Note that the tearing layer, based on the formulation in

an error-field response model by Fitzpatrick,46 contributes to

the field response of the vacuum region at the plasma edge,

which can be thought of as a resistive plasma with negligible

equilibrium current as portrayed by Finn.6 Additional details

of the tearing layer formulation are found in Appendix B.

III. RESISTIVE-PLASMA RESISTIVE-WALL
DISPERSION RELATION

With the formulation of a resistive-wall and shaped

toroidal geometry, we are able to formulate the stability

problem as a multi-harmonic resistive-plasma resistive-

wall dispersion relation, similar to a circular cross-section

toroidal formulation by Betti.9 Using the field response

described in Sec. II C, the total perturbed force matrix takes

the form

F � �H þ G†C plasð ÞG� Ĝ
†�

C vac�wð ÞðcswÞ
� C tearð ÞðcDstÞ

�
Ĝ; (19)

which contains contributions of the plasma, vacuum (includ-

ing the resistive wall) and resonant tearing response. The

resistive wall and tearing terms are c-dependent and there-

fore make the force matrix non-self-adjoint. As discussed

later in this section, this c-dependent force matrix leads to a

non-linear eigenvalue problem. Following Freidberg and

Grossmann,29 the three matrices H, G, and Ĝ associated with

the surface, internal, and external solutions, respectively, are

given by

Hmk ¼ Lmk

B2
pð1þ �gaÞ2h0a

h2
a

þ ð1� B2
i Þð1þ �gaÞg0a

( )
; (20)

Gmk ¼ Lmk �nBi�
ha

1þ �ga


 �	 

; (21)

Ĝmk ¼ Lmk mð1þ �gaÞB̂p � n�
ha

1þ �ga


 �	 

; (22)

again using the notation of the Fourier coupling operator in

Eq. (11). The energy matrices above make use of the radial

dependence of the poloidal field

B̂hðr; hÞ ¼
B̂pðhÞhaðhÞ

rhðr; hÞ (23)

calculated by Ampere’s law, as well as the radial dependence

of the metric functions

h0aðhÞ �
1

2

@ð rh½ �2Þ
@r

����
r¼1

; g0aðhÞ � �r
@g

@r

����
r¼1

: (24)

As in Ref. 29, this form of the force matrix utilizes a per-

turbed plasma displacement expansion nðh;/Þ ¼ ð1þ �gaðhÞÞP
mnmeiðmh�n/Þ, with the ð1þ �gaÞ factor included to preserve

symmetry of the energy matrices. In terms of the non-ideal per-

turbed force matrix, the perturbed force balance can be

expressed as a non-linear eigenvalue problem. In contrast with

the ideal model of Freidberg and Grossmann,29 this new non-

ideal dispersion relation produces mode behavior on three dif-

ferent timescales, sA, sw, and st, as well as the transitions

between them.

The large aspect ratio approximation taken in the model,

together with plasma incompressibility (the most unstable

perturbations are incompressible) lead to a constraint equa-

tion that eliminates the m¼ 0 component of the perturbed

normal displacement at the plasma boundary.28,46 Following

Freidberg and Haas,28 a projection operator P ¼ I � gg† is

constructed to eliminate the subspace of compressible solu-

tions, with Pg ¼ 0, where g � G0m=jG0mj, and G is defined

in Eq. (21). The constraint above is automatically satisfied

by with a transformed force matrix PFP, and we find that

the non-linear eigenvalue problem becomes

ðsAcDÞ2I þ PFðcsw; cDstÞP
h i

n ¼ 0; (25)

where cD ¼ cþ iX and X is the Doppler shift due to the rigid

plasma rotation. This equation is a generalization of the

eigenvalue formulation of Freidberg and Haas28 to a non-

linear eigenvalue problem with a c-dependent force matrix.

The solution is obtained by a direct approach of mini-

mizing the absolute value of the system determinant with

respect to c. In the absence of plasma rotation, the dominant

mode c is purely real.8 Solutions with complex frequencies

that appear due to additional tearing layer physics27,57 are

beyond the scope of the present study. The mode with the

largest c is found by initiating a 1-D Newton solver at large c
and converging to the solution from above. In order to find

the dominant mode, the initial calculation is carried out at

large b where the dominant growth rate lies well above zero,

dominated by ideal-MHD physics. This first calculated

growth rate is then used as an initial guess for further
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calculations as b is ramped down toward marginal stability

(c ¼ 0). The same method is applied with other parameters

as well (e.g., qa in the inset of Fig. 2). Calculating the entire

growth rate curve, rather than just the marginal stability

points, has the benefit of showing how the mode transitions

between the ideal, wall, and tearing timescales. The addition

of plasma rotation X introduces a frequency component in

the dominant mode and thus requires a 2-D search over com-

plex c. Rotation is varied starting with the same initial calcu-

lation at high b and zero rotation. Any point on this branch

of rotation values (at fixed high b) can be then used to initi-

ate a b scan in the presence of fixed rotation. A reliable 2-D

minimizer for this application was determined to be the

Nelder-Mead algorithm58 found in the Scientific Python

(SciPy59) library.

IV. STABILITY OF CIRCULAR CROSS-SECTION
TOROIDAL PLASMAS

The purpose of the study in this section is to determine

the effects of toroidal geometry on MHD mode stability and

rotational stabilization in the presence of tearing layers and a

resistive wall. As discussed in the introduction, the least sta-

ble mode in a system with both plasma resistivity and wall

resistivity goes unstable at a resistive-plasma resistive-wall

(rp-rw) b-limit with zero plasma rotation. We demonstrate in

this work how this least stable limit, denoted brp�rw, can be

increased by rotation (comparable with the tearing-time or

the wall-time) up to the first (lower) ideal limit; either the

resistive-plasma ideal-wall (rp-iw) limit brp�iw or the ideal-

plasma resistive-wall (ip-rw) limit bip�rw. An ideal-plasma

ideal-wall (ip-iw) limit bip�iw sets the upper bound for the

other limits. The space of rotational stabilization is thus eval-

uated based upon the order of the four b-limits (brp�rw;
brp�iw; bip�rw; bip�iw) over a broad range of plasma parame-

ters. The 4-b formalism provides information regarding the

nature of the rotationally stabilized MHD mode, which can

be dominated by either the tearing mode (TM) or resistive

wall mode (RWM) physics.

A. Ideal and resistive plasma growth rates versus b

As an initial qualitative comparison with the growth rate

trends obtained by Betti,9 Fig. 2 displays the growth rate

curves of the four branches (rp-rw, rp-iw, ip-rw, and ip-iw)

versus b, along with a close-up inset of the four b-limits

(marginal stability points) plotted logarithmically. The

geometry in Fig. 2 is characterized by � ¼ 0:25; rw ¼ 1:33,

and qa ¼ 2:1, and the dissipation times are st ¼ 5� 104 and

sw ¼ 103 in units of the Alfv�en time. The ideal-plasma and

ideal-wall limits are obtained by scaling up the dissipation

times by a factor of 107. All present calculations include a

single m¼ 2 surface by taking an edge safety factor in the

range 2 < qa < 3, with q0 > 1.

Throughout this paper, plots follow the following con-

vention: the dashed versus solid lines distinguish between a

resistive and ideal plasma, while the blue versus red distin-

guish between a resistive and ideal wall.

The ideal “dome,” reminiscent of Shafranov’s reduced-

MHD cylindrical analysis of non-resonant ideal kink stabil-

ity,60 agrees qualitatively with the results plotted in Figs. 5

and 6 of Ref. 9. Reference 9 obtains a relatively small sepa-

ration between the resistive and ideal plasma limits, as

observed in the present model for calculations at a high

aspect-ratio. Including Oð�Þ geometric terms consistently

throughout, the present model produces four distinct tails of

the ideal dome. The resulting b-limits are qualitatively simi-

lar to those observed by Brennan and Finn.23

The additional stable domain observed for the ip-iw curve

at high b is the well-known second stability regime.61,62 In

models with a diffuse profile and full toroidal geometry, sec-

ond stability results from the high magnetic shear on the out-

board side produced by the Shafranov shift,63,64 whereas in

the sharp-boundary model, a similar effect is created by the

wall-induced increase in magnetic pressure.9

Next, we consider the effect of varying the edge safety

factor qa, still keeping a circular cross-section. Although the

qa-domain near external kink resonance is generally avoided,

it is illuminating to examine this undesirable region in the

context of the 4-b framework. Recall that the ideal dome pre-

sented in Fig. 2, for qa ¼ 2:1, is dominated by m¼ 2.

Keeping rw ¼ 1:33, Fig. 3 shows how as qa ! 3, a lower

ideal dome appears corresponding to the m¼ 3-dominated

ideal external kink. This is clearly distinct from the remain-

ing larger dome at higher b which, as in Fig. 2, represents an

ideal internal kink dominated by m¼ 2. The transition is cap-

tured in the figure inset by plotting the growth rate versus qa

at fixed b ¼ 0:15, as in Ref. 60. Observe the analogy

between the qa-dome and the b-dome, corresponding to the

current and pressure drive components of the instability.

This ability to vary b with qa fixed illustrates an advantage

of the sharp boundary model.

Mode transitions, such as observed in the growth rate

plot in Fig. 3, can result in a b-limit interchange between

brp�iw and bip�rw as equilibrium parameters are varied.

FIG. 2. The four-b branches are plotted for the circular cross-section,

� ¼ 0:25; rw ¼ 1:33. With qa ¼ 2:1, the observed ideal dome is dominated

by m¼ 2. For the resistive branches, st ¼ 5� 104 and sw ¼ 103. The inset

shows a close-up of the four b-limits on a logarithmic scale. (dashed:

resistive-plasma. Solid: ideal-plasma. Blue: resistive-wall. Red: ideal-wall).
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B. b-limits for rotational stabilization

This section demonstrates how the first two ideal limits

brp�iw and bip�rw can be interchanged by varying the wall

distance and edge safety factor in a torus with a circular

cross-section. Shaped cross-sections are then considered in

Sec. V, with elongation and triangularity also found to simi-

larly modify the b-limit ordering.

To first illustrate the effect of rotation, Fig. 4 shows the

rotational stabilization of the rp-rw mode for different values

of the wall distance rw (normalized by the minor radius in

the case of a circular cross-section). As before the tearing

time and wall time are given, respectively, by st ¼ 5� 104

and sw ¼ 103. For zero rotation, the rp-rw limit is indepen-

dent of the wall location, being the same as the resistive-

plasma no-wall limit. Rotation is observed to raise the rp-rw

critical b curve and is thus stabilizing. A sharp transition is

observed between the close-wall RWM-limited domain of rw

and the far-wall TM-limited domain. Consistent with exist-

ing studies,4–8,65 scanning rw with fixed b reveals a finite

window for rotational stabilization (marked by the red

arrows). The rw-window is observed near the transition

between the RWM-dominated and TM-dominated domain.

The top curve, Xsw ¼ 40, defines the saturated bound (same

as X!1) for rotational stabilization.

In order to understand the non-monotonic behavior

observed in Fig. 4, it is illuminating to examine the higher b-

limits shown in Fig. 5. The domain of stability for a non-

rotating mode is shaded in dark-gray, while the light-gray

region shows where the mode is stabilizable by rotation or

feedback control with imaginary dBr-gain. A sufficiently

close wall is observed to raise brp�iw up to arbitrarily high b,

which clearly does not provide a complete picture of the

rotational stabilization cutoff observed in Fig. 4. Since brp�iw

moves up as the wall moves inwards while keeping the

bip�rw limit (equivalent for X ¼ 0 to the ideal-plasma no-

wall limit) fixed, a switching of the two limits brp�iw and

bip�rw is observed around rw ¼ 1:18. Similar plots are found

in studies by Finn24 and Betti9 for different models. Below

the transition point, which appears as a sharp knee in the

light-gray shaded region in Fig. 5, the limit for rotational sta-

bilization corresponds to the bip�rw limit, associated with the

onset of a RWM-dominated instability. Here, the non-

rotating mode b-limit is equivalent to the ideal-plasma no-

wall limit and is thus independent of rw. For rw > 1:18, the

b-domain where rotational stabilization is possible gradually

shrinks with the decrease of the brp�iw limit associated with

FIG. 3. Rise of an m¼ 3-dominated mode near the external kink resonance:

the main plot shows the distinct m¼ 3-dominated and m¼ 2-dominated

humps at qa ¼ 2:9, with rw ¼ 1:33. The inset shows the rise of the m¼ 3-

dominated mode as qa ! 3 at fixed b ¼ 0:15.

FIG. 4. Critical b for the rp-rw mode versus wall location rw for the circular

cross-section, � ¼ 0:25; qa ¼ 2:1, and four different values of plasma rota-

tion: Xsw ¼ 0; Xsw ¼ 10; Xsw ¼ 20; Xsw ¼ 40. The mode is stable below

the bcrit curve. For a fixed b, drawing a horizontal line crossing the non-

monotonic bcrit curve reveals a window in rw where the mode is stabilizable

by rotation up to a higher b-limit (red arrows). The rw-window opens around

the transition between the RWM-limited and the tearing-limited domains.

The stabilizing effect of rotation is found to saturate at Xsw ¼ 40.

FIG. 5. Critical b for the four branches versus wall location rw for the circu-

lar cross-section, � ¼ 0:25; qa ¼ 2:1. The resistive-wall limits are equal to

the no-wall limits (for X ¼ 0) and therefore independent of rw. The ideal-

wall branches are completely stabilized as the wall approaches the plasma

(rw ! 1). The domain that is stabilizable by plasma rotation is marked by an

interchange of the rp-iw and ip-rw branches at rw ¼ 1:18.
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the onset of a TM-dominated instability. As the wall moves

outward (rw increases), the brp�iw limit approaches the brp�rw

limit. These results demonstrate how a unified treatment of

MHD modes over a wide range of b exhibits both RWM-

dominated and TM-dominated behavior. In the interest of

extending the 4-b study of Brennan and Finn23 to the shaped

toroidal geometry, we begin the shaping studies in the

domain that is TM-limited for a circular cross-section, pro-

ceeding with rw ¼ 1:33 for the remaining calculations.

Careful comparison of Figs. 4 and 5 reveals a small

exception to the general rule that rotational stabilization of

the brp�rw limit is bounded by the first ideal limit. Here, the

maximum rotationally stabilized rp-rw limit (Xsw ¼ 40

curve) peaks slightly above the ip-rw limit, near the inter-

change of the ip-rw and rp-iw curves. This small stability

window above the first ideal limit, first observed by Finn,24

can be explained as a result of complex mode resonances as

in the work of Finn and Gerwin.26 Bondeson et al.66 exam-

ined this exception in the toroidal geometry and found an

even smaller window of stability. A broader investigation of

the parameter space should be considered before discounting

this higher window of stability. However, for the purposes of

this paper, we will ignore this small region of higher rota-

tional stabilization. The appearance of the lower m¼ 3-dom-

inated dome in Fig. 3 is associated with a sharp transition in

the b limits, portrayed in Fig. 6. In this figure, the edge safety

factor varies keeping the central axis safety factor fixed with

1 < q0 < 2. For q0 < qa < 2, there are no rational surfaces

and so the resistive-plasma and ideal-plasma limits coincide.

As qa is increased above qa¼ 2, the m=n ¼ 2=1 rational sur-

face is introduced, whereby the ideal plasma limits jump to a

high value of bcrit, representing a mode dominated by an

internal m=n ¼ 2=1 kink. The resistive-plasma modes are

continuous at qa¼ 2, being equivalent (at X ¼ 0) to the non-

resonant limits. As qa ! 3, and the smaller m¼ 3-dominated

ideal mode arises as shown in Fig. 3, both ideal-plasma limits

are observed to drop off sharply toward their corresponding

resistive-plasma limits. This effect produces a finite qa � b
window for rotational stabilization, lying approximately in

2:0 < qa < 2:27, limited by the rp-iw (tearing) mode. This

window contains much higher ideal-plasma limits, corre-

sponding to an ideal internal kink. For the shaping calcula-

tions that follow in Sec. V, the safety factor is fixed inside the

window at qa ¼ 2:1.

Although not addressed by Brennan and Finn,23 the

interchange of the two middle b-limits due to variation of rw

or qa can be observed even in their cylindrical reduced-MHD

model. Next, we consider how cross-sectional shaping in the

toroidal geometry can similarly influence the b-limit order-

ing and thus, the maximum achievable b by rotational stabi-

lization. The qualitative similarities between the results of

the sharp boundary model of this paper with a circular cross

section and the cylindrical MHD numerical simulations of

Ref. 23 (as well as with the step-function current and pres-

sure profile results of Ref. 23) indicate the validity of the

sharp boundary model approach.

V. b-LIMITS FOR ROTATIONAL STABILIZATION IN
SHAPED TOROIDAL GEOMETRY

Cross-sectional shaping is shown in this section to also

influence the b-limit ordering. Starting with a realistic

inverse aspect ratio of � ¼ 0:3, a wall located at rw ¼ 1:33

and a safety factor of qa ¼ 2:1, Fig. 7 shows how the critical

b curves of the four branches vary with elongation j. As

before, the central axis safety factor is set to 1 < q0 < 2, so

that with 2 < qa < 3, there is only an m=n ¼ 2=1 surface

included in the calculations. For a circular cross-section and

qa ¼ 2:1, this yields an ideal mode dominated by m¼ 2 as

discussed in Sec. IV A.

Figure 7 shows how, for these equilibrium parameters,

the ideal plasma modes are predominantly destabilized by

FIG. 7. Critical b values of the four branches versus elongation j, with

� ¼ 0:3; rw ¼ 1:33, and qa ¼ 2:1. The two middle branches are observed to

cross at the peak b-limit achievable with rotational stabilization, j ¼ 1:86.

This interchange point, at bcrit ¼ 0:13, represents a transition from tearing

limited (rp-iw) to resistive-wall limited (ip-rw) behavior.

FIG. 6. For a circular cross-section, � ¼ 0:25 and rw ¼ 1:33, the critical b
for the four branches is shown for varying the edge safety factor qa. The

ideal-plasma limits cut off the domain that is stabilizable by plasma rotation

near both the m¼ 2 and m¼ 3 external kink resonances.
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elongation beyond j ¼ 1:1 for bip�rw and beyond j ¼ 1:3
for bip�iw. This behavior is consistent with shaping models

of the ideal internal kink.38,39 The resistive plasma modes,

on the other hand, are stabilized up to an elongation in the

neighborhood of j ¼ 1:9, in qualitative agreement with the

non-resonant result of Freidberg and Haas.28 The b-limit in

the presence of plasma rotation is observed to peak at

j ¼ 1:86, the interchange point of the rp-iw and ip-rw curves

(where brp�iw ¼ bip�rw), beyond which increasing elongation

severely reduces the ip-rw limit and the resulting extent of

rotational stabilization. The resulting optimal elongation

exhibits a good agreement with the range of optimal values

calculated for DIII-D by Kessel et al.,32 as well as typical

values in the ITER design.56

In order to highlight how vertical elongation can open a

window of higher b in the presence of rotational stabiliza-

tion, analogous to the rw-window observed in Fig. 4, Fig.

8 plots the growth rates of the least stable (rp-rw) mode

versus j. The plotted rotation values, normalized by the

wall-time, are Xsw ¼ 0; Xsw ¼ 2, and Xsw ¼ 6. The fixed

b ¼ 0:11 corresponds to a horizontal cut across the plot in

Fig. 7, above the peak b value of non-rotating stability

bcrit ¼ 0:08, but below the peak b value in the presence of

rotational stabilization, occurring at bcrit ¼ 0:13. Starting

from Xsw ¼ 0, where the mode is unstable for any elonga-

tion, an increase of rotation to Xsw ¼ 2 is observed to satu-

rate the extent of rotational stabilization for any elongation

above j > 2:0. For these highly elongated shapes, the ip-rw

limit (associated with the linear onset of a RWM) is observed

to block the mode from being completely stabilized. A slight

exception is found near the transition point from the TM-

dominated (left) branch to the RWM-dominated (right)

branch of the Xsw ¼ 2 curve. Similar to the case discussed

in Sec. IV B for bcrit versus rw, this is another example of

slight stabilization above the ip-rw (RWM) limit as discov-

ered by Finn.24

We observe that the shaped case in Fig. 8 hits the transi-

tion point at Xsw ¼ 2 rather than Xsw ¼ 40 as observed in

Fig. 4 for a circular cross-section. At lower elongation val-

ues, increasing rotation continues to stabilize the mode up to

the rp-iw (TM) limit, saturating slightly above Xsw ¼ 6. The

Xsw ¼ 6 also exhibits a slight crossing of the ip-rw limit

near the transition point between the ip-rw and rp-iw curves,

in this case for stable values of c. Increasing the fixed b
would shift all of the curves upwards, until the marginal sta-

bility (csw ¼ 0) line coincides with the bottom of the high

rotation curve Xsw ¼ 6, which occurs at b ¼ 0:13. The point

of maximal b in the presence of rotational stabilization is

observed to coincide with the crossing of the rp-iw and ip-rw

curves. This result suggests that, similar to the window of rw

for rotational stabilization (Fig. 4), the optimal window of

elongation j is found around the transition from the TM-

dominated to the RWM-dominated domain.

Next, Fig. 9 introduces triangularity d̂ (obtained from

either d̂t or d̂b in (3) with dy ¼ 0), fixing elongation at the

locally maximal value of j ¼ 1:86. Starting at the mode

interchange where the two middle b limits coincide, increas-

ing triangularity is observed to create a slight separation and

then another interchange at d̂ ¼ 0:29 (dx ¼ 0:14). Beyond

this critical triangularity, the ip-rw limit decreases rapidly

and diminishes the b-limit achievable with rotational stabili-

zation, similar to the high elongation effect observed in Fig.

7. While this value provides only a local optimum around a

fixed aspect ratio and elongation, as well as wall position

and safety factor, it provides a proof of concept for parame-

ter optimization based on the maximal achievable b-limit in

the presence of stabilization by plasma rotation or an equiva-

lent feedback control with imaginary dBr-gain.

FIG. 8. Growth rates of the least stable (rp-rw) mode versus elongation, for

fixed � ¼ 0:3; rw ¼ 1:33; qa ¼ 2:1; b ¼ 0:11 and three different values of

rotation Xsw ¼ 0; Xsw ¼ 2; Xsw ¼ 6 (all dashed-blue). The rp-iw curve

(dashed-red) is observed to be marginally stable (c ¼ 0) at j ¼ 1:2, below

which the rp-rw mode cannot be stabilized by rotation. Similarly, the ip-rw

curve (solid-blue) crosses c ¼ 0 near j ¼ 2:0, above which the rp-rw mode

cannot be stabilized by rotation (with a slight exception at the mode transi-

tion near j ¼ 2:0).

FIG. 9. The four marginal stability branches vs. model triangularity, with

fixed � ¼ 0:3 and j ¼ 1:86 (the optimal elongation at d̂ ¼ 0 in Fig. 7, where

bip�rw ¼ brp�iw). This calculation is vertically symmetric so that d̂ t

¼ d̂b ¼ d̂. Another mode interchange is observed at d̂ ¼ 0:29 (dx ¼ 0:14),

or a plasma shape with geometric triangularity d ¼ 0:42.
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As with elongation, the peak rotational stabilization is

found nearby the peak of intrinsic (non-rotating) stability.

Further investigation is required to determine if this is a

trend or mere coincidence. In contrast with the relatively

high range of optimal triangularity, 0:5 < d < 0:8 calculated

for ideal external kink modes in DIII-D by Kessel et al.,32

present results suggest that such high triangularity may be

detrimental in a real system with plasma dissipation. The tri-

angularity range in the ITER design,56 0:3 < d < 0:5, is in

the slightly more conservative range but still possibly

beyond optimal stabilization by rotation or the equivalent

feedback control with imaginary dBr-gain.

Lastly, starting with the (locally) optimal shaping

parameters j ¼ 1:86 and d̂ ¼ 0:29 (or dx ¼ 0:14), Fig. 10

plots the four bcrit curves with increasing vertical asymme-

try, measured by the difference between the approximate top

and bottom triangularity given in Eq. (3) (see the diagram in

Fig. 1). While the vertical asymmetry is found to destabilize

the least stable (rp-rw) mode, it is not seen to substantially

modify the relative height of the first ideal b-limit. No b-

limit reordering is observed. Thus, although destabilizing,

vertical asymmetry is not predicted to severely reduce the

effectiveness of rotational stabilization or the equivalent

feedback control with imaginary dBr-gain. One more obser-

vation is the increase in the ip-iw limit as the asymmetry is

increased. This opposite behavior of the rp-rw and ip-iw lim-

its should serve as a caveat for ideal-plasma ideal-wall mod-

els, which may falsely conclude that vertical asymmetry is

generally stabilizing.

VI. IDEAL b-LIMITS IN THE SHARP-BOUNDARY
MODEL WITH AND WITHOUT RESONANT SURFACES

An important subtlety of the analysis presented in this

paper is the distinction between ideal b-limits obtained in the

present sharp-boundary model with resonant surfaces and the

ideal b-limits found in previous sharp-boundary models

without resonant surfaces.28,29,48 Resonant-ideal boundary

conditions—as used in the present model—enforce dBr ¼ 0

for each resonant harmonic on its respective surface, whereas

the previous models28,29,48 have no internal resonant layers.

In the present model where the rational surfaces lie at the

plasma boundary (just outside the equilibrium current layer),

the resonant ideal limit st !1 shields resonant perturba-

tions from reaching the wall. The non-resonant case (i.e., the

sharp-boundary model without rational surfaces) is recov-

ered in this model by taking the limit st ! 0. Figure 11 plots

the four resonant branches along with the non-resonant resis-

tive-wall and non-resonant ideal-wall branches. Here, the

cross-section is taken to be circular, with qa ¼ 2:1; � ¼
0:25; rw ¼ 1:33a and X ¼ 0. The finite dissipation time-

scales are set in units of Alfv�en time to sw ¼ 103 and

st ¼ 5� 104. In the limit st ! 0, the new model presented

in this paper recovers the classic non-resonant ideal kink b-

limits of Freidberg and Haas48 (both with and without a per-

fectly conducting wall); see Fig. 11. Here, the cross-section

is taken to be circular, with qa ¼ 2:1; � ¼ 0:25; rw ¼ 1:33a,

and X ¼ 0. The finite dissipation timescales are set in units

of Alfv�en time to sw ¼ 103 and st ¼ 5� 104. In the opposite

limit st !1, the resonant boundary condition becomes sim-

ilar to the ideal boundary conditions of modern stability

codes such as DCON.45 The resistive-plasma (finite st)

branches, while connecting to the resonant-ideal branches at

high csA, are observed to coincide with the non-resonant

(st ¼ 0) limits, independent of the value of st. Just as the no-

wall and resistive-wall stability limits coincide,4–8 so do the

non-resonant (st ¼ 0) and resonant resistive (finite st) limits.

This implies that, at zero plasma rotation, the resistive-

plasma values of bcrit in this paper can be compared with

previous results of non-resonant ideal models.

VII. COMPARISON WITH NIMROD AND DCON
RESULTS

A preliminary verification of the qualitative stability fea-

tures presented in this paper has been obtained via numerical

FIG. 10. The four marginal stability branches vs. vertical asymmetry, with

fixed � ¼ 0:3, starting from the locally optimal elongation j ¼ 1:86 and ver-

tically symmetric triangularity d̂ � d0 ¼ 0:29 (dx ¼ 0:14).

FIG. 11. Comparison of growth-rate curves (on a logarithmic scale) for dif-

ferent plasma limits: non-resonant; st ! 0 (dashed), resonant-resistive; finite

st (dashed), and resonant-ideal; st !1 (solid). The b-limits are defined by

the marginal stability points where c! 0.
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simulations using the model DIII-D shaped equilibrium shown

in Figs. 12 and 13 using NIMROD,47 together with computa-

tions using DCON.45 Using the geometric definitions of top

and bottom triangularity found in both codes, i.e.,

dt ¼ �R � RðZmaxÞ
� �

=�a; db ¼ �R � RðZminÞ
� �

=�a; (26)

where �a ¼ ðRmax � RminÞ=2 and �R ¼ ðRmax þ RminÞ=2, the

DIII-D equilibrium shown in Fig. 12, the standard

triangularity calculated by this method on the computed

equilibrium in Fig. 12 is dt;b ¼ 0:77. However, the standard

calculation does not take into account the dx factor used in

this paper. Also, the analytic form detailing the shape in Eqs.

(1) and (2) cannot exactly match the shape of this numerical

equilibrium which is based on a DIII-D experimental recon-

struction. For a more meaningful comparison, the shape of

the equilibrium in Fig. 12 can be approximated using the

standard definitions for the geometric parameters R0 ¼ 1:67,

a¼ 0.645, and j ¼ 1:86, and using dx � 0:17 to give an

effective d � 0:35. The profiles of the equilibrium are para-

metric and chosen to represent a realistic (L-mode) case

which is stable to resistive MHD without a wall at low b.

The pressure in this case P ¼ P0 exp ð�2wÞ þ Pe, where Pe

is specified to reduce the edge pressure to zero. At low b, the

current profile is specified with a parametric function to be

flat in the core and rapidly reduces to zero at the boundary,

giving a monotonically increasing q profile. The total current

is then specified to set the safety factor on axis q0 ¼ 1:25

with a toroidal field of 1T at R0. Given this stable equilibrium

at low b, the pressure is increased multiplicatively while

holding the q profile fixed, finding a new current profile to

solve the equilibrium. Resultant profiles for a higher b equi-

librium are shown in Fig. 13, where a moderate variation in

the current profile shape can be seen.

For the NIMROD simulations, the DIII-D wall structure

as shown in Fig. 12 is used, the Lundquist number is S ¼ 107

with Spitzer resistivity g � T�3=2, qmin¼ 1.25, and there is

no equilibrium rotation. The NIMROD results also have the

viscosity kept fixed, with the Prandtl number approximately

equal to 50, and the resistive wall time is set to 2� 10�4 s.

This wall time is set to keep the ratio of tearing to wall time

(the relevant timescale for the RPRW mode) for the domi-

nant mode surface (m=n ¼ 2=1) of the simulation compara-

ble to the ratio found in DIII-D plasmas with S � 108 and

sw � 2:4� 10�3 s. The results are shown in Fig. 14, where

the growth rate of the least stable mode (as b is increased) is

FIG. 12. DIII-D model equilibrium and wall geometry used in NIMROD47

simulations. The last closed flux surface of the plasma is shown in magenta.

A wall closely approximating the first wall (green) is used in the stability

calculations. The vacuum vessel and coils are shown for reference, but are

not included in the stability calculations.

FIG. 13. Equilibrium profiles used in NIMROD47 and DCON45 stability

simulations. The q profile is kept fixed as b is increased.

FIG. 14. Resistive plasma b-limits and growth rates calculated using

NIMROD.47 Also shown are the ideal plasma b-limits calculated using

DCON45 with and without an ideal wall. For the equilibrium used in the sim-

ulations, the IPRW and RPIW b-limits are very close (with IPRW being

slightly lower than RPIW).
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shown using NIMROD for either a resistive or ideal DIII-D

like wall. DCON was used to obtain the ideal plasma b-lim-

its in the figure, termed the resonant-ideal b-limits in Sec.

VI, which effectively sets the resonant B? to zero on each

respective rational surface. The DCON cases were run with

and without an ideal wall (the ideal plasma no wall limit is

the IPRW b-limit in the case of zero rotation). The DCON

simulations use the VACUUM code67 for modeling the

region outside the plasma, set with a conformal wall outside

the last closed flux surface at a normalized minor radius of

r=a ¼ 1:4. This wall distance is typical for matching the

ideal limits with the actual DIII-D wall shape for equilibria

like the ones used here, although it can vary with equilibrium

details. For the equilibrium used in these simulations, the

middle two b-limits are very close (see Fig. 14), with the

IPRW limit being slightly lower than the RPIW limit. Recall

in Secs. IV B and V, that rotation stabilizes the RPRW mode

up to the next ideal limit as b is increased; this limit is either

brp�iw, associated with the linear onset of a TM-dominated

instability, or is bip�rw, associated with the linear onset of a

RWM-dominated instability. The fact that the two limits

IPRW and RPIW are so close suggests that the equilibrium

for numerical simulation is near a point in parameter space

where the limits would interchange, and thus, the mode

behavior under rotational stabilization would change. This

result is consistent with the effective triangularity d � 0:35

being close to and somewhat above the transition in Fig. 9 at

d � 0:29. As the analytic form in Eqs. (1) and (2) cannot

accurately capture this numerical boundary shape, the spe-

cific value of the effective triangularity is less important that

the fact that it is clearly somewhat above 0.29, the transition

point in the order of the IPRW and RPIW limits.

Nevertheless, the qualitative behavior of stability, including

the changing of the order between the b limits RPIW and

IPRW, is well captured by the sharp boundary model.

VIII. CONCLUSIONS

A new sharp-boundary model has been developed to

study the impact of shaping on the stability of MHD modes

in a tokamak, including both plasma and wall resistivity. The

model adapts an error field response model by Fitzpatrick46

to include (i) vertical asymmetry, (ii) toroidal curvature cor-

rections, and (iii) a resistive wall surrounding the vacuum

region outside the plasma. By scanning a broad parameter

space, the model was used to examine the maximum extent

to which rigid plasma rotation can raise the b-limit of the

least stable mode, denoted brp�rw for its combined resistive-

plasma resistive-wall properties.

These modifications of Ref. 46 facilitate the derivation

of a new resistive-plasma resistive-wall dispersion relation,

for exploring the growth rates and stability limits over a vari-

ety of timescales; ideal, resistive-wall, and tearing. The

sharp-boundary approach makes it efficient to scan stability

over an individual parameter (such as b, safety factor, wall

distance, elongation, triangularity or vertical asymmetry)

while keeping the rest fixed. The qualitative study of a broad

parameter space is designed to supplement and guide investi-

gation by quantitative stability codes such as MARS,44

DCON,45 or NIMROD.47 By locating the sub-domains of

interest, the model may be used to guide the investigation of

larger codes in determining optimal design parameters for

future tokamak devices.

The presented calculations demonstrate a new approach

to shape optimization, based on maximizing the b-limit

achievable with stabilization by rigid rotation or an equiva-

lent feedback control with imaginary dBr-gain.

The analysis in this study is based on the 4-b formalism

of Brennan and Finn,23 dividing the plasma response to rota-

tion or feedback according to the four b-limits; resistive-

plasma resistive-wall (brp�rw), resistive-plasma ideal-wall

(brp�iw), ideal-plasma resistive-wall (bip�rw), and ideal-

plasma ideal-wall (bip�iw), calculated without rotation or

feedback. In the absence of rotation, increasing b causes the

least stable mode to go unstable at the brp�rw limit. To

achieve higher b, the mode is shown to be stabilized by rota-

tion (comparable with the wall-time or the tearing-time) up

to the first ideal limit; this limit is either brp�iw, associated

with the linear onset of a TM-dominated instability, or is

bip�rw, associated with the linear onset of a RWM-dominated

instability.

Extending existing predictions that the plasma-wall dis-

tance can interchange the order of the rp-iw and ip-rw b-lim-

its,9,24 present results show that the safety factor, elongation,

and triangularity can all introduce similar mode transitions,

which affect the b-limit achievable in the presence of plasma

rotation. The shaping window which maximizes the b-limit

with rotational stabilization is found to reside around the

transition point between bip�rw and brp�iw, which defines a

local optimum in the parameter space. Beyond this point,

excessive elongation or triangularity is found to severely

reduce the b-limit achievable with rotation by strongly

reducing the bip�rw limit (associated with RWM-dominated

behavior) below the brp�iw limit (associated with TM-

dominated behavior).
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APPENDIX A: GRAD-SHAFRANOV SOLUTION FOR A
SHARP-BOUNDARY MODEL

Let ðR;/; ZÞ be the standard right-handed cylindrical

polar coordinates. The generalized cross-sectional coordi-

nates, ðr; hÞ, are mutually perpendicular to the axisymmetric

coordinate /. Following Connor and Hastie,55 (R, Z) are

expressed as a Fourier series over ðr; hÞ. The present formu-

lation extends that of Ref. 55 to include the vertical asymme-

try, by including both symmetric and asymmetric shaping

parameters, respectively, labeled Sn and Cn. The signs pre-

ceding the shaping parameters are chosen to guarantee the

orthogonality of the external contravariant basis vectors, as
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in Eq. (A6). The radial shape functions SnðrÞ and CnðrÞ are

determined by an Oð�Þ correction to the Grad-Shafranov

pressure balance. The Grad-Shafranov equation is expanded

up to Oð�2Þ, following the steps used by Fitzpatrick,

Gimblett, and Hastie,69 resulting in a shape equation for the

vertically asymmetric terms CnðrÞ, found to independently

satisfy

C00n þ
2ðrf1Þ0

rf1

� 1

r

 !
C0n � ðn2 � 1ÞCn

r2
¼ 0: (A1)

This is the same equation as for the vertically symmetric

components SnðrÞ. Here, f1ðrÞ ¼ w0ðrÞ describes the poloidal

field distribution. The shape functions are resolved in the

limit of a d-function current at the plasma boundary. In order

to permit a non-trivial Grad-Shafranov solution, a small flat-

current region is maintained inside the plasma. The inner-

most surface r¼ r0 is kept finite in order to avoid numerical

issues near r¼ 0.

A general flat current profile corresponds to a radial

poloidal field distribution f1ðrÞ / r, according to Ampere’s

law. In the vacuum region beyond the plasma current, the

poloidal field decreases as f1ðrÞ / r�1. These poloidal field

functions result in a pair of shape equations independent of

the equilibrium current magnitude and pressure. The regular

solutions for the shape functions [according to Eq. (A1)] are

given by

Sn;Cnðr < 1Þ � rn�1; (A2)

Sn;Cnðr > 1Þ � r�ðn�1Þ: (A3)

In the present model parametrization

R ¼ 1=�þ r � eðrÞ½ � cos hþ tðrÞ cos 2h� dðrÞ sin 2h
1� ea

;

(A4)

Z ¼ r þ eðrÞ½ � sin h� tðrÞ sin 2h� dðrÞ cos 2h
1� ea

; (A5)

we include the vertically symmetric terms representing elon-

gation eðrÞ ¼ S2 and triangularity tðrÞ ¼ �S3, and a verti-

cally asymmetric term dðrÞ ¼ �C3 which introduces a

separate top and bottom triangularity. For convenience, the

non-constant part of the major radius is denoted gðr; hÞ, since

a recurring factor of R=R0 ¼ 1þ �g appears throughout the

analysis.

Note that the coordinate parametrization in Eqs. (A4)

and (A5) is designed so that the covariant derivatives satisfy

the orthogonality relations

@hR ¼ �r@rZ; @hZ ¼ r@rR; (A6)

which guarantee the orthogonality of the basis vectors,

$r � $h ¼ 0. Orthogonality simplifies the external metric

coefficient

h2 ¼ j@hx̂j2

r2
¼ j@rx̂j2 ¼

1

j$rj2
¼ 1

r2j$hj2
(A7)

required for the h-line element dlh ¼ rhdh, the surface area

element ds ¼ rhRdhd/, and the volume element d3x ¼ rh2

Rdrdhd/.

The radial structure required by Eqs. (A2) and (A3),

which extends the original Fitzpatrick parametrization46 with

vertical asymmetry, is given by

eðrÞ ¼ ea

ðr � r0Þ=ð1� r0Þ; r0 < r < 1

1=r; 1 	 r;

(
(A8)

tðrÞ
dðrÞ

¼
ta

da

rðr � r0Þ=ð1� r0Þ; r0 < r < 1

1=r2; 1 	 r:

(
(A9)

The finite innermost surface r ¼ r0 > 0 is designated to pre-

vent numerical issues, and to initialize integration through

r0 < r < 1 with decoupled cylindrical-like solutions

Vmðr0Þ / rm
0 . Throughout this paper, we set r0 ¼ 0:3. This

set of non-orthogonal internal coordinates and orthogonal

external coordinates is depicted in Fig. 15. The constants are

related to the boundary shaping parameters in Eqs. (1) and

(2) by

ea ¼
j� 1

jþ 1
; ta ¼

2dx

jþ 1
; da ¼

2dy

jþ 1
: (A10)

The resulting contravariant derivatives are obtained by the dual

relations $r ¼ J�1 @Z
@h R̂ � @R

@h Ẑ
� �

and $h ¼ J�1 @R
@r Ẑ
�

� @Z
@r R̂Þ. Finally, the toroidal component satisfies j$/j ¼ R�1

ðr; hÞ.
The field perturbations throughout the volume must sat-

isfy Laplace’s equation, neglecting the axisymmetric Oð�2Þ
terms. In the internal region, (r0 < r < 1), this equation

FIG. 15. Flux surfaces of constant r (blue), surfaces of constant h (black), a

resistive plasma boundary defined by r¼ 1 (red), and a resistive wall (red).

Here, the shape is given by j ¼ 1:8; d̂ t ¼ 0:35 and d̂b ¼ 0:26, parametrized

by Eq. (3) with values j ¼ 1:8; dx ¼ 0:14, and dy ¼ �0:07. The coordinates

begin at a finite innermost surface r0 ¼ 0:3 to avoid numerical issues near

r¼ 0.
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retains the form derived by Fitzpatrick in Ref. 46 Eqs.

(48)–(56), but with an additional toroidal factor 1þ �gðr; hÞ
multiplying each of the metric coefficients.

In the external region, 1 < r, including the toroidal cur-

vature term neglected in Ref. 46 modifies the form of

Laplace’s equation to

r
d

dr
r

dVm

dr


 �
� m2Vm ¼ �

X
k

Xmkr
dVk

dr
(A11)

in terms of the vacuum region coupling matrix, which can be

expressed analytically as

Xmk ¼ Lmk �r
@g

@r

	 


¼ �

1� ea
r þ ea

r


 �
1

2
dmþ1;k þ dm�1;kð Þ

�

� ta

r2
dmþ2;k þ dm�2;kð Þ � i

da

r2
dmþ2;k � dm�2;kð Þ

�
:

(A12)

The Kronecker-d matrices dm;k61 and dm;k62 show how elon-

gation introduces additional m61 coupling, and triangularity

and vertical asymmetry introduce m62 coupling.

APPENDIX B: FITZPATRICK MODEL TEARING LAYER
RESPONSE

The tearing layer formulation employed by Fitzpatrick

in Ref. 46, is adapted to incorporate the effects of toroidal

curvature in the outer region. While the model is con-

structed to accept any tearing layer regime, present calcula-

tions apply a constant-w visco-resistive53,54 (VR) layer

condition. Each tearing surface rs imposes a boundary con-

dition similar to the resistive-wall condition in Eq. (6),

except applied separately to each resonant harmonic. In

addition, the growth rate in the tearing equation, unlike that

appearing in the wall equation, is Doppler shifted due to

plasma rotation. Fitzpatrick’s straight field-line angle is mod-

ified slightly by the toroidal curvature factor 1þ �gðr; hÞ,
and becomes

�mðhÞ ¼
ðh

0

�hmðhÞ
qmB̂mðhÞð1þ �gmðhÞÞ2

dh: (B1)

Here, the subscript m denotes evaluation at the resonant m/n-

surface, with fixed n¼ 1. The equilibrium poloidal field

B̂m ¼ B̂hðr ¼ rmÞ can be approximated by the same func-

tional form at rm as at r ¼ 1þ, with the resonant-surface

poloidal field distribution solved analogously to Eqs. (4) and

(5), except for qm ¼ m=n leading to a different free parame-

ter to replace Bi.

A modified tearing surface coupling matrix

U tearð Þ
m0m �

1

2p

ð2p

0

ð1þ �gmðhÞÞ cos m�mðhÞ � m0h
� �

dh (B2)

presently yields the resonant layer response

Vm0½ �rmþ
rm�
¼ cDmsmŝ tearð Þ

m

X
k

U tearð Þ
m0m U tearð Þ

km

r

dVk

dr

����
rm

(B3)

for each rational surface rm. Each has a corresponding

Doppler-shifted growth rate cDm ¼ cþ inXm, layer time sm,

and associated geometric time factor

ŝ tearð Þ
m � 1

2p

ð2p

0

dh
�3n2

B̂
2

mðhÞð1þ �gmðhÞÞ4

 !( )�1

(B4)

analogous to the wall matrix in Eq. (10) corresponding to a

multi-harmonic geometric time factor. The formulation of

Ref. 46 neglects this tearing layer integral, effectively apply-

ing a cylindrical low-b approximation. Noting the typical

tokamak ordering of the poloidal field B̂m ¼ B̂hðr ¼ rmÞ � �,
the integrand above appears as Oð�3Þ but is actually Oð�Þ.

Following Ref. 46, the layer response is simplified in the

limit where the rational surfaces all lie just outside of the

plasma edge for numerical convenience in the outer region.

In this way, the resonant surfaces are combined by taking

rm ! 1þ; sm ! st; Xm ! X; hmðhÞ ! haðhÞ, and gmðhÞ
! gaðhÞ. Artificial singularities at the plasma boundary are

avoided by calculating the equilibrium field distribution

B̂mðhÞ at the resonant layer with qm 6¼ qa. With a unique

poloidal field distribution, each layer maintains its own geo-

metric coupling matrix UðtearÞ and geometric time factor

ŝðtearÞ. After taking the limit and summing over all rational

surfaces, q0 < qm < qa, the total resonant response at rm ! rs

! 1þ is written as

Vm0½ �rsþ
rs�
¼
X

k

C tearð Þ
m0k ðcDstÞr

dVk

dr

����
rs

(B5)

in terms of the tearing layer response matrix

C tearð Þ
m0k ¼ cDst

X
m0	m	m1

ŝ tearð Þ
m U tearð Þ

m0m U tearð Þ
km


 (B6)

which combines all of the relevant rational surfaces in the

range nq0 < m0 	… 	 m1 < nqa. This tearing formulation

agrees with that of Ref. 46 for the case of high aspect-ratio

and vertical symmetry. This tearing response matrix enters

the model dispersion relation via the perturbed field relation

in Eq. (18).

In the language of the tearing theory, the inner solution

is given by a constant-w visco-resistive53,54 diagonal matrix

DmkðcDstÞ ¼ cDstdmk (whereas the other terms in Eq. (B5) all

belong to the outer solution D0). Other tearing regimes may

be conveniently substituted into this formulation by replac-

ing the linear cDst with different functional forms (for exam-

ple, ðcDstÞ5=4
in the resistive-inertial regime), while keeping

the outer geometric coupling terms unchanged. This is yet

another advantage of the sharp boundary model construction

presented in this paper.
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