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Abstract

A number of physics problems can be modeled by a set of N elements, which have pair-wise
interactions with one another. The use of such elements for the evolution of vorticity in fluid flows
and the calculation of the velocity field from the evolving vorticity field is well known. Fast
multipole methods for fluid flow problems have been developed in the past to reduce computational
effort to something less than O(N) . In this paper we develop a fast multipole solver with application
to both 3-D radiation problems (calculation of the heat flux from the evolving temperature field in an
absorbing medium) and 3-D fluid flow. This is accomplished by using a more general kernel for the
associated volume integrals. This kernel also encompasses other applications such as gravitational
fields, electrostatics, scattering, etc. The present algorithm has been designed to have a very high
"parallel efficiency” when used on massively parallel computers. This feature comes at the expense
of computational effort, which is less than O(N) but greater than O(N) or O(NInN).

1 INTRODUCTION

Motivation for the present work results from a desire to perform fast yet accurate calculation of the three-
dimensional radiant heat flux field in an absorbing medium from the temperature field as well as calculation
of the velocity field from the vorticity field. For many problems, the proper discretization of the source ﬁeld

(vorticity or temperature) and target field (velocity or heat flux) will require the use of more than N =10°

6
source particles and N, =10 target points. In order to perform efficient calculations in such cases, the

combined use of fast multlpole expansions and massively parallel computing is required. We therefore seek
a solution methodology that will provide good "parallel effi01ency," while at the same time reducing the

CPU time from order O (NyV,) to something approaching O(NSNT)

Overviews of various fast multipole schemes and their applicability to a large number of physics problems
are given by Greengard [1] and by Strickland and Baty [2]. In these problems, the following types of sums
over a set of source elements typlcally occur:

f= Zwrr) zh <r>2gk_,(r M)

i=1 i=1
Such equations usually result from discretization of an integral over a volume The computational

complexity of computing N, values of f (r) in a direct manner is O(NN,). For the p order approximation
indicated in Equation (1), in wh1ch the source and target variables are separated, the complexity is reduced

to O[p(Ns+N,)] as a result of presumming over all of the source information.

+ This work was performed at Sandia National Laboratories, a multiprogram laboratory operated by Sandia Corporation, a Lockheed
Martin Company, for the U. S. Department of Energy under Contract DE-AC04-94AL85000 i



2 VORTEX AND RADIATION INTEGRAL EQUATIONS

2.1 Velocity/Vorticity Fields

According to the Helmholtz decomposition for a vector field [3], the velocity vector can be obtained from
the vorticity vector and the divergence of the velocity field in an infinite domain according to:

um) =V, x [0 )K @ -r)dV (') - V. [Da)KE-r)dv (), )
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where K (r ~r') =1/(4r | r —x'l) for 3-D fields, and D(r')=V . -u(r'). This may also be written as:
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Another useful quantity for 3-D flow field computations is the vector potential, which is in fact, the first
integral quantity in Equation (2):

2w = 2@, | @

2.2 Heat Flux/Temperature Fields
The heat flux field can be obtained from the infinite domain temperature field in an absorbing medium using
the following integral relationship [4]:
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Here ¢ is the Boltzmann constant, ¢ is the absorptivity coefficient at the source, and @ is the average
absorptivity along the line of sight between the source element and target point.

The divergence of the radiant heat flux is the radiative source term in the energy equation. The contribution
from radiation sources in the field to the divergence of the heat flux is given by the expression:

V-q(r)=a@)4oT* () - G()], (6)
where G(r) is the irradiance. The irradiance may, in turn, be expressed as:
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2.3  General Integral Forms

By inspection it can be seen that the various volume integrals given in Equations (2) through (7) can be

expressed in the following general form:
-—Ir—r'l
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where g(r) o h(x") represents a scalar or vector multiplication. The discrete form of Equation (8) is:
~&lr-r1 ~ir-r'l
e

f@=g®o Zh(r )V (r, -

i=]

=80 ZS(r er — ©)

where S;(r';)is a source strength and N is the number of sources in a particular source domain. It is also
worth noting that a number of other 3-D physics problems may be cast into the same general form with
various values of @ and n - i.e., gravitational problems [5], electrostatics, scattering problems [6], etc.
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3 METHOD OF SOLUTION

In this section we will present an overview of the domain decomposition scheme and the development of

multipole expansions for the general kernel in Equation (9). In Section 4, additional details will be given
concerning the relationship between the domain decomposition and the parallelization scheme.

3.1 Domain Decomposition

Multipole expansions are used to calculate the influence of a group of sources in a domain on a target point
located at a sufficient distance (relative to the source domain size) from the multipole expansion center. A
review of several spatial partitioning methods is given in Reference [2]. These methods have been loosely
categorized into Barnes-Hut [7] and Greengard-Rokhlin [8]-[9] domain decomposition schemes. The
distinguishing difference between the two methods is that the Barnes-Hut scheme utilizes only multipole
expansions about source domain centers, whereas the Greengard-Rokhlin scheme utilizes both multipole and
local expansions. The local expansions are essentially Taylor series expansions about the center of each
target domain. The Greengard-Rokhlin method of domain decomposition tends to be more difficult to
implement but yields computational time scalings that range from O(N) to O(N) depending upon the
specific implementation and the arrangement of source and target points. Computatlonal complexities for the
Barnes-Hut schemes range from O(NInN) to O(N)

We recently parallelized an axisymmetric fast solver for vortex rings that was developed by Strickland and
Amos [10]. The domain decomposition was based on that of Reference [9]. Anecdotal evidence from that
effort suggests that fast solvers based on the adaptive Greengard-Rokhlin scheme do not parallelize well. For
the present work, we chose to use a Barnes-Hut domain decomposition scheme that was developed by
Clarke and Tutty [11] for their two-dimensional vortex model; to our knowledge, this represents its first
application to a three-dimensional problem. As will be shown subsequently, this domain decomposition
scheme yields a very high parallel efficiency.

Clarke and Tutty’s [11] domain decomposition method is based on a binary tree structure of source boxes.
As shown in Figure 1, the boundaries of the source domain are first defined at the coarsest level by the range
of source positions in the x, y, and z directions. This box is then divided into two sub-domains along its
longest dimension such that an equal number of source points lie within each sub-domain. Each sub-domain
is then shrunken so as to exactly contain its designated sources. This process continues until the number of
sources at the finest level is below some specified value. Multipole coefficients obtained at the finest level
are shifted to their parent's center and added together. This continues until all boxes at all levels possess a set
of multipole coefficients. Advantages of this scheme include the facts that each box at a given level contains
essentially the same number of source points (the number of source points in boxes at a given level may

differ by one) and the shrunken domains allow one to use the multipole expansions more often.
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Figure 1. Spatial Partitioning of Vortex or Radiation Sources



3.2 Multipole Expansions

Greengard and Rokhlin [8] have developed three-dimensional expansions for the vorticity kernel but
expansions for the three-dimensional radiation kernel were not available prior to the present work. This
work follows the recent development by Gritzo and Strickland [12] of one-dimensional expansions of the
radiation kernel along with an associated fast solver that is also based on the Clarke-Tutty binary domain
decomposition.

3.2.1 Multipole expansions about the source domain center

In order to develop a multipole expansion for Equation (9) we only need to be concerned with expansion of

the kernel:
—alRI

e
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where IR I=R=Ir—r'l, as indicated in Figure 2.

target
R(R, o, B)
source —
r'(r,6,9) (1, 6,9)
‘\ center of expansion x
Figure 2. Multipole Expansion Geometry ‘ Figure 3. Spherical Coordinate System

‘We begin the task of constructing this expansion by noting that:

lr—r'|=\/r2 —2rr'cosy +r?, . 11

which allows the kernel to be represented in terms of the scalar values r and 7. Limiting the value of r/r to
always be less than unity, the functions of Equation (10) can be expanded i in terms of a Taylor series in r/r
of the form:

e—ar r mn
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where z=cosy . The coefficients a,, consist of polynomials in z. The coefficients of these polynomials are,

in turn, functions of n and or . The maximum error € may be found by use of Lagrange's form of the

remainder which is simply the p+1 term in the series with r being replaced w1th a value that is someplace

between r'and .

In order to make the expansion useful, the angles associated with r'and r must be uncoupled. In other
words, the z quantities in Equation (12) must be expressed in terms of the angles associated with r'and r,
as shown in Figure 3. To accomplish this, Equation (12) is first expressed in terms of Legendre Polynomials:

v(RI)= ﬁbmp,,, @. (13)

m=0



This expansion is achieved by using the orthogonality condition for Legendre Polynomials:

1
:[P" (2) P, (2)dz= 2m2 O (14)
Application of Equation (14) to Equation (13) leads to:
b = 2’"“ jP (D w(RDdz . (15)
Next, the Legendre Polynomials are replaced by using the addition theorem for spherical harmonics [13]:
P 5s Y10 0)0000.9) e

After performing the indicated mampulatlons, the details of which will not be presented here, the multipole
expansion for this kernel may be written as:

-alRI —a rp
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The values for the coefficients g ;, ,, for p=0to 3 are given in Table 1. It can be noted from the table that
the gg, j1.n coefficients are equal to zero for i + j equal to an odd integer or for j < i.

ik 8 i,jkon) i)Jj|k 8 i.jk.n)
01010 1 1131 3] n@EDERH2)/10
0j21]0 1/6 21210 1/3
0{2]1 (n-1)/3 21211 2n+D)/3
0122 n (n-1)/6 21212 n(n+2)/3
11140 1 3130 1/15
111 1 n 31311 (n+1)/5

1 (3]0 1/10 31312 (n+3n+1)/5
11311 (3n-2)/10 3131 3| n(n+2)(ntd/15
1 ]3] 2| (n-1(3nt2)/10

Table 1. gz Coefficients forp =0to 3

We are now in a position to write the multipole expansion for sources near the expansion center. Using
Equation (17), the multipole expansion can be written in terms of coefficients that are a function of the

strengths S ; (r;) and locations of the sources.

Ns
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By rearranging the sums, Equation (18) may be rewritten more compactly as:
Ns -er p p .
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We note that in the special case where & =0, one of the sums in Equation (18) can be removed since i=1

i=l

yields the only nonzero values of & . For the additional special case where n=1, we find that g, .., is

equal to 1 for m=i and zero otherwise. This allows removal of yet another sum to yield the familiar
multipole expansion for the vector potential associated with the vortex problem. The number of A I

coefficients for this special case is N, =(p+1)2. It can be shown that for the general case, the number of

Aco

A iy coefficients is equal to N, =(p+1)(p +2)( p+3)/ 6 which is exactly the number of coefficients

Aco
that would be required if one were to use a Cartesian coordinate system. As long as p is less than 8, N ,_,

never more than twice (p+1)? which is the number of coefficients required for the multipole expansion of
1/1R1. :

3.2.2 Shifted multipole expansion

source

r'(r, 0,¢) r(r, 6

center of old expansion ___,
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Figure 4. Geometry for Shifted Multipole

Shifting the multipole expansion of Equation (19) so that the Q,,,, gocfﬁciénté might be reused is an
involved process too lengthy to describe in detail here. In order to shift the expansion center according to
Figure 4, an addition theorem for the quantity:
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must first be developed. This quantity appears in the original unshifted multipole expansion of Equation
(17). This new addition theorem is obtained by multiplying Greengard's First Addition Theorem [14], which
contains the Spherical Harmonic function, times the multipole expansion of Equation (17). Multlphcatlon of
series is performed using relatlonshlps from Gradshteyn and Ryzhik [15]. This addition theorem is then
placed into Equation (19) and after considerable manipulation yields the following shifted multipole
expansion:

Ns
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m=01=0 k=—m



The Dy, g.5n+14-1y OPerator of Equation (21) is given by the following:
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The symbols (5 »I+)in Equation (25) are Clebsch-Gordon coefficients [16].

4 PARALLELIZATION

The Clarke-Tutty scheme, in which each parent box is divided into two child boxes with equal populations,
offers several advantages from the perspective of parallelization. First, the number of levels and boxes in the
tree are predetermined once the total number of sources is known, and the maximum number of sources that
a box on the last level may contain is specified. Secondly, all boxes on a given level will contain the same
number of sources (within plus or minus one). Thirdly, all branches of the tree extend to the same level.
Finally, a given box's descendants (ancestors) can easily be identified by recursively multiplying (dividing)
by two using integer arithmetic, without having to search the entire tree. Because the number of boxes at
each level will always be an integer power of two, we found it advantageous to require that the number of
processors applied to the problem also be an integer power of two. The number of boxes at each level is then
always evenly divisible by the number of processors, or vice versa, depending on the level and number of
processors chosen. Thus, by equipartitioning the boxes at each level among the processors, equipartitioning
of the sources, and hence computational effort, is also gnaranteed. Finally, simple algebraic relationships can
be used to determine, for a given box number, the number (rank) of the processor(s) holding its source data
and, conversely, on a given rank processor, the box(es) which hold source data.

Initially, it is assumed that the source data are distributed in some unknown fashion across all the processors.
As each level in the tree is generated using recursive coordinate bisection, sources are moved between
processors as needed to maintain the box/processor associations noted above. Once the last level is
generated, each processor independently computes multipole coefficients for each box for which it holds
source data. A global communication is then performed to transmit the results to all the other processors.
Each processor now holds multipole coefficients for all the boxes on the last level and can independently
compute, by adding and shifting coefficients from child boxes to their parent as noted earlier, multipole
coefficients at all the other (coarser) levels in the tree. This last step is admittedly redundant but, fortunately,
consumes a negligible amount of time. The end result is that all processors will hold a complete set of
coefficients for all boxes in the tree.

The target points are treated as a completely separate population from that of the sources, even though in
many applications the majority of target points may coincide with source points. Target points are
distributed evenly across all processors at the outset and since they do not participate in the, source tree
generation, remain on the same processor. To evaluate the field quantities for a given target, each processor
starts at the coarsest level in the tree and determines which, if any, boxes on that level areisufﬁciently
removed from the target that their influence can be computed using their multipole expansion. If a box's
expansion is used, any further contributions from any of its descendant boxes are ignored, since they have
already been included. This process is repeated for progressively finer levels in the tree through the last,
ignoring those boxes whose contribution has already been accounted for. The tree traversal is repeated anew
for each target; the result is that each processor will then hold the contribution to the field at all of its targets



from those sources lying in boxes for which multipole expansions can be used. Note that this step requires
no inter-processor communication.

It remains to compute the contributions from sources in the childless boxes on the last tree level whose
influence has not already been accounted for by the multipole expansions. These are computed as direct
pair-wise interactions between the target and the individual sources, and inter-processor communication is
necessary for this step. Each processor first computes interactions between its target points and those
childless boxes whose source points it is also holding. Direct interactions with a box's sources are performed
only if the childless box and all its ancestors fail the test for using the multipole expansion. Then a ring-type
communication loop is entered; on the first pass through the loop, processor q receives all the source data
from processor g-1 and stores it in a temporary buffer, while simultaneously sending a copy of its own
source data to processor q+1; then all processors compute direct interactions between their targets and the
just-received source data. On the second pass, source data is received from processor q-2, overwriting the
temporary buffer and q's source data is sent to processor q+2, efc., until, after N___—1 passes through the

proc
loop, every processor has had the opportunity of computing direct interactions between its targets and the
sources held by every other processor. After this loop is completed, each processor will hold the final field
values for all of its targets. The load balancing achieved by this algorithm has been excellent; for the three
largest populations considered in Section 5, the maximum difference in CPU times between processors was
always less than 1%.

5 BENCHMARK TESTS

Two sets of computations were made in order to obtain some assessment of the performance of the fast
solver. In the first set of computations, the irradiance field as given by Equation (7) was calculated for a
uniform temperature field on the inside of a cube. The sides of the cube were one optical path in length. In
the second set of computations, the velocity vector field given by Equation (3), as well as the vector
potential given by Equation (4), were obtained inside a cube with a uniform vorticity field specified to be

©=37+47 +5k)/~/50.

Performance results from the serial irradiance
calculations are shown in Figure 5. In making these

calculations, we found that the results are optimal B el gpaia: ——T T
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level of the tree is on the order of 30. It appears — B :;:@ ]
that the CPU time for the fast solver scales as | £ - /| /
approximately N*'? over the range of source and ||z, tn 01 F "
target. populations N = N, between 1,000 and || .~ oo1 b 3
200,000. For Ng =200,000, the fast solver | ixstCute

computes the irradiance field in less than 1/10 of pe1 el 3 i
the time required by the direct solution technique. Ngbexa 30 00001 b gy pro

For this particular set of calculations, only the Ng

zeroth and first order terms ( p=1) were used in

the multipole expansion. Errors in local values of Figure 5. Direct and Fast Solver CPU Time Comparisons
the irradiance were, in general, less than 0.1% of (Sun Sparc 20, 200 MHz Processor Speed)

the maximum irradiance in the cube.

Both serial and parallel computations were made for the vortex model problem. For these calculations, a
second order multipole expansion ( p =2) was used. This produces a relative RMS error between the serial

fast solver and the direct solver that is on the order of 10~ for the vector potential and on the order of 107

for the velocity field. For Ny =N, = 10°, the optimum number of sources per box at the finest level of the
tree was found to be on the order of 250. The optimum range is actually fairly broad, ranging from about



125 to 500. All parallel computations were performed on Sandia’s TeraFlop machine, using between 1 and
2,048 processors; each processor is an Intel Pentium Pro rated at 200 MHz with access to 128 MB of RAM.

A measure of the parallel efficiency can ,
be obtained by plotting the number of 10" g
processors, N divided by the s —ty,=8000 | ]

5 — N, =125000 | ]
& —Ny=1,000000 4

proc?
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time versus the number of vortices 10° | - & — Ny =oomon]
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N oo A bk
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are shown in Figure 6. For perfect
efficiency, curves of constant
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ey 107 |- S '
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b——.—l._—-.
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the parallellized vortex code with the
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Figure 6. Parallel Efficiency Trends

in Figure 6 are plotFed in Figure 7. As 10° e S
can be seen from Flgurfe 7, the present . 3 RE—————— Comp Py Com
fast solver is about 30 times faster than 10" |y Bau/paralel (presens work with p=2)
the direct solution for 107 vortices and 2 E | — Dicect (preseat work) ]
target points. In Figure 7 we also plot 10 E | -- tcm=&°°388Nv:':T : ’_;i
the CPU times of Warren and Salmon |, , 10°[ [ ="~ /
cpu” prac e 3
- E

[17] for the case where vortex elements

are initially placed on the surface of a L 5 -~ E
sphere and allowed to convect in the 10* R_ \ _ﬂ
flow. We present this data only to show ,
the similarity in the CPU time scaling 10 ¢ E
trend versus the number of sources and 10° R T A T R,
targets. There are several differences in 10’ 10" 10° 10° 10’
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computations were made and this

comparison should be viewed as being  Figure 7. Comparison of CPU Times for Parallelized Fast Solvers
only qualitative. .

6 SUMMARY

In this paper, we have presented a synopsis of the derivation of the multipole and shifted multipole
expansions for the three-dimensional radiation fast solver. A fast solver, that yields good parallel efficiencies
on massively parallel distributed memory machines, has been developed. This fast solver has been
benchmarked for a model problem in which the irradiance field was calculated from the temperature field.
For 200,000 sources and targets, the serial version of the fast solver was more than an order of magnitude
faster than the direct solver. The parallel version of the code was used on a model problem to extract the
velocity field from the vorticity field. Results for up to 125,000,000 sources and targets have been computed
on Sandia’s TeraFlop computer. High parallel efficiencies were obtained in all cases in which at least 1,000
sources and targets were placed on each processor.
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