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This study explores the effects of plasma shaping on magnetohydrodynamic mode stability and
rotational stabilization in a tokamak, including both plasma and wall resistivity. Depending upon
the plasma shape, safety factor, and distance from the wall, the ff-limit for rotational stabilization is
given by either the resistive-plasma ideal-wall (tearing mode) limit or the ideal-plasma resistive-
wall (resistive wall mode) limit. In order to explore this broad parameter space, a sharp-boundary
model is developed with a realistic geometry, resonant tearing surfaces, and a resistive wall. The
p-limit achievable in the presence of stabilization by rigid plasma rotation, or by an equivalent
feedback control with imaginary normal-field gain, is shown to peak at specific values of elonga-
tion and triangularity. It is shown that the optimal shaping with rotation typically coincides with
transitions between tearing-dominated and wall-dominated mode behavior. Published by AIP

Publishing. https://doi.org/10.1063/1.4991873

I. INTRODUCTION

Increasing f3, the volume-averaged ratio of the plasma
pressure to the magnetic pressure, increases the fusion power
in a tokamak but also drives resistive and ideal magnetohydro-
dynamic (MHD) instabilities that can destroy the plasma con-
finement. Focusing on resistive wall modes (RWMs),
stabilization methods include but are not limited to plasma
rotation with respect to a resistive wall' ™" and feedback con-
trol.'”>** The aim of this paper is to explore the extent to
which rotation can raise the MHD f-limit of a resistive plasma
surrounded by a resistive wall in shaped toroidal geometry.

The study examines the linear onset of MHD instabil-
ities with a broad poloidal harmonic spectrum and fixed
toroidal harmonic n=1, in a plasma that is stable at zero f§
and destabilized at finite 5. Following Brennan and Finn,23
four f-limits calculated without rotation or feedback control
are used to evaluate the extent to which rotation or feedback
control can raise the least stable [ limit—the first of the four
limits to go unstable as f§ increases—in a resistive plasma
surrounded by a resistive wall. Starting with an ideal-plasma
ideal-wall (ip-iw) system, raising f produces a kink mode
that goes unstable at a relatively high limit, denoted f;,_;,,
with a fast growth rate characterized by the Alfvén timescale
T4. Wall resistivity allows the perturbed magnetic flux to
penetrate the wall on a resistive timescale t,,, introducing a
slower growing instability known as the resistive wall mode
(RWM), which goes unstable at the ideal-plasma resistive-
wall (ip-rw) limit ;,_,,, < B;,_;,. Similarly, plasma resistiv-
ity in a system with an ideal wall introduces yet another non-
ideal instability known as the tearing mode (TM), which
grows on a tearing timescale 7, and is also destabilized at a
resistive-plasma ideal-wall (rp-iw) limit B, ., < B, ;-
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Lastly, a toroidal system containing both wall resistivity and
plasma resistivity become unstable at a resistive-plasma
resistive-wall (rp-rw) limit f3,,_,,,, below the other three lim-
its. The least stable mode (without rotation) appears when
crosses f,,_,,, and the mode grows on a timescale that
depends upon both 1, and 7,, coupling the resistive-wall and
the tearing processes by their comparable timescales as well
as their similar physics and their mutually inductive per-
turbed currents. Rather than referring to separate modes, the
present unified approach suggests that common designations
such as kink, RWM, and TM should be thought of as refer-
ring to the dominant MHD mode behavior in different
domains of the parameter space. This unified approach was
pioneered in a cylindrical study by Finn®* and a toroidal cir-
cular cross-section study by Betti,” who independently
developed models to study MHD stability over a range of f3,
encompassing both TM and RWM behavior. The approach
of keeping both plasma and wall resistivity allows the domi-
nant mode behavior to transition smoothly at each of the lim-
its described above; B, s Brp—iws Bip—rws and By,

For a circular cross-section tokamak, a typical f-limit
ordering in this 4-f analysis was found to be B, ,,
< ﬁrg_fw < Bip—rw < Bip—sw in both the cylindrical model by
Finn®* and the high aspect-ratio toroidal model by Betti.”
Richardson, Finn, and Delzanno®’ found that the same order-
ing also applies in a typical reversed field pinch, with the
current density parameter g = J - §/B*(r = 0) in place of
p. Building upon the 4-f approach, Brennan and Finn** con-
structed a cylindrical tokamak model with feedback control,
to show that the plasma response to rotation and/or feedback
control is characterized by the four  domains associated
with the four above-mentioned f-limits calculated without
rotation or feedback. With cylindrical geometry that

Published by AIP Publishing.
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typically satisfies the f-limit ordering mentioned above, the
study by Brennan and Finn indicates that the limit f,,_,,, can
be raised by rotation up to the next limit f,, ;. It was
shown?? that feedback proportional to the radial field with
complex gain is exactly equivalent to rotation of the resistive
wall in a cylinder, and therefore to rigid plasma rotation in
the opposite direction. The equivalence was shown to be
approximate but still useful in the toroidal geometry. Earlier
work in Ref. 16 had shown that with two resistive walls,
rotating sufficiently fast relative to each other, resistive wall
stability can be achieved because the flux cannot penetrate
the two walls. A method called the fake rotating shell
approach of Ref. 17 uses a feedback array to obtain similar
stabilization. In Ref. 22, it was discussed that the equiva-
lence of imaginary gain and wall rotation shows that imagi-
nary gain with two resistive walls can stabilize completely.

While feedback with complex tangential and normal
field gains can further stabilize the mode, the present study
focuses on the parameter space that permits mode stabiliza-
tion by rotation, or by an equivalent feedback control with
imaginary normal-field gain. By varying tokamak parameters
such as the wall radius (or closeness of the wall to the plasma
boundary), safety factor, elongation, triangularity, and verti-
cal asymmetry, this study examines the maximum extent to
which rigid plasma rotation can raise the f-limit of the least
stable mode. The parameter space where a non-rotating
unstable plasma can be stabilized by rigid rotation is referred
to as the rotationally stabilizable domain. Stabilizing rotation
rates are typically on the order of t,, or 7,. A general rule,
first demonstrated in the present study, is that the f-domain
of rotational stabilization is bounded by the lowest ideal
B-limit, which can be given by either ,, ;, or f;,_,,. This
rule was examined for the specific case of varying wall dis-
tance in studies by Finn?* and Betti.” This finding has impli-
cations for the type of ensuing linear mode behavior. In the
common terminology, f,, ;, < B;,_, implies rotational sta-
bilization up to the linear onset of a TM-dominated instabil-
ity, whereas the reversed case f;,_,, < p,,_; implies
rotational stabilization up to the linear onset of a RWM-
dominated instability. The two different stability limit order-
ings, ﬂrp—iw < ﬁip—rw and ﬁip—rw < ﬁrp—iw’ play important
roles in the present study and will be discussed at length later
on. We suggest that the nature of the linear f-limit (f,,_, or
Bip—rw) determines the dominant type of non-linear behavior
(TM or RWM) observed in experiments.

Rotational stabilization of the least stable mode (occur-
ring when f crosses f,,_,,) can be understood in the context
of a coupled-mode picture. Namely, a TM with finite flux at
the tearing layer and zero flux at the wall and a RWM with
finite flux at the wall and zero flux at the tearing layer.”> Any
system of two coupled modes exhibits a mode interaction
which depends upon the proximity of the roots in the com-
plex plane. Plasma rotation in the present plasma-wall sys-
tem produces a relative phase-shift of the complex roots
which changes the coupling of the two modes. This effect
tends to raise the f,,_,,, when the tearing layer and the wall
have comparable timescales, with similar rotation time-
scales. (There is an important exception of destabilization by
low rotation when tearing layers have real frequencies.?®")
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Rotational stabilization has been verified experimentally'~
and explained theoretically using a number of dissipation
mechanisms including sound wave damping,”* resistivity,>°
and viscosity,7’8 as well as kinetic effects such as the reso-
nance between mode rotation and the precession drift fre-
quency of trapped particles.'®!!

The RWM-TM interaction is further modified by the
geometric mode-coupling induced by the shaped toroidal
geometry. In the past, geometric mode-coupling effects of
cross-sectional shaping in toroidal geometry have been stud-
ied separately for ideal-plasma (kink) modes, and for
resistive-plasma (tearing) modes. Early shaping studies
focused on the ideal external kink instability, applying a
sharp-boundary model with no rational surfaces and no wall.
Using a sharp-boundary model with a high aspect-ratio and
elliptical cross-section, Freidberg and Haas®® found maxi-
mum stability for an elongation (height to width ratio) of 2.2.
An extension by Freidberg and Grossmann®’ to a more gen-
eral shape showed triangularity to be destabilizing in the
absence of elongation.

Including internal rational surfaces in a diffuse plasma
profile - but still neglecting resistive wall effects - a number
of ideal MHD numerical shaping studies of the DIII-D
experiment were undertaken by Lazarus et al.,>° Turnbull
et al®' and Kessel et al.,32 Ferron et al.*® and Holcomb
et al.>* Similar studies were conducted by Menard et al.,35
Miller et al.3® and Turnbull et al.,37 to test for stability in a
low aspect-ratio tokamak such as NSTX. These numerical
studies all suggest that cross-sectional shaping - most nota-
bly a combination of elongation and triangularity - can help
raise the stability limit, but generally included relatively few
data points to discern an optimal shape or to analyze the
physics trends from shaping. In contrast to the domain domi-
nated by the external kink resonance, analytic studies by
Bondeson and Bussac*® and by Lutjens, Bondeson, and
Vlad*® showed that the internal kink mode, with toroidal
number 7 =1 and low poloidal m-numbers (typically m =2),
is destabilized by vertical elongation. More extensive models
by Eriksson and Wahlberg*® and by Martynov, Graves, and
Sauter*' showed that triangularity, on the other hand, stabil-
izes the internal kink.

Shaping studies focused on resistive plasma behavior
showed that the TM is generally stabilized by both elonga-
tion and triangularity. A semi-analytic model known as the
T7 code was developed by Fitzpatrick er al.** and recently
revisited by Ham er al.,*> who demonstrated a stabilizing
effect of shaping on tearing modes surrounded by an ideal
wall. The present paper presents the first shaping study of
coupled RWM and TM phenomena spanning a wide range of
p values.

To explore the effects of plasma shaping on the intrinsic
stability limit as well as the limit of rotational stabilization,
we have developed a shaped sharp-boundary model in toroi-
dal geometry including resistive resonant surfaces and a
resistive wall. The sharp-boundary approach makes it conve-
nient to scan stability over an individual parameter (such as
p, safety factor, wall distance, elongation, triangularity or
vertical asymmetry) while keeping the rest fixed. In this
manner, a space of ~10° stability eigenvalues—including
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different geometries—can be generated in approximately
1h. The resulting qualitative study of a broad parameter
space is designed to supplement and guide investigation by
quantitative stability codes such as MARS** or DCON.**

The new model is based on a study by Fitzpatrick®®
which incorporated tearing surfaces into a sharp-boundary
formulation to examine the effects of shaping on error-field
response. In the present model, the geometry in Ref. 46 is
generalized to include vertical asymmetry, in order to cap-
ture the shape of a single-null diverted plasma. Additionally,
the model incorporates toroidal curvature corrections based
on an ideal stability model by Freidberg and Grossmann,’
retained up to the first order in an expansion in the inverse
aspect-ratio e. The development of a resistive wall boundary
condition facilitates the generalization of the Brennan-Finn*?
4-f analysis to the shaped toroidal geometry. Using the 4-f8
framework, the new sharp-boundary model reveals qualita-
tive trends of stability and rotational stabilization over a
broad range of f, safety factor, wall location, elongation, tri-
angularity, and vertical asymmetry.

A main result of this study is that plasma shaping can
cause an interchange of the rp-iw and ip-rw f-limits, modify-
ing the p-limit ordering from f,, .., < B, i < B
< ﬁip—iw to ﬁrp—)w < ﬂip—rw < ﬂrp—iw < ﬁip—iw' While ﬁrp—rw
is always the lowest (least stable) limit and f;,_;, sets the
upper bound, there is no constraint on the order of the two
middle limits f,, ;, and f;,_,,. The discovery of alternate
p-limit orderings introduced by shaping becomes important
in the context of previous observations that the lower of
these two ideal limits, f3,, ,;,, and f3;,_,,, sets the upper bound
for rotational stabilization,9’23’24 with small exceptions dis-
cussed in Secs. IVB and V.

For a circular cross-section, an interchange of f8,,_;, and
Bip—rw Was observed by varying the wall radius in stability
studies by Finn?* and Betti.’ The present study reaffirms the
mode interchange induced by varying the wall radius, and
goes on to demonstrate likewise interchanges induced by
varying the safety factor, elongation, and triangularity. This
discovery shows that different domains of the tokamak
parameter space exhibit rotational stabilization bounded by
either TM or RWM type behavior. An optimal shape for sta-
bilization by rotation—or an equivalent feedback with imag-
inary normal-field gain—was found to typically reside in a
window around the transition from TM-limited to RWM-
limited domains, which we identify by an interchange of f3-
limits.

The remainder of the paper is structured as follows: Sec.
IT outlines the new features of the sharp-boundary model,
adapted from the formulation of Fitzpatrick.*® Section III
introduces a new resistive-plasma resistive-wall dispersion
relation including effects of shaped toroidal geometry. Section
IV presents the resulting growth rate and stability limit calcu-
lations for the case of a circular cross-section toroidal plasma.
Section V shows how the stability limits are affected by cross-
sectional shaping, including first observations of f-limit inter-
changes as the shape is varied. Section VI illuminates a key
distinction between ideal f-limits in the sharp-boundary
model with and without resonant surfaces, and how they relate
to ideal f-limits in present day simulations. Section VII details
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a preliminary verification of the qualitative stability features
presented in this paper via numerical simulations with
NIMROD* and DCON.*> Section VIII summarizes the
results of the paper. Appendixes A and B provide additional
mathematical details of the model geometry and tearing layer
response, respectively.

Il. MODIFICATIONS TO THE FITZPATRICK SHARP-
BOUNDARY MODEL

The present formulation builds on a resistive-MHD
sharp-boundary model developed by Fitzpatrick®® to study
the effect of plasma shaping on error-field response. We gen-
eralize the geometry in Ref. 46 with vertical asymmetry to
emulate a single-null diverted plasma (Sec. IT A), as well as
O(e) toroidal curvature based on an ideal-MHD model by
Freidberg and Grossmann® (Sec. II B). Here, € = a /R is the
usual toroidal inverse aspect ratio. Lastly, the addition of a
resistive wall (Sec. II C) facilitates the formulation of a new
resistive-plasma resistive-wall dispersion relation in the
shaped toroidal geometry (Sec. III).

The sharp-boundary model makes it efficient to scan
individual equilibrium parameters—defined at the plasma
boundary—without having to adjust the entire plasma pro-
file. This is achieved by approximating the tokamak equilib-
rium current to consist of a skin-current at the plasma
boundary, which results in a discontinuity in the tangential
magnetic field. The jump in magnetic pressure across the
plasma boundary is balanced by a jump in the fluid pressure,
which follows a step function profile. In contrast with the
analytic model in Ref. 23 which employed a reduced-MHD
scaling (i.e., dominant constant B, with small 0B,) that
allowed for a step-function profile in both the pressure and
current density, we relax the reduced-MHD scaling assump-
tion so that a pressure step must be balanced by a step in
B?/2, thus requiring a delta-function profile for the current
density.

Stability calculations in the new model are outlined as
follows: the perturbed field response is solved by numeri-
cally integrating the vacuum-like magnetic potential, subject
to boundary conditions at three surfaces: (i) the plasma
boundary obeys the standard ideal MHD conditions of the
sharp-boundary theory,?®?*#%4-52 enforcing ideal Ohm’s
law on either side of the perturbed boundary. (ii) The tearing
layers, following Fitzpatrick,*® are set just outside of the
sharp plasma boundary where the presence of a poloidal field
produces a finite safety factor ¢g. The external region can be
thought of as a cold plasma with no equilibrium current and
a vacuum-like g-profile, as portrayed by Finn.® Following
Fitzptatrick,*® the resonant layers are compacted near the
plasma boundary for numerical convenience without qualita-
tively modifying the physics of the TM response. While the
model is constructed to accept any tearing layer regime, pre-
sent calculations apply a constant-i) visco-resistive™~* (VR)
layer condition. (iii) A resistive thin-wall boundary condi-
tion, conformal to a flux surface, is constructed similar to the
VR tearing boundary condition but incorporating all poloidal
harmonics rather than just a resonant component.
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Using the solution of the linear perturbed field problem,
the perturbed energy is formulated as a multi-harmonic resis-
tive-plasma resistive-wall dispersion relation. The present
calculations use 45 poloidal harmonics (—22 < m < 22),
comparable with the number used in Refs. 46 and 29, and a
fixed toroidal harmonic n=1. The growth rate and mode
structure of the dominant mode are found by numerically
solving the resulting non-linear eigenvalue problem (i.e.,
contains different powers of y multiplying the system matri-
ces, as discussed later on). A similar method was imple-
mented by Betti® for the case of step-function current and
pressure profiles in a circular cross-section torus. By includ-
ing only the necessary ingredients for studying tearing and
resistive wall physics in the shaped toroidal geometry, the
sharp-boundary model facilitates broad qualitative studies,
intended to gain physical insights and to guide the investiga-
tion using larger quantitative codes.

A. Vertical asymmetry in cross-section

The new model generalizes the geometry of Fitzpatrick*®
with a vertically asymmetric cross-section, allowing for
shapes that emulate a single-null diverted plasma. As in Ref.
46, the model applies a set of right-handed cylindrical polar
coordinates (R, ¢, Z), with length scales normalized by a, the
minor radius in the case of a circular cross-section. To
describe a shaped cross-section, R and Z are related to the cur-
vilinear coordinates r and 6, representing a radial-like coordi-
nate relative to the magnetic axis 7 =0 and a poloidal angle-
like coordinate 0 in the cross-sectional plane. The plasma
boundary r = 1 is parametrized by

R,(0) = 1/e+cos (0) + 0, cos (20) — d,sin (20), (1)
Z4(0) = xsin (0) — o, sin (20) — d, cos (20), )

independent of the toroidal angle of symmetry ¢.
Throughout the paper, subscript “a” denotes a function eval-
uated at the plasma boundary. Figure 1 depicts these coordi-
nates for a typical shaped cross-section. Appendix A
explains how the radial extension of this parametrization
(R(r,0),Z(r,0)) is obtained from a high aspect-ratio expan-
sion of the Grad-Shafranov equation, following Connor and
Hastie.”

The coordinate basis is defined by the normalized contra-
variant derivatives, &, = Vr/|Vr|, g = VO/|V0|, e, = V¢/
|[V¢|. The elongation parameter k follows the standard defini-
tion, being the height to width ratio of the plasma cross-
section. The other cross-sectional shaping parameters o, and
0y, can be analytically related to top triangularity 6, and bot-
tom triangularity J, as defined later in Eq. (26) via Taylor
expansion of the plasma surface near the points 6 = 0,
0 = n/2,and 0 = —7/2, respectively

A K42

Sp=—12
t K+4(Sy X

K+ 2

5h:m X

3)

These “model” definitions of up and down triangularity are
used throughout the remainder of the paper, and agree with
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FIG. 1. Vertically asymmetric plasma cross-sectional coordinates, normal-
ized by the minor radius in the case of a circular cross-section, with the
boundary defined by r=1. The shape is characterized by elongation
Kk = 1.8, top triangularity ¢, = 0.35, and bottom triangularity J, = 0.26,
parametrized by Eq. (3) values x = 1.8, 6, = 0.14, and 6, = —0.07. The
geometric top and bottom triangularities for this shape are 6, = 0.46 and
op = 0.38.

the standard geometric definitions in Eq. (26), in the limit
(0,/K)% ~ (8p/1)* < 1.

To approximate reasonable equilibrium bounds of the
shaping parameters, the cross-section is required to maintain
a positive curvature. For the vertically symmetric case where
0y = 0, this requirement is expressed as % | 9—g— < 0. The
resulting bound for triangularity is found to be ¢ < 0.54 (or
0y < 1/4), compatible with the typical range of ITER base-
line scenarios ® with elongation 1.7 < « < 2.0, triangularity
0.3 < 6 < 0.5, and vertical symmetry.

B. Toroidal curvature corrections

In addition to vertical asymmetry, the present geometry
extends the applicability of Fitzpatrick’s model*® with toroidal
curvature corrections, following Freidberg and Grossmann.?
The toroidal field, both inside and outside of the plasma
boundary, falls off as Ro/R = 1/(1 + €g(r,0)). The geomet-
ric function g(r, 0) (see Appendix A) appears throughout the
present formulation, containing the O(¢) effects of the shaped
toroidal geometry on the equilibrium, as well as the perturbed
field calculations described in Sec. II C below.

All magnetic field magnitudes are scaled by the vacuum
on-axis toroidal field strength B,. The internal domain
(r< 1) contains only a toroidal field since the bulk of the
equilibrium current is confined to the plasma boundary
(r=1). A constant B; defines the relative magnitude of the
internal magnetic field along the magnetic axis (60 = /2).
With a step-function pressure terminating at r=1, the
boundary poloidal ﬁelgl is determined by the equilibrium
pressure balance B (r = 1,,0) = 2upp +B>(r = 1_,0),
with B,(r = 1) =0 and the pressure p constant on the flux
surface r = 1. This equilibrium condition, based on the free
parameters p and B;, as well as the inverse aspect ratio and
cross-sectional shape parameters, is used to determine the
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poloidal field distribution just outside of the plasma
boundary

) 2 O‘aﬁ 1 — !
B,(0) =5; <1 By AT +ega(0>>2> ey

Here, a, is a geometric constant resulting for a flux sur-
face average. The constant B, is computed by fixing a value
of the edge safety factor

_ir” 1 ha(0)d0
=21}y B,(0;B) (1 + egu(0))?

)

and numerically solving this transcendental equation. Thus,
the equilibrium is characterized by f and ¢,, as well as the
shape parameters ¢, k, J,, and 6.

C. Perturbed field response including a resistive wall

The third major extension to the Fitzpatrick*® sharp-
boundary model is the addition of a resistive-wall, designed
to be conformal to a flux surface »=r,, geometrically simi-
lar to an ideal-wall formulation by Goedbloed.”!

Similar to Ref. 46, the perturbed magnetic field both
inside and outside of the plasma boundary is characterized
by a scalar potential 0B = iVV. The sharp-boundary current
profile results in a curl-free perturbed field satisfying
Laplace’s equation everywhere except for the layers of sur-
face current. These current sheets, which in Ref. 46 include
the plasma boundary and the resonant tearing layers, are now
joined by a thin resistive-wall boundary condition

d [eav]™ v
V]
{,ar] _o. %)

The condition in Eq. (6), expressed in terms of the wall dissi-
pation time t,,, is derived analogously to Fitzpatrick’s tearing
condition except with no rotation-induced Doppler shift
since the wall is stationary. The resistive wall is induced
with perturbed currents in response to all poloidal harmonics,
in contrast with the tearing layers which each respond to
only a single resonant harmonic. Shape dependence of the
geometric coefficients g(r,0) and h(r,0), defined in
Appendix A, introduces coupling of the poloidal harmonics.
The second condition, Eq. (7), enforces continuity of 0B,.

Expanded in the standard Fourier basis, the wall bound-
ary condition in Eq. (6) becomes

Z (%Env}zall)) - rwr_ VT Z U wall (8)
k T
The shaped wall coupling matrices
US = L {1+ g, (0)}, ©)

Cwa)) mke
(25) =Lmk{w} (10)
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are expressed in terms of a Fourier coupling operator

1 21
Los{y} = %L W(O)exp ik — m)0ldo. (1)

In the vertically symmetric case 5, =0, =0, it suffices to
calculate Fourier integrals over 0 < 6 < 7 and take only the
real (cosine) component, while the general asymmetric
geometry requires evaluation over the entire circumference
and inclusion of the imaginary (sine) component. An impor-
tant feature of the coupling matrix U™ is the presence of
the geometric terms g, (0) = g(ry, 0) and h,(0) = h(r,,0),
which couple wall currents of different harmonic structures.
In addition, the wall boundary condition contains a geomet-
ric time factor ™ associated with the wall time 7,,. Both
the toroidicity matrix U™ and the geometric time factor
matrix ™ become diagonal in the cylindrical limit.
Geometric coupling in the wall plays a key role in this sharp-
boundary model, where the total mode structure is strongly
affected by the interdependence of the tearing layer and the
wall. The harmonic structure of the wall currents is now cap-
tured by the jump of the tangential field

m r,,+ chall (12)
Iy
written in terms of the resistive wall response matrix
1) 1D g (wail)
clwall) — o, Z glwall) gy (wall) (13)

The wall jump condition in Eq. (12) along with the B, con-
tinuity condition in Eq. (7) enter the yt,,-dependent resistive-
wall vacuum response matrix

Coi ™ ) = O = r 2K w

mk

i (7Tw) (14)
with the wall contribution given by

Wi = |ﬂ2| (1 =208, + C= (pr). (15)
The first term in Eq. (14) represents the no-wall vacuum
response, recovered in the limit r, — oo. The ideal wall
limit 7,, — oo forces the condition 0B, (r,,) = 0 at the wall.
In this case, the second term in Eq. (15) vanishes. The
uncoupled ideal-wall response of Freidberg and Haas*® is
recovered in the present formulation by taking the cylindrical
limit, whereby

. 1+ ,—2|m|

C(vac-W) — —| ‘ 72|m| Omk (16)

mk

Since the magnitude of the wall factor above is larger than
unity, the vacuum gains a positive contribution to the per-
turbed energy and the effect of the ideal wall is always
stabilizing.

Similar plasma boundary and tearing surface conditions
are derived by taking different limits of the induction equa-
tion. The total perturbed field response is solved by numeri-
cally integrating the vacuum-like magnetic potential, subject
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to boundary conditions at three surfaces: (i) the ideal plasma
boundary as in Ref. 29, (ii) the tearing layers as in Ref. 46
(see Appendix B for more details), and (iii) the new resistive
thin-wall boundary condition. The response on either side of
the plasma boundary is expressed as a multi-harmonic rela-
tion between the perturbed tangential and normal fields

(plas) ‘de
m 1_)= - s 17
Vn() =G| (17)
vac-w ear dvk
Va(ly) = Z(Cfnkc >(Ww) - CE:,k )(VDT1)>" dr
k r=1y
(18)

The geometric terms define the Fourier-expanded Laplace
equation which is expressed by geometric coupling matrices,
calculated by FFT (see Appendix A). In the limit of a cylindri-
cal plasma with no wall and no resonant surfaces, internal !

and external 7~ solutions lead to the diagonal response

. I - : _
matrices Cf,':kas> = |m| 0, and Cf,‘l’,?q = —|m|™" S, respec-

tively. These simple solutions define a basis for the radially
launched solutions for each harmonic in order to span the
solution space. Broken into a set of coupled first-order ODEs,
the system is integrated for each initial condition by a fourth
order Runge-Kutta algorithm.

Note that the tearing layer, based on the formulation in
an error-field response model by Fitzpatrick,*® contributes to
the field response of the vacuum region at the plasma edge,
which can be thought of as a resistive plasma with negligible
equilibrium current as portrayed by Finn.® Additional details
of the tearing layer formulation are found in Appendix B.

lll. RESISTIVE-PLASMA RESISTIVE-WALL
DISPERSION RELATION

With the formulation of a resistive-wall and shaped
toroidal geometry, we are able to formulate the stability
problem as a multi-harmonic resistive-plasma resistive-
wall dispersion relation, similar to a circular cross-section
toroidal formulation by Betti.” Using the field response
described in Sec. II C, the total perturbed force matrix takes
the form

F=—H+GCP™ GG (e (yr,)
— ' (31,))G, (19)

which contains contributions of the plasma, vacuum (includ-
ing the resistive wall) and resonant tearing response. The
resistive wall and tearing terms are y-dependent and there-
fore make the force matrix non-self-adjoint. As discussed
later in this section, this y-dependent force matrix leads to a
non-linear eigenvalue problem. Following Freidberg and
Grossmann,?’ the three matrices H, G, and G associated with
the surface, internal, and external solutions, respectively, are
given by

Bﬁ(l + 6ga)zhlu

Hmk - Lmk{ 2 + (1 _B,z)(l + Ega)g;}v (20)
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ha
G = Lmk{ (nBiel T ega> }, 21

. . hy
G =L, 1 <)B, — , 22
k k{(m( + €8a) P n€1+€80)} (22)

again using the notation of the Fourier coupling operator in
Eq. (11). The energy matrices above make use of the radial
dependence of the poloidal field

$ By, (0)ha(0)

Balr,0) =2 (23)

calculated by Ampere’s law, as well as the radial dependence
of the metric functions

_19(m]) o Og
=3""% R g.(0) = era . (24)

r=1

h (0)

r=1

As in Ref. 29, this form of the force matrix utilizes a per-
turbed plasma displacement expansion £(0, ¢) = (1 + €g,(0))
S Ene0=1?) with the (1 + eg,) factor included to preserve
symmetry of the energy matrices. In terms of the non-ideal per-
turbed force matrix, the perturbed force balance can be
expressed as a non-linear eigenvalue problem. In contrast with
the ideal model of Freidberg and Grossmann,” this new non-
ideal dispersion relation produces mode behavior on three dif-
ferent timescales, 1,4, 7,, and 7, as well as the transitions
between them.

The large aspect ratio approximation taken in the model,
together with plasma incompressibility (the most unstable
perturbations are incompressible) lead to a constraint equa-
tion that eliminates the m =0 component of the perturbed
normal displacement at the plasma boundary.?®*® Following
Freidberg and Haas,?® a projection operator P =1 — gg* is
constructed to eliminate the subspace of compressible solu-
tions, with Pg = 0, where g = Gy,,/|Gom|, and G is defined
in Eq. (21). The constraint above is automatically satisfied
by with a transformed force matrix PFP, and we find that
the non-linear eigenvalue problem becomes

|canp)t + PFGrwmpm)P|E =0, (25)

where y, = 7 + iQ and Q is the Doppler shift due to the rigid
plasma rotation. This equation is a generalization of the
eigenvalue formulation of Freidberg and Haas®® to a non-
linear eigenvalue problem with a y-dependent force matrix.
The solution is obtained by a direct approach of mini-
mizing the absolute value of the system determinant with
respect to ). In the absence of plasma rotation, the dominant
mode 7 is purely real.® Solutions with complex frequencies
that appear due to additional tearing layer physics®’™’ are
beyond the scope of the present study. The mode with the
largest y is found by initiating a 1-D Newton solver at large y
and converging to the solution from above. In order to find
the dominant mode, the initial calculation is carried out at
large f§ where the dominant growth rate lies well above zero,
dominated by ideal-MHD physics. This first calculated
growth rate is then used as an initial guess for further
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calculations as f§ is ramped down toward marginal stability
(y = 0). The same method is applied with other parameters
as well (e.g., g, in the inset of Fig. 2). Calculating the entire
growth rate curve, rather than just the marginal stability
points, has the benefit of showing how the mode transitions
between the ideal, wall, and tearing timescales. The addition
of plasma rotation Q introduces a frequency component in
the dominant mode and thus requires a 2-D search over com-
plex y. Rotation is varied starting with the same initial calcu-
lation at high f and zero rotation. Any point on this branch
of rotation values (at fixed high ) can be then used to initi-
ate a f§ scan in the presence of fixed rotation. A reliable 2-D
minimizer for this application was determined to be the
Nelder-Mead algorithm®® found in the Scientific Python
(SCiPySQ) library.

IV. STABILITY OF CIRCULAR CROSS-SECTION
TOROIDAL PLASMAS

The purpose of the study in this section is to determine
the effects of toroidal geometry on MHD mode stability and
rotational stabilization in the presence of tearing layers and a
resistive wall. As discussed in the introduction, the least sta-
ble mode in a system with both plasma resistivity and wall
resistivity goes unstable at a resistive-plasma resistive-wall
(rp-rw) fB-limit with zero plasma rotation. We demonstrate in
this work how this least stable limit, denoted f,,_,,,, can be
increased by rotation (comparable with the tearing-time or
the wall-time) up to the first (lower) ideal limit; either the
resistive-plasma ideal-wall (rp-iw) limit f8,,_;, or the ideal-
plasma resistive-wall (ip-rw) limit f;,_,,. An ideal-plasma
ideal-wall (ip-iw) limit f3;,_;, sets the upper bound for the
other limits. The space of rotational stabilization is thus eval-
uated based upon the order of the four f-limits (f,,_,,,
Brp—iss Bip—rws Bip—iw) Over a broad range of plasma parame-
ters. The 4-f formalism provides information regarding the
nature of the rotationally stabilized MHD mode, which can
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FIG. 2. The four-f branches are plotted for the circular cross-section,
e =0.25, r, = 1.33. With ¢, = 2.1, the observed ideal dome is dominated
by m =2. For the resistive branches, 7, =5 X 10* and Ty = 10°. The inset
shows a close-up of the four f-limits on a logarithmic scale. (dashed:
resistive-plasma. Solid: ideal-plasma. Blue: resistive-wall. Red: ideal-wall).
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be dominated by either the tearing mode (TM) or resistive
wall mode (RWM) physics.

A. Ideal and resistive plasma growth rates versus f

As an initial qualitative comparison with the growth rate
trends obtained by Betti,” Fig. 2 displays the growth rate
curves of the four branches (rp-rw, rp-iw, ip-rw, and ip-iw)
versus f, along with a close-up inset of the four f-limits
(marginal stability points) plotted logarithmically. The
geometry in Fig. 2 is characterized by ¢ = 0.25, r,, = 1.33,
and ¢, = 2.1, and the dissipation times are 7, = 5 X 10* and
7,, = 10% in units of the Alfvén time. The ideal-plasma and
ideal-wall limits are obtained by scaling up the dissipation
times by a factor of 10”. All present calculations include a
single m =2 surface by taking an edge safety factor in the
range 2 < ¢q, < 3, with gp > 1.

Throughout this paper, plots follow the following con-
vention: the dashed versus solid lines distinguish between a
resistive and ideal plasma, while the blue versus red distin-
guish between a resistive and ideal wall.

The ideal “dome,” reminiscent of Shafranov’s reduced-
MHD cylindrical analysis of non-resonant ideal kink stabil-
ity,°® agrees qualitatively with the results plotted in Figs. 5
and 6 of Ref. 9. Reference 9 obtains a relatively small sepa-
ration between the resistive and ideal plasma limits, as
observed in the present model for calculations at a high
aspect-ratio. Including O(e) geometric terms consistently
throughout, the present model produces four distinct tails of
the ideal dome. The resulting f-limits are qualitatively simi-
lar to those observed by Brennan and Finn.>

The additional stable domain observed for the ip-iw curve
at high f is the well-known second stability regime.®%* In
models with a diffuse profile and full toroidal geometry, sec-
ond stability results from the high magnetic shear on the out-
board side produced by the Shafranov shift,**** whereas in
the sharp-boundary model, a similar effect is created by the
wall-induced increase in magnetic pressure.”

Next, we consider the effect of varying the edge safety
factor ¢, still keeping a circular cross-section. Although the
q.~domain near external kink resonance is generally avoided,
it is illuminating to examine this undesirable region in the
context of the 4-f5 framework. Recall that the ideal dome pre-
sented in Fig. 2, for ¢, = 2.1, is dominated by m=2.
Keeping r, = 1.33, Fig. 3 shows how as ¢, — 3, a lower
ideal dome appears corresponding to the m = 3-dominated
ideal external kink. This is clearly distinct from the remain-
ing larger dome at higher f which, as in Fig. 2, represents an
ideal internal kink dominated by m = 2. The transition is cap-
tured in the figure inset by plotting the growth rate versus ¢,
at fixed f=0.15, as in Ref. 60. Observe the analogy
between the ¢,-dome and the ff-dome, corresponding to the
current and pressure drive components of the instability.
This ability to vary S with g, fixed illustrates an advantage
of the sharp boundary model.

Mode transitions, such as observed in the growth rate
plot in Fig. 3, can result in a f-limit interchange between
Byp—iw and By,_,,, as equilibrium parameters are varied.
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FIG. 3. Rise of an m = 3-dominated mode near the external kink resonance:
the main plot shows the distinct m=3-dominated and m = 2-dominated
humps at ¢, = 2.9, with r,, = 1.33. The inset shows the rise of the m =3-
dominated mode as g, — 3 at fixed § = 0.15.

B. p-limits for rotational stabilization

This section demonstrates how the first two ideal limits
Byp—is and By, can be interchanged by varying the wall
distance and edge safety factor in a torus with a circular
cross-section. Shaped cross-sections are then considered in
Sec. V, with elongation and triangularity also found to simi-
larly modify the f-limit ordering.

To first illustrate the effect of rotation, Fig. 4 shows the
rotational stabilization of the rp-rw mode for different values
of the wall distance r,, (normalized by the minor radius in

03l P-rw marginal stability |
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FIG. 4. Critical f for the rp-rw mode versus wall location r,, for the circular
cross-section, € = 0.25, g, = 2.1, and four different values of plasma rota-
tion: Qt,, = 0, Qr,, = 10, Qt,, = 20, Q1,, = 40. The mode is stable below
the f.., curve. For a fixed f§, drawing a horizontal line crossing the non-
monotonic f3.;, curve reveals a window in r,, where the mode is stabilizable
by rotation up to a higher f-limit (red arrows). The r,,-window opens around
the transition between the RWM-limited and the tearing-limited domains.
The stabilizing effect of rotation is found to saturate at Qt,, = 40.
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the case of a circular cross-section). As before the tearing
time and wall time are given, respectively, by 7, = 5 x 10*
and t,, = 10°. For zero rotation, the rp-rw limit is indepen-
dent of the wall location, being the same as the resistive-
plasma no-wall limit. Rotation is observed to raise the rp-rw
critical f§ curve and is thus stabilizing. A sharp transition is
observed between the close-wall RWM-limited domain of r,,
and the far-wall TM-limited domain. Consistent with exist-
ing studies,* ™% scanning r,, with fixed f§ reveals a finite
window for rotational stabilization (marked by the red
arrows). The r,-window is observed near the transition
between the RWM-dominated and TM-dominated domain.
The top curve, Qt,, = 40, defines the saturated bound (same
as O — oo) for rotational stabilization.

In order to understand the non-monotonic behavior
observed in Fig. 4, it is illuminating to examine the higher f3-
limits shown in Fig. 5. The domain of stability for a non-
rotating mode is shaded in dark-gray, while the light-gray
region shows where the mode is stabilizable by rotation or
feedback control with imaginary JB,-gain. A sufficiently
close wall is observed to raise f3,,_;, up to arbitrarily high f,
which clearly does not provide a complete picture of the
rotational stabilization cutoff observed in Fig. 4. Since f3,,,_;,,
moves up as the wall moves inwards while keeping the
Bip—rw limit (equivalent for Q = 0 to the ideal-plasma no-
wall limit) fixed, a switching of the two limits f3,, ;,, and
Bip—rw is observed around r,, = 1.18. Similar plots are found
in studies by Finn** and Betti® for different models. Below
the transition point, which appears as a sharp knee in the
light-gray shaded region in Fig. 5, the limit for rotational sta-
bilization corresponds to the f8;,_,,, limit, associated with the
onset of a RWM-dominated instability. Here, the non-
rotating mode f-limit is equivalent to the ideal-plasma no-
wall limit and is thus independent of r,,. For r,, > 1.18, the
p-domain where rotational stabilization is possible gradually

shrinks with the decrease of the f,,_;,, limit associated with
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FIG. 5. Critical f for the four branches versus wall location r,, for the circu-
lar cross-section, € = 0.25, g, = 2.1. The resistive-wall limits are equal to
the no-wall limits (for Q = 0) and therefore independent of r,,. The ideal-
wall branches are completely stabilized as the wall approaches the plasma
(ry — 1). The domain that is stabilizable by plasma rotation is marked by an
interchange of the rp-iw and ip-rw branches at r,, = 1.18.
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the onset of a TM-dominated instability. As the wall moves
outward (r,, increases), the f8,,_;, limit approaches the f,, ,,
limit. These results demonstrate how a unified treatment of
MHD modes over a wide range of f§ exhibits both RWM-
dominated and TM-dominated behavior. In the interest of
extending the 4-f study of Brennan and Finn®* to the shaped
toroidal geometry, we begin the shaping studies in the
domain that is TM-limited for a circular cross-section, pro-
ceeding with r,, = 1.33 for the remaining calculations.
Careful comparison of Figs. 4 and 5 reveals a small
exception to the general rule that rotational stabilization of
the B,,_,,, limit is bounded by the first ideal limit. Here, the
maximum rotationally stabilized rp-rw limit (Qr, = 40
curve) peaks slightly above the ip-rw limit, near the inter-
change of the ip-rw and rp-iw curves. This small stability
window above the first ideal limit, first observed by Finn,2*
can be explained as a result of complex mode resonances as
in the work of Finn and Gerwin.”® Bondeson ef al.%®
ined this exception in the toroidal geometry and found an
even smaller window of stability. A broader investigation of
the parameter space should be considered before discounting
this higher window of stability. However, for the purposes of
this paper, we will ignore this small region of higher rota-
tional stabilization. The appearance of the lower m = 3-dom-
inated dome in Fig. 3 is associated with a sharp transition in
the f limits, portrayed in Fig. 6. In this figure, the edge safety
factor varies keeping the central axis safety factor fixed with
1 < qo < 2. For g9 < g, < 2, there are no rational surfaces
and so the resistive-plasma and ideal-plasma limits coincide.
As q, is increased above ¢, =2, the m/n = 2/1 rational sur-
face is introduced, whereby the ideal plasma limits jump to a
high value of f, representing a mode dominated by an
internal m/n = 2/1 kink. The resistive-plasma modes are
continuous at ¢, = 2, being equivalent (at Q = 0) to the non-
resonant limits. As g, — 3, and the smaller m = 3-dominated
ideal mode arises as shown in Fig. 3, both ideal-plasma limits

exam-
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FIG. 6. For a circular cross-section, ¢ = 0.25 and r,, = 1.33, the critical f§
for the four branches is shown for varying the edge safety factor g,. The
ideal-plasma limits cut off the domain that is stabilizable by plasma rotation
near both the m =2 and m = 3 external kink resonances.
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are observed to drop off sharply toward their corresponding
resistive-plasma limits. This effect produces a finite g, — f8
window for rotational stabilization, lying approximately in
2.0 < g4 < 2.27, limited by the rp-iw (tearing) mode. This
window contains much higher ideal-plasma limits, corre-
sponding to an ideal internal kink. For the shaping calcula-
tions that follow in Sec. V, the safety factor is fixed inside the
window at ¢, = 2.1.

Although not addressed by Brennan and Finn,> the
interchange of the two middle f-limits due to variation of r,,
or ¢, can be observed even in their cylindrical reduced-MHD
model. Next, we consider how cross-sectional shaping in the
toroidal geometry can similarly influence the f-limit order-
ing and thus, the maximum achievable f by rotational stabi-
lization. The qualitative similarities between the results of
the sharp boundary model of this paper with a circular cross
section and the cylindrical MHD numerical simulations of
Ref. 23 (as well as with the step-function current and pres-
sure profile results of Ref. 23) indicate the validity of the
sharp boundary model approach.

V. S-LIMITS FOR ROTATIONAL STABILIZATION IN
SHAPED TOROIDAL GEOMETRY

Cross-sectional shaping is shown in this section to also
influence the pf-limit ordering. Starting with a realistic
inverse aspect ratio of ¢ = 0.3, a wall located at r,, = 1.33
and a safety factor of ¢, = 2.1, Fig. 7 shows how the critical
p curves of the four branches vary with elongation k. As
before, the central axis safety factor is set to 1 < gp < 2, so
that with 2 < ¢, < 3, there is only an m/n =2/1 surface
included in the calculations. For a circular cross-section and
qq = 2.1, this yields an ideal mode dominated by m =2 as
discussed in Sec. IV A.

Figure 7 shows how, for these equilibrium parameters,
the ideal plasma modes are predominantly destabilized by
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FIG. 7. Critical f§ values of the four branches versus elongation x, with
e=0.3, r, = 1.33, and ¢, = 2.1. The two middle branches are observed to
cross at the peak f-limit achievable with rotational stabilization, x = 1.86.
This interchange point, at f3.,;, = 0.13, represents a transition from tearing
limited (rp-iw) to resistive-wall limited (ip-rw) behavior.
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elongation beyond x = 1.1 for f;,_,, and beyond x = 1.3
for f;,_,- This behavior is consistent with shaping models
of the ideal internal kink.**?" The resistive plasma modes,
on the other hand, are stabilized up to an elongation in the
neighborhood of k¥ = 1.9, in qualitative agreement with the
non-resonant result of Freidberg and Haas.”® The p-limit in
the presence of plasma rotation is observed to peak at
Kk = 1.86, the interchange point of the rp-iw and ip-rw curves
(where f,,_;,, = Bi,_), beyond which increasing elongation
severely reduces the ip-rw limit and the resulting extent of
rotational stabilization. The resulting optimal elongation
exhibits a good agreement with the range of optimal values
calculated for DIII-D by Kessel er al.,** as well as typical
values in the ITER design.”®

In order to highlight how vertical elongation can open a
window of higher f in the presence of rotational stabiliza-
tion, analogous to the r,-window observed in Fig. 4, Fig.
8 plots the growth rates of the least stable (rp-rw) mode
versus k. The plotted rotation values, normalized by the
wall-time, are Qt,, =0, Qt,, = 2, and Qt,, = 6. The fixed
f = 0.11 corresponds to a horizontal cut across the plot in
Fig. 7, above the peak [ value of non-rotating stability
Perie = 0.08, but below the peak f value in the presence of
rotational stabilization, occurring at f.;, = 0.13. Starting
from Qrt,, = 0, where the mode is unstable for any elonga-
tion, an increase of rotation to Qt,, = 2 is observed to satu-
rate the extent of rotational stabilization for any elongation
above k > 2.0. For these highly elongated shapes, the ip-rw
limit (associated with the linear onset of a RWM) is observed
to block the mode from being completely stabilized. A slight
exception is found near the transition point from the TM-
dominated (left) branch to the RWM-dominated (right)
branch of the Qt,, = 2 curve. Similar to the case discussed

VT

FIG. 8. Growth rates of the least stable (rp-rw) mode versus elongation, for
fixed € = 0.3, r, = 1.33, ¢, = 2.1, f = 0.11 and three different values of
rotation Qrt,, =0, Qt,, =2, Qt,, = 6 (all dashed-blue). The rp-iw curve
(dashed-red) is observed to be marginally stable (y = 0) at k = 1.2, below
which the rp-rw mode cannot be stabilized by rotation. Similarly, the ip-rw
curve (solid-blue) crosses y = 0 near xk = 2.0, above which the rp-rw mode
cannot be stabilized by rotation (with a slight exception at the mode transi-
tion near k = 2.0).
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in Sec. IVB for f,; versus r,, this is another example of
slight stabilization above the ip-rw (RWM) limit as discov-
ered by Finn.**

We observe that the shaped case in Fig. 8 hits the transi-
tion point at Qt,, = 2 rather than Qrt,, = 40 as observed in
Fig. 4 for a circular cross-section. At lower elongation val-
ues, increasing rotation continues to stabilize the mode up to
the rp-iw (TM) limit, saturating slightly above Qt,, = 6. The
Qt,, = 6 also exhibits a slight crossing of the ip-rw limit
near the transition point between the ip-rw and rp-iw curves,
in this case for stable values of y. Increasing the fixed f
would shift all of the curves upwards, until the marginal sta-
bility (yt,, = 0) line coincides with the bottom of the high
rotation curve Qt,, = 6, which occurs at § = 0.13. The point
of maximal f§ in the presence of rotational stabilization is
observed to coincide with the crossing of the rp-iw and ip-rw
curves. This result suggests that, similar to the window of r,,
for rotational stabilization (Fig. 4), the optimal window of
elongation x is found around the transition from the TM-
dominated to the RWM-dominated domain.

Next, Fig. 9 introduces triangularity ¢ (obtained from
either 6, or 0, in (3) with J, = 0), fixing elongation at the
locally maximal value of x = 1.86. Starting at the mode
interchange where the two middle f limits coincide, increas-
ing triangularity is observed to create a slight separation and
then another interchange at 6 = 0.29 (J, = 0.14). Beyond
this critical triangularity, the ip-rw limit decreases rapidly
and diminishes the f-limit achievable with rotational stabili-
zation, similar to the high elongation effect observed in Fig.
7. While this value provides only a local optimum around a
fixed aspect ratio and elongation, as well as wall position
and safety factor, it provides a proof of concept for parame-
ter optimization based on the maximal achievable f-limit in
the presence of stabilization by plasma rotation or an equiva-
lent feedback control with imaginary 0B,-gain.
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FIG. 9. The four marginal stability branches vs. model triangularity, with
fixed e = 0.3 and x = 1.86 (the optimal elongation at 5 =0in Fig. 7, where
Bip—rw = Brp—in)- This calculation is vertically symmetric so that &,
= 0, = 0. Another mode interchange is observed at ¢ = 0.29 (6, = 0.14),
or a plasma shape with geometric triangularity 6 = 0.42.
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As with elongation, the peak rotational stabilization is
found nearby the peak of intrinsic (non-rotating) stability.
Further investigation is required to determine if this is a
trend or mere coincidence. In contrast with the relatively
high range of optimal triangularity, 0.5 < 6 < 0.8 calculated
for ideal external kink modes in DIII-D by Kessel et al.*?
present results suggest that such high triangularity may be
detrimental in a real system with plasma dissipation. The tri-
angularity range in the ITER design,”® 0.3 < § < 0.5, is in
the slightly more conservative range but still possibly
beyond optimal stabilization by rotation or the equivalent
feedback control with imaginary B,-gain.

Lastly, starting with the (locally) optimal shaping
parameters x = 1.86 and 6 =029 (or 5, =0.14), Fig. 10
plots the four f3,,; curves with increasing vertical asymme-
try, measured by the difference between the approximate top
and bottom triangularity given in Eq. (3) (see the diagram in
Fig. 1). While the vertical asymmetry is found to destabilize
the least stable (rp-rw) mode, it is not seen to substantially
modify the relative height of the first ideal f-limit. No f-
limit reordering is observed. Thus, although destabilizing,
vertical asymmetry is not predicted to severely reduce the
effectiveness of rotational stabilization or the equivalent
feedback control with imaginary dB,-gain. One more obser-
vation is the increase in the ip-iw limit as the asymmetry is
increased. This opposite behavior of the rp-rw and ip-iw lim-
its should serve as a caveat for ideal-plasma ideal-wall mod-
els, which may falsely conclude that vertical asymmetry is
generally stabilizing.

VI. IDEAL B-LIMITS IN THE SHARP-BOUNDARY
MODEL WITH AND WITHOUT RESONANT SURFACES

An important subtlety of the analysis presented in this
paper is the distinction between ideal f-limits obtained in the
present sharp-boundary model with resonant surfaces and the
ideal f-limits found in previous sharp-boundary models
without resonant surfaces.”®***® Resonant-ideal boundary

c=03 r—186 0, —0.29

0.20}

ip-iw

0.15¢

ﬂcrit

0.10§;

0.05

004
|0 —0,

FIG. 10. The four marginal stability branches vs. vertical asymmetry, with
fixed e = 0.3, starting from the locally optimal elongation x = 1.86 and ver-
tically symmetric triangularity 6 = dp = 0.29 (J, = 0.14).
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conditions—as used in the present model—enforce 6B, = 0
for each resonant harmonic on its respective surface, whereas
the previous models?®***® have no internal resonant layers.
In the present model where the rational surfaces lie at the
plasma boundary (just outside the equilibrium current layer),
the resonant ideal limit 7, — oo shields resonant perturba-
tions from reaching the wall. The non-resonant case (i.e., the
sharp-boundary model without rational surfaces) is recov-
ered in this model by taking the limit 1, — 0. Figure 11 plots
the four resonant branches along with the non-resonant resis-
tive-wall and non-resonant ideal-wall branches. Here, the
cross-section is taken to be circular, with ¢, = 2.1, ¢ =
0.25, r, = 1.33a¢ and Q = 0. The finite dissipation time-
scales are set in units of Alfvén time to 7, = 10° and
7, =5 x 10*. In the limit 7, — 0, the new model presented
in this paper recovers the classic non-resonant ideal kink f3-
limits of Freidberg and Haas*® (both with and without a per-
fectly conducting wall); see Fig. 11. Here, the cross-section
is taken to be circular, with ¢, = 2.1, ¢ = 0.25, r, = 1.33aq,
and Q = 0. The finite dissipation timescales are set in units
of Alfvén time to 7,, = 10 and 7, = 5 x 10*. In the opposite
limit 7, — oo, the resonant boundary condition becomes sim-
ilar to the ideal boundary conditions of modern stability
codes such as DCON.* The resistive-plasma (finite t,)
branches, while connecting to the resonant-ideal branches at
high yt4, are observed to coincide with the non-resonant
(1, = 0) limits, independent of the value of t,. Just as the no-
wall and resistive-wall stability limits coincide,"® so do the
non-resonant (7, = 0) and resonant resistive (finite 7,) limits.
This implies that, at zero plasma rotation, the resistive-
plasma values of ., in this paper can be compared with
previous results of non-resonant ideal models.

VIl. COMPARISON WITH NIMROD AND DCON
RESULTS

A preliminary verification of the qualitative stability fea-
tures presented in this paper has been obtained via numerical
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FIG. 11. Comparison of growth-rate curves (on a logarithmic scale) for dif-
ferent plasma limits: non-resonant; 7, — 0 (dashed), resonant-resistive; finite
7, (dashed), and resonant-ideal; 7, — oo (solid). The f-limits are defined by
the marginal stability points where y — 0.
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FIG. 12. DIII-D model equilibrium and wall geometry used in NIMROD*’
simulations. The last closed flux surface of the plasma is shown in magenta.
A wall closely approximating the first wall (green) is used in the stability
calculations. The vacuum vessel and coils are shown for reference, but are
not included in the stability calculations.

simulations using the model DIII-D shaped equilibrium shown
in Figs. 12 and 13 using NIMROD,*” together with computa-
tions using DCON.* Using the geometric definitions of top
and bottom triangularity found in both codes, i.e.,

6= R —RZww))/a, o= (R—R(Zun))/a, (26)

where @ = (Ryax — Rpin)/2 and R = (Ryax + Rpin)/2, the
DII-D equilibrium shown in Fig. 12, the standard
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FIG. 13. Equilibrium profiles used in NIMROD*" and DCON*® stability
simulations. The q profile is kept fixed as £ is increased.
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triangularity calculated by this method on the computed
equilibrium in Fig. 12 is J;, = 0.77. However, the standard
calculation does not take into account the ¢, factor used in
this paper. Also, the analytic form detailing the shape in Egs.
(1) and (2) cannot exactly match the shape of this numerical
equilibrium which is based on a DIII-D experimental recon-
struction. For a more meaningful comparison, the shape of
the equilibrium in Fig. 12 can be approximated using the
standard definitions for the geometric parameters Ry = 1.67,
a=0.645, and x = 1.86, and using 6, ~ 0.17 to give an
effective 0 ~ 0.35. The profiles of the equilibrium are para-
metric and chosen to represent a realistic (L-mode) case
which is stable to resistive MHD without a wall at low f.
The pressure in this case P = Pyexp (—2¢) + P,, where P,
is specified to reduce the edge pressure to zero. At low f, the
current profile is specified with a parametric function to be
flat in the core and rapidly reduces to zero at the boundary,
giving a monotonically increasing ¢ profile. The total current
is then specified to set the safety factor on axis ¢o = 1.25
with a toroidal field of 17T at R. Given this stable equilibrium
at low f, the pressure is increased multiplicatively while
holding the ¢ profile fixed, finding a new current profile to
solve the equilibrium. Resultant profiles for a higher f§ equi-
librium are shown in Fig. 13, where a moderate variation in
the current profile shape can be seen.

For the NIMROD simulations, the DIII-D wall structure
as shown in Fig. 12 is used, the Lundquist number is S = 107
with Spitzer resistivity # ~ T2, g,,= 1.25, and there is
no equilibrium rotation. The NIMROD results also have the
viscosity kept fixed, with the Prandtl number approximately
equal to 50, and the resistive wall time is set to 2 X 107%s.
This wall time is set to keep the ratio of tearing to wall time
(the relevant timescale for the RPRW mode) for the domi-
nant mode surface (m/n = 2/1) of the simulation compara-
ble to the ratio found in DIII-D plasmas with S ~ 10% and
Ty ~ 2.4 X 1073 5. The results are shown in Fig. 14, where
the growth rate of the least stable mode (as f is increased) is
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FIG. 14. Resistive plasma f-limits and growth rates calculated using
NIMROD.*” Also shown are the ideal plasma f-limits calculated using
DCON* with and without an ideal wall. For the equilibrium used in the sim-
ulations, the IPRW and RPIW f-limits are very close (with [IPRW being
slightly lower than RPIW).
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shown using NIMROD for either a resistive or ideal DIII-D
like wall. DCON was used to obtain the ideal plasma f-lim-
its in the figure, termed the resonant-ideal f-limits in Sec.
VI, which effectively sets the resonant B, to zero on each
respective rational surface. The DCON cases were run with
and without an ideal wall (the ideal plasma no wall limit is
the IPRW f-limit in the case of zero rotation). The DCON
simulations use the VACUUM code®” for modeling the
region outside the plasma, set with a conformal wall outside
the last closed flux surface at a normalized minor radius of
r/a = 1.4. This wall distance is typical for matching the
ideal limits with the actual DIII-D wall shape for equilibria
like the ones used here, although it can vary with equilibrium
details. For the equilibrium used in these simulations, the
middle two f-limits are very close (see Fig. 14), with the
IPRW limit being slightly lower than the RPIW limit. Recall
in Secs. IV B and V, that rotation stabilizes the RPRW mode
up to the next ideal limit as f§ is increased; this limit is either
Byp—in» associated with the linear onset of a TM-dominated
instability, or is f8;,_,,, associated with the linear onset of a
RWM-dominated instability. The fact that the two limits
IPRW and RPIW are so close suggests that the equilibrium
for numerical simulation is near a point in parameter space
where the limits would interchange, and thus, the mode
behavior under rotational stabilization would change. This
result is consistent with the effective triangularity 6 ~ 0.35
being close to and somewhat above the transition in Fig. 9 at
0 ~ 0.29. As the analytic form in Egs. (1) and (2) cannot
accurately capture this numerical boundary shape, the spe-
cific value of the effective triangularity is less important that
the fact that it is clearly somewhat above 0.29, the transition
point in the order of the IPRW and RPIW limits.
Nevertheless, the qualitative behavior of stability, including
the changing of the order between the f limits RPIW and
IPRW, is well captured by the sharp boundary model.

VIIl. CONCLUSIONS

A new sharp-boundary model has been developed to
study the impact of shaping on the stability of MHD modes
in a tokamak, including both plasma and wall resistivity. The
model adapts an error field response model by Fitzpatrick*®
to include (i) vertical asymmetry, (ii) toroidal curvature cor-
rections, and (iii) a resistive wall surrounding the vacuum
region outside the plasma. By scanning a broad parameter
space, the model was used to examine the maximum extent
to which rigid plasma rotation can raise the f-limit of the
least stable mode, denoted f,,,_,,, for its combined resistive-
plasma resistive-wall properties.

These modifications of Ref. 46 facilitate the derivation
of a new resistive-plasma resistive-wall dispersion relation,
for exploring the growth rates and stability limits over a vari-
ety of timescales; ideal, resistive-wall, and tearing. The
sharp-boundary approach makes it efficient to scan stability
over an individual parameter (such as f, safety factor, wall
distance, elongation, triangularity or vertical asymmetry)
while keeping the rest fixed. The qualitative study of a broad
parameter space is designed to supplement and guide investi-
gation by quantitative stability codes such as MARS,*
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DCON,* or NIMROD.*” By locating the sub-domains of
interest, the model may be used to guide the investigation of
larger codes in determining optimal design parameters for
future tokamak devices.

The presented calculations demonstrate a new approach
to shape optimization, based on maximizing the p-limit
achievable with stabilization by rigid rotation or an equiva-
lent feedback control with imaginary 0B,-gain.

The analysis in this study is based on the 4-f5 formalism
of Brennan and Finn,** dividing the plasma response to rota-
tion or feedback according to the four f-limits; resistive-
plasma resistive-wall (f,,_,,), resistive-plasma ideal-wall
(Byp—iw)> ideal-plasma resistive-wall (f;,_,,), and ideal-
plasma ideal-wall (B;,_;,), calculated without rotation or
feedback. In the absence of rotation, increasing f; causes the
least stable mode to go unstable at the f,, ,, limit. To
achieve higher f3, the mode is shown to be stabilized by rota-
tion (comparable with the wall-time or the tearing-time) up
to the first ideal limit; this limit is either f,,_;,, associated
with the linear onset of a TM-dominated instability, or is
Bl»p_rw, associated with the linear onset of a RWM-dominated
instability.

Extending existing predictions that the plasma-wall dis-
tance can interchange the order of the rp-iw and ip-rw f-lim-
its,”** present results show that the safety factor, elongation,
and triangularity can all introduce similar mode transitions,
which affect the ff-limit achievable in the presence of plasma
rotation. The shaping window which maximizes the f-limit
with rotational stabilization is found to reside around the
transition point between f;,_,,, and f,,_;,, which defines a
local optimum in the parameter space. Beyond this point,
excessive elongation or triangularity is found to severely
reduce the f-limit achievable with rotation by strongly
reducing the f3;,_,,, limit (associated with RWM-dominated
behavior) below the f,, ;, limit (associated with TM-
dominated behavior).
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APPENDIX A: GRAD-SHAFRANOV SOLUTION FOR A
SHARP-BOUNDARY MODEL

Let (R,¢,Z) be the standard right-handed cylindrical
polar coordinates. The generalized cross-sectional coordi-
nates, (r, ), are mutually perpendicular to the axisymmetric
coordinate ¢. Following Connor and Hastie,> (R, Z) are
expressed as a Fourier series over (r, 0). The present formu-
lation extends that of Ref. 55 to include the vertical asymme-
try, by including both symmetric and asymmetric shaping
parameters, respectively, labeled S, and C,. The signs pre-
ceding the shaping parameters are chosen to guarantee the
orthogonality of the external contravariant basis vectors, as
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in Eq. (A6). The radial shape functions S, (r) and C,(r) are
determined by an O(e) correction to the Grad-Shafranov
pressure balance. The Grad-Shafranov equation is expanded
up to O(¢?), following the steps used by Fitzpatrick,
Gimblett, and Hastie,*® resulting in a shape equation for the
vertically asymmetric terms C,(r), found to independently
satisfy

i (A0

!/

!+ <Z(rf‘) —1>c;, —(n* - 1)% =0.
This is the same equation as for the vertically symmetric
components S, (r). Here, fi(r) = y/(r) describes the poloidal
field distribution. The shape functions are resolved in the
limit of a d-function current at the plasma boundary. In order
to permit a non-trivial Grad-Shafranov solution, a small flat-
current region is maintained inside the plasma. The inner-
most surface r =ry is kept finite in order to avoid numerical
issues near r =0.

A general flat current profile corresponds to a radial
poloidal field distribution fi(r) o r, according to Ampere’s
law. In the vacuum region beyond the plasma current, the
poloidal field decreases as fi(r) oc 7~!. These poloidal field
functions result in a pair of shape equations independent of
the equilibrium current magnitude and pressure. The regular
solutions for the shape functions [according to Eq. (A1)] are
given by

Sy, Cu(r < 1) ~ "1, (A2)

S, Cu(r > 1) ~ =71, (A3)
In the present model parametrization

[r —e(r)]cos 0 + t(r) cos 20 — d(r) sin 20
1 —e,

R=1/e+ ,

(A4)

[r+e(r)]sin0 — t(r) sin 20 — d(r) cos 20
1 —e,

Z= » (AS)

we include the vertically symmetric terms representing elon-
gation e(r) = S, and triangularity #(r) = —S3, and a verti-
cally asymmetric term d(r) = —C3; which introduces a
separate top and bottom triangularity. For convenience, the
non-constant part of the major radius is denoted g(r, ), since
a recurring factor of R/Ry = 1 + g appears throughout the
analysis.

Note that the coordinate parametrization in Eqgs. (A4)
and (AS) is designed so that the covariant derivatives satisfy
the orthogonality relations

89R - —r&Z, 892 - r@,.R, (A6)
which guarantee the orthogonality of the basis vectors,
Vr-V0 = 0. Orthogonality simplifies the external metric
coefficient

_ |onxP?

72

|
Vr[* 2|VoP

W = 0% =

(A7)
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required for the 6-line element dly = rhd0, the surface area
element ds = rhRd0d¢, and the volume element d’x = rh?
Rdrd0d¢.

The radial structure required by Egs. (A2) and (A3),
which extends the original Fitzpatrick parametrization*® with
vertical asymmetry, is given by

- (r—ro)/(1 =rg), ro<r<l1
e(r) = ea{ 1r, 1<, (A8)
#(r) _ te [r(r—r0)/(1=19), ro<r<l1 (A9)
dir)y d, | 1/, 1<r.

The finite innermost surface r = ry > 0 is designated to pre-
vent numerical issues, and to initialize integration through
ro <r <1 with decoupled -cylindrical-like solutions
Viu(ro) o rfl. Throughout this paper, we set o = 0.3. This
set of non-orthogonal internal coordinates and orthogonal
external coordinates is depicted in Fig. 15. The constants are
related to the boundary shaping parameters in Egs. (1) and
(2) by

k-1 P 20, 29,
k41 Y k41 Y k41U

(A10)

€q

The resulting contravariant derivatives are obtained by the dual

: _7-1(0Zp _0R7% _ 7-1(drR 7
relations Vr=J (WR _WZ> and VO=J (WZ
—%Ii’ ). Finally, the toroidal component satisfies |V = R~!

(r,0).

The field perturbations throughout the volume must sat-
isfy Laplace’s equation, neglecting the axisymmetric O(e?)
terms. In the internal region, (rp < r < 1), this equation

FIG. 15. Flux surfaces of constant r (blue), surfaces of constant 0 (black), a
resistive plasma boundary defined by r=1 (red), and a resistive wall (red).
Here, the shape is given by k = 1.8, §, =0.35and 5, = 0.26, parametrized
by Eq. (3) with values k = 1.8, 6, = 0.14, and §, = —0.07. The coordinates
begin at a finite innermost surface ry = 0.3 to avoid numerical issues near
r=0.
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retains the form derived by Fitzpatrick in Ref. 46 Egs.
(48)—(56), but with an additional toroidal factor 1 + eg(r, 0)
multiplying each of the metric coefficients.

In the external region, 1 < r, including the toroidal cur-
vature term neglected in Ref. 46 modifies the form of
Laplace’s equation to

d( av, , av,
m) - _ E X
Tar <' dr) Vi g

in terms of the vacuum region coupling matrix, which can be
expressed analytically as

0g
Xk = Lmk{er E}

€ e.\ 1
- 1— e, |:<I‘ +I’> 5 (5m+],k + 5m71,k)

tq
2 (Omiok + Om—oi) —

(A11)

.dq
i3 (Omi2k — Om—2) |-
(A12)

The Kronecker-d matrices 0, =1 and 0y, x+» show how elon-
gation introduces additional m=*1 coupling, and triangularity
and vertical asymmetry introduce m=2 coupling.

APPENDIX B: FITZPATRICK MODEL TEARING LAYER
RESPONSE

The tearing layer formulation employed by Fitzpatrick
in Ref. 46, is adapted to incorporate the effects of toroidal
curvature in the outer region. While the model is con-
structed to accept any tearing layer regime, present calcula-
tions apply a constant-iy visco-resistive®™>* (VR) layer
condition. Each tearing surface r; imposes a boundary con-
dition similar to the resistive-wall condition in Eq. (6),
except applied separately to each resonant harmonic. In
addition, the growth rate in the tearing equation, unlike that
appearing in the wall equation, is Doppler shifted due to
plasma rotation. Fitzpatrick’s straight field-line angle is mod-
ified slightly by the toroidal curvature factor 1+ eg(r,0),
and becomes

0
Un(0) = J hn(0) do. (B1)

0 qmém(e)(l + Egmw))z

Here, the subscript m denotes evaluation at the resonant m/n-
surface, with fixed n=1. The equilibrium poloidal field
B, = Bg(r =ry,) can be approximated by the same func-
tional form at r,, as at r = 1., with the resonant-surface
poloidal field distribution solved analogously to Eqgs. (4) and
(5), except for ¢,, = m/n leading to a different free parame-
ter to replace B,.
A modified tearing surface coupling matrix

1 2n
ylen) = %J (1 + egm(0)) cos [mu,, (0) — m'0]d0  (B2)

0

presently yields the resonant layer response
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dav
V Tmt 4 - (tear) U'" (tear) lear _k B3
[ ]1,,,, )2 Dm‘c m Z m'm km dr ( )

I'm

for each rational surface r,. Each has a corresponding
Doppler-shifted growth rate y,,, =y + inQ,, layer time 1,
and associated geometric time factor

21 3.2 -1
gliea) — {;J d0< " 4)} (B4)
Tlo B, (0)(1 + €gn(0))

analogous to the wall matrix in Eq. (10) corresponding to a
multi-harmonic geometric time factor. The formulation of
Ref. 46 neglects this tearing layer integral, effectively apply-
ing a cylindrical low-f approximation. Noting the typical
tokamak ordering of the poloidal field B,, = éo(r =Tp) ~E
the integrand above appears as O(€?) but is actually O(e).

Following Ref. 46, the layer response is simplified in the
limit where the rational surfaces all lie just outside of the
plasma edge for numerical convenience in the outer region.
In this way, the resonant surfaces are combined by taking
T = 1y T — 14, @ — Q, hm(e) - ha(e)s and gm(e)
— g,(0). Artificial singularities at the plasma boundary are
avoided by calculating the equilibrium field distribution
B,,(0) at the resonant layer with g,, # ¢,. With a unique
poloidal field distribution, each layer maintains its own geo-
metric coupling matrix U"®) and geometric time factor
2  After taking the limit and summing over all rational
surfaces, o < ¢m < qq, the total resonant response at r,, — 71
— 1, is written as

]tizctear '))D 1 (BS)
in terms of the tearing layer response matrix
e’ =t > BUEIUETT B6)

mo<m<my

which combines all of the relevant rational surfaces in the
range nqgo < mo < ... < my < nq,. This tearing formulation
agrees with that of Ref. 46 for the case of high aspect-ratio
and vertical symmetry. This tearing response matrix enters
the model dispersion relation via the perturbed field relation
in Eq. (18).

In the language of the tearing theory, the inner solution
is given by a constant-i visco-resistive’>>* diagonal matrix
Apik(vpT:) = ypTi0mk (Whereas the other terms in Eq. (B5) all
belong to the outer solution A"). Other tearing regimes may
be conveniently substituted into this formulation by replac-
ing the linear y, 7, with different functional forms (for exam-
ple, (VD‘E,)S/ % in the resistive-inertial regime), while keeping
the outer geometric coupling terms unchanged. This is yet
another advantage of the sharp boundary model construction
presented in this paper.
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