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Abstract

Monte Carlo simulations of phosphate tetrahedron connectivity distributions in alkali and alkaline

earth phosphate glasses are reported. By utilizing a discrete bond model, the distribution of next-

nearest neighbor connectivities between phosphate polyhedron for random, alternating and

clustering bonding scenarios was evaluated as a function of the relative bond energy difference.

The simulated distributions are compared to experimentally observed connectivities reported for

solid-state two-dimensional exchange and double-quantum NMR experiments of phosphate

glasses. These Monte Carlo simulations demonstrate that the polyhedron connectivity is best

described by a random distribution in lithium phosphate and calcium phosphate glasses.
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1. Introduction

Phosphate glasses are technologically important materials for a variety of applications

including nuclear waste form encapsulant, glass-to-metal seals, optical devices and biomedical

components.[ 1-5] The continued interest in understanding the relationship between structure and

fl.mction has resulted in extensive structural investigations of phosphate glass systems. Solid-state

nuclear magnetic resonance (NMR) spectroscopy has proven to be a powerful tool for the

investigation of both local and medium range order (MRO) in amorphous systems .[6-8] Several

NMR active nuclei are available to probe the local structure in phosphate glasses, including 31P

magic angle spinning (MAS) NMR investigations of the phosphate backbone, [8- 11] *’AI MAS

NMR of aluminophosphate glasses,[ 12] plus 23Na and “7Li MAS NMR investigations of the

cation environment.[ 13-15] Information about the extended range connectivity within the

phosphate network has recently been obtained using two-dimensional (2D) NMR exchange

experiments, by reintroduction of the dipolar coupling during the mixing period or through 2D

double-quantum (2Q) MAS NMR techniques. For some phosphate glasses and ceramics both 2D

exchange experiments using the radio frequency dipolar recoupling (RFDR) sequence and 2Q 2D

MAS NMR experiments have been reported.[1 6-27].

A variety of different structural models have been proposed for phosphate glasses, and

have been used to explain the experimentally observed connectivities of the phosphate

polyhedron determined from 2D NMR techniques. The Q“ notation is commonly used to identifi

and describe the different phosphate tetrahedral species within the glass. For the Q“ notation, n

represents the number of bridging oxygens attached to the phosphate (where n = O, 1, 2, 3), and

can range from the fully polymerized Q3 tetrahedral species in P20~ to the depolymerized QO

orthophosphate. Additional superscripts can be included to describe the next-nearest neighbor

bonding distribution as detailed below. Three limiting case scenarios or structural models can be

presented to describe phosphate polyhedron connectivity; including a random bonding
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distribution of Q“ phosphate species, a structure incorporating alternation of Q“ and Q“ species, or

a structure with preferential segregation or clustering of similar Q“ phosphate species. All of these

limiting scenarios have been forwarded to describe the observed RFDR and 2Q NMR results.

Unfortunately, the majority of NMR investigations to date have evaluated these structural

models in a superficial and qualitative manner in my opinion. There has not been a detailed

investigation that predicts the network connectivity or next-nearest neighbor distribution that

would be observed for these different structural models. A lam and Brow [21] recent] y derived the

distribution of Q“ bonding that would result from a random distribution of bond formation in

binary phosphate glasses, but they did not evaluate the distributions for an alternating or

clustering model. The ability of different NMR techniques and experiments to distinguish

between these limiting case structural models also remains unanswered, and needs to be

addressed. In addition, variation of the Q“ polyhedron connectivity distribution for a structure that

is described by a combination of these different models also needs to be evaluated.

In this paper the discrete bond model (DBM) proposed by Sprenger er al.[28] was

implemented using Monte Carlo (MC) simulations to predict the phosphate tetrahedron

connectivity in alkali and earth-alkali phosphate glasses. We performed simulations of the three

limiting-case structural models; random, alternating and like species clustering. By varying the

relative energy differences between similar Q“-O-Q”, and dissimilar Q“-O-Q”’ type bonds, we

were able to evaluate the changes in the distributions of different connectivity patterns and

corresponding NMR observable over a continuous range from the pure alternating stru@ure to

the pure clustering structure.



2. Computational details

,

Monte Carlo simulations were performed by allowing bond formation between8192

phosphate Qn species placed on a non-constrained 3D lattice, with no long-range steric effects

included. The concentration of Q“ and Q“’species was derived from the glass compositions

assuming a simple binary glass system. The MC simulations were allowed to continue until all

bonding connectivity constraints were filfilled, followed by identification of the distribution of

next-nearest connectivities. The probability of bond formation was obtained utilizing a discrete

bond model (DBM)[28] to determine the relative bond energies (M) ( details given the results

section). This bonding probability was defined as P(AE) = e-~~; , where B = 1/kBT,with kB being,4

the Boltzman constant and T the temperature. The relative energies reported in the results section

are given in teITTM ofkBT.

3. Results

For binary phosphate glasses the addition of a modi~ing oxide (Rj~nO ) depolymerizes

the structure through the production non-bridging oxygens (NBO) from bridging oxygens within

cross-linked polyhedra. This depolymerization can be denoted by[29]

(la)

(lb)

(It)
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The connectivity of the resulting Q“ tetrahedral types is expected to vary based on the relative

energies for the different bond types present in the glass structure. [28] For a binary phosphate

giasses of composition, xllj~o”(l – X)P205, only the two glass compositional regions where

unique Q~-Q”’distributions occur are of interest; namely O < x <0.5 where only Q3 and Q2 species

are present, and 0.5< x <0.67 where Q2 and Q1 species are present. At higher modifier mole

fractions ( x > 0.67) only Q1 and QOphosphate species are present and do not produce different

distributions in connectivity. For these two compositional regions the different limiting-case

structural models are defined by

Random distribution

E -E -E
Q’-Q’ – Q’-Q’ – (23-Q’‘

AE=o; O<X<O.5,

E -E
Q’ -Q2 – Q’-Q’

= EQ2_Q,, AE=O; 0.5sx<0.67.

Alternate distribution

E~3_Q2<<EQ3_Q3= EQ2_Q2, AE = E(f_Q, – EQ,_Q,; 05 X <0.5,

E
Q’-Q’

<< EQ2_Q2= EQ,_Q,, AE = EQ,_Q2–EQ, _Q,; 0.5 S X <0.67.

Cluster distribution

E –E
Q’-Q’ – Q2-Q2

<< EQ3_Q2,AE = E@_Q2–EQ2_Q2; O<X <0.5,

E –E
Q*-Q’– Q’-Q’

<< EQ2_Ql,AE = EQ,_Q,–EQ2_Q,; 0.5 <X< 0.67.

(2)

(3)

(4)

In some phosphate glass systems disproportionation reactions lead to the existence of more that

two types of Q“ species being present within the glass for a given composition. For example, in

the zinc phosphate glass series, xZnOo(l-x)P20~ (0.5 < x < 0.71), both the Raman and 31PMAS

NMR results indicate some disproportionation of Q] species to produce QOand Q2 species.[30]

The connectivity of phosphate polyhedron in these non-binary phosphate glasses is therefore a

more complex issue, and will not be pursued here.



3.1 Random distribution

Analytical solutions for the distribution of next-nearest neighbor phosphate connectivity

resulting from a random distribution of bond types can be obtained for simple binary glasses. The

distribution of connectivities for a mixture of Q“ and Q“’ species is most easily described by the

fraction of Q“ species having differing number of Q“ groups directly bonded to it. Following the

nomenclature of Witter et. al,[27] this fraction is defined by~(Q’17tik) where n describes the

number of bridging oxygen attached to the phosphate tetrahedron, and the additional superscripts

ij,k denote the types of adjacent bonded Q’”tetrahedral. For example, flQ3’333) represents the

fraction of Q3 having three Q3 tetrahedral directly bonded, whileflQ~”z3) represents the fraction of

Q2 species that are bonded to a single Q3 and single Q2 tetrahedron.

For modifier concentrations between O < x <0.5 only Q3 and Qz species are present, so

the fraction of Qs tetrahedral having 0, 1, 2 or 3 Q~ species directly bonded in a random bond

distribution is defined by a binomial distribution [2 1,3 1]

f(Q3’333) = (1 -bQ2 )3 > (5a)

~(Q3>23’) = 3bQ2(1 -bQz )2 , (5b)

f (Q3>223) ==3b:, (1-bQ, )> ~ (5C)

f (Q3’222) = 3b32 ,
Q (5d)

where bQ2is the mole fraction of Qz bonds available. For modifier concentrations between Os x

<0.5 the mole fraction of Q3 and Q~ bonds is given by



~ =3–6x
(6a)

Q’ 3–4x’

b~, = ~ (6b)
3–4x”

Using Eqs. (5a), (5b), (5c), (5d) and (6b) the Q“ connectivities for the Q3 phosphate tetrahedron as

a function of modifier concentration can be calculated, and are shown in Fig. 1a. Similarly the

distribution around the Q2 tetrahedral species is again given by a binomial distribution

f(Q2>22) = (1-bQ3 )2 !

f(Q2’23) = 2bQ~ O 47Q3 )>

f(Q2’33) = 2b:, .

(7a)

(7b)

(7C)

Using Eqs. (6a), (7a), (7b) and (7c) the distribution of the Q2 species can be calculated and is

shown in Fig. 1b. These distribution curves for the random connectivity will be compared to the

distributions simulated for other structural models below.

For modifier concentrations between 0.5< x <0.67, where the glass is composed of only

Q2 and Q] species, the bonding distribution around the Q2 tetrahedral species is given by

f(Q2’22)= (1-~Qi)2, (8a)

f(Q2>’2)=b~,O-b~t)> (8b)

f(Q2*’)=b;,, (SC)

where the normalized mole fractions of the Q2 and Qi bonds is given by[32]



b~, ==, (9a)
3–4x

2x–1
b~, = —

3–4x”
(9b)

Using Eqs. (8a), (8b), (8c) and (9b) the distribution of Q* connectivities can be calculated and is

shown in Fig. 2a. The distribution around the Q] species is easily, defined by

f(Q”2) = bQ2 =1 -~(Q’”). (lo)

Using Eqs. (9a) and ( 10) the variation of the Q’ distributions as a function of modifier

concentration are shown in Fig. 2b.

3.2 Alternate connectivity

The distribution of connectivities assuming that Q’-Q’ ( i #j) bond formation is

energetically preferred over Qi-Q’ formation (Eqn 3) leads to glass structures in which the identity

of the Q“ species alternates within the network. Alternating Q“ structures have been proposed for

zinc phosphate glasses .[33] The MC simulation of the Q“ connectivity distributions as a “function

of differences in relative energies (M) are shown for the modifier concentrations range:, O< x <

0.5 (Figs. 3,4) and 0.5< x <0.67 (Fig. 5). For the largest AE the resulting structures show

alternation of Q“ species, and clearly dominate the distribution (Fig. 3a, 4a, 5a and 5c). For

example, below the metaphosphate concentration (0.0 < x <0. 5), thej(Q2>33) connectivity fraction

(Fig. 4a) is dominant for almost the entire range and only diminishes when the concentration of

the Q3 species becomes smaller than - 33%. Similarly, thej(Q3’222) fraction (Fig. 3a) becomes



dominant after fulfilling the initial coordination constraints of the QJ polyhedra. The alternation

of Q“ species is obtained in lieu of coordination environments that are not fully alternating. For

example, theflQ3’233) andflQ3’223) connectivities are no~ observed in Fig. 3a, nor is theAQ2’23)

coordination environment observed in Fig. 4a. As expected, when the energy differences between

bond types diminishes ( AE + O) the observed distributions approach those predicted for a

random distribution. Note the similarity between Fig. 3d and 1a, Fig. 4d and 1b, Fig. 5b and 2a,

and Fig. 5d and 2b. The MC simulations for the alternating distribution model also reveal that the

phosphate connectivities respond differently as a function of AE, and therefore provide an

additional way of estimating the degree of pure alternating connectivity versus a mixed

alternating-random connectivity distribution. For example, as Al?s are reduced to -1 through 5

kBT,for 0< x <0.5, the concentration of thej(Q3’z33) andj(Q3’z23) connectivities begin to increase

(Fig. 3b and 3c), signaling the breakdown of the pure alternating structure. The same trend is also

observed for the concentration of the fiQz’23) connectivity (Fig. 4b and 4c). For 0.5< x <0.67 this .

breakdown of the alternating connectivity is observed at much smaller &E’s, occurring between

-1 and 0.5 kBT(Fig. 5). The MC simulations for the alternating structural model described above

will be compared to the experimentally observed distributions from RFDR and 2Q NMR ‘

experiments in the discussion section.

3.3 Cluster connectivi~

Monte Carlo simulations assuming that Q;-Q’ bond formation is energetically preferred over

dissimilar Q’-~ (i #j) bond formation (Eqn 4) leads to network structures containing clustering

of similar Q“ species. The MC simulations of the resulting connectivity distributions as a function

of relative energy differences (Al?) are shown for the modifier concentrations ranges, 0.0 S x <

0.5 (Fig. 6) and 0.5< x <0.67 (Fig. 7). The impact of the cluster model on the distributions is



larger than the effect observed for the alternating structural model, and requires much smaller

&E’s for deviations from the pure clustering distribution to be observed. For example, when AE is

>2.5 k~T (not shown), the fiQ3>333)andj(Q2’22) species dominate with approximately unity for the

entire concentration range,os x <0.5,whereastheXQ2’22)andfiQ1”*) arethedominant sPecies

observed for 0.5< x <0.67. For AE <1 kBTthe distribution becomes quite complex as seen in

Fig. 6 and 7. In general, cluster type connectivities are preferred with a suppression of those

species that contain alternating connectivity. As noted above, the connectivity distributions

approach those distributions predicted for a random model as AE approaches zero (Compare Fig

6C and la, Fig. 6f and lb, Fig. 7C and 2a, Fig. 7f and 2b). The Al?s obtained from these

simulations do not correspond to any experimentally measured N, but do provide a metric for

comparison of the uniqueness and mixing of the various structural models. The results of these

MC simulations for the clustering structural model will be compared to the experimentally

observed distributions from RFDR and 2Q NMR experiments in the discussion.

4. Discussion

4.1 RFDR 2D exchange experiments

There have been several RFDR 2D exchange investigations reported for phosphate

glasses.[16, 17,21,22] The majority of these NMR investigations discuss connectivities

qualitatively due to concerns of differential exchange rates as well as interference from

unexchanged magnetization along the diagonal. Alam and Brow [21] recently reported a more

quantitative analysis of 2D RFDR exchange experiments for a series of lithium ultraphosphate

glasses. Unfortunately the individual~Q’’;/~) connectivities can not be directly measured from 2D



exchange spectra. Instead these experiments provide estimates of the relative concentration of Qn

- Q“’ linkages through integration of the exchange cross-peaks at short mixing times.[21] The

relative fraction of Q“-Q”’ linkages present in the glass structure can be related to the linear

combination of individual j(Q’’J~) values. For O< x <0.5, the relative fraction of bridging P-OB

bonds in a Q3 polyhedron that are attached to Q* species is defined by

P =1 –’PQ,~, =
[PQ3-0-PQ2 ] _ 1

Q’ .Q2 [P-OB]
- #(Q3’233)+;f(Q3’223)+J(Q3J22)> (11)

while the fraction of P-O bonds in the Q’ polyhedron that are attached to Q3 species is defined by

P +PQ,Q2 =
[pQ2@+Q] ] 1

Q2.Q3 – , [P-o,]
= #Q223) + f(Q233). (12)

Similar arguments for the polyphosphate region, 0.5< x <0.67, lead to the relative populations of

P-O bonds in the Q’ species that are bonded to Q1 species:

P –l– PQ2Q2=
[pQ’-()-PQ’ ] _ ~ ~ ~Q~.l~)+~(Q2,11)

Q’ .Q’ – > [P-o,] -2
(13)

Because the Q1 species has only a single bonding oxygen, the relative PQ,Q, distribution is simply

given by bQ,(Eqn. 9a). By using Eqs. 5-13 the predicted variation of linkages as a fimction of

modifier concentration can be determined, and are shown in Fig. 8 along with the experimental

distributions reported for the lithium ultraphosphate glassesseries.[21] For these comparisons the

limiting case scenarios were investigated by utilizing large AE during the MC simulations of the



alternate (M= 10 kBT) and cluster models (M?= 5 kBT). Fig. 8 shows that only the random

distribution describes the experimentally observed intensities of the cross-peaks. The alternating

structural model predicts that the Q3+Q3 (solid line, Fig. 8a) intensity decreases more rapidly

than observed experimentally, while Q3+Q2 intensity (dotted line, Fig. 8a) increases more

rapidly than the experimental data. For the pure cluster model the Q3+Q3 (solid line, Fig. 8a)

and Q3+Q2 intensities (dotted line, Fig. 8a) show little variation with modifier concentration, and

are near one and zero, respectively. For the Q2+Q3 and Q2+Q2 exchange intensities (Fig. 8b)

large deviations between experiment and simulations of both the alternating and clustering

structural models were observed, with only the random distribution model predicting the correct

dependence as a function of modifier content. As AE decreased for the alternating and clustering

models the resulting structures become more random, with corresponding improvement in the fit

to the experimental data. These results demonstrate that pure alternating or clustering structures

are not present in lithium uhraphosphate glasses.

4.2 Double quantum 2D exchange experiments

While there have been several double-quantum (2Q) 31PMAS NMR 2D exchange

experiments reported for phosphate systems, the non-quantitative 2Q experiment has hindered

analysis of connectivity distributions in glasses. Recently W itter and co-workers[27] presented a

novel approach utilizing the chemical shifts obtained from 2Q 3*PNMR experiments to

deconvolute the simple lD MAS 31Pspectra, for a series of calcium phosphate glasses. Using the

quantitative intensities of 1D MAS experiments, an estimate of the phosphate tetrahedron

connectivity distributions for these calcium phosphate glasses was obtained. More detailed

information is available from the 2Q experiment in comparison to the RFDR exchange

experiments, since individualflQ’’’U~) values can be directly measured. The reported experimental



distributions for the calcium phosphate glasses are shown in Fig. 9, along with the predictions for

a random, alternate (M= 0.25 k&) and a cluster model ( AE = 0.25 k~~. The experimental

observation of j(Q2>12)species for these glasses in comparison to the fiQ2’12) for a pure alternating

structure shown in Fig. 5a, and theflQ2’*2) for a pure clustering structure in Fig. 7a, immediately

eliminates both a pure alternating structure and a pure clustering structure, and demonstrates that

the bonding distribution is predominantly random. Observations of 2Q NMR Q2-Q]

connectivities, along with Q2-Q2 and Q[-Q1 connectivities in sodium phosphate glasses,[26] and

silver iodine-phosphate glasses[22] has also been reported. Those 2Q NMR results also prove that

for these glasses, pure alternating or cluster type structures are not present, but instead must

contain some amount of random connectivity. Preliminary 2Q NMR investigations of zinc

phosphate glasses suggest that an alternating Q“ structure maybe the dominant structural motif,

but a more detailed analysis of the NMR results is warranted.[34]

In attempt to improve the fit with the observed experimental distribution in the calcium

phosphate glasses reported by Witter et al. ,[27] simulations for smaller AE, representing mixed

random-alternate or random-cluster structural types, are shown in Fig. 9. The flQ2’o) distributions

have the largest deviation from the random connectivity predicted fractions (Fig. 9a), but neither

the alternating or cluster model can improve these deviations for all threefiQ2’Y) fractions. The

low energy cluster model (AE = 0.25 kBT) improves the fit of j(Q2Jz) andflQz”i2) fraction, but

offers no improvement in the fit ofj(Qz’* i). Similarly the low-energy alternate model (AE = 0.25

kBT) improves the fit of flQ2’*2) fraction, but under-estimates the j(Q2’z2) fraction and over-

estimates the flQ2’1’) fraction at larger modifier concentration (Fig. 9a). For theflQ*’i)

distributions (Fig. 9b) predictions by the random model provides the best fit. These results also

demonstrate that the variations in the model distributions ( in this casej(Q2>;;) andflQ1>i) ) as a

function of modifier concentration are dependent on the details of the model being investigated.



For these calcium phosphate glasses it is also possible to envision a structure where the

Q2 connectivity is described by a mixed cluster-random model, while the Q1 connectivity is

described by a pure random distribution model. Such structural models involving changes in the

connectivity pattern as a function of Q“ can quickly become very complex. With the limited

amount of experimental data directly addressing the next-nearest neighbor connectivity in

phosphate glasses, such Q“ dependent models were not pursued here. Given the estimated 25%

error reported for the 2Q NMR experimental distributions, [27] the connectivity distribution

results for the calcium phosphate -glass series are most accurately described by a random model.

5. Conclusions

Comparison of the distribution of next-nearest neighbor Q“ connectivities from Monte

Carlo simulations and experimental 2D RFDR and double-quantum 31PNMR experiments has

aHowed a critical evaluation of different structural models including random, alternating and

clustering bonding distributions. The variation in polyhedron connectivity as a function of the

relative difference in bond energies for the structural models investigated enable the uniqueness

of the various models to be determined. Comparison of the MC simulations and the experimental

distributions demonstrate that for both the calcium pyrophosphate glass series and the lithium

ultraphosphate glass series, the phosphate polyhedron connectivity is most accurately described

by a random distribution.
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Figures

Fig. 1 The phosphate tetrahedron distributions, a)j(Q3>tik)and b) flQ24) for the binary phosphate

glass, xR;jo.(1 – X) P205, 0< x <0.5. Details are given in the text.

Fig. 2 The phosphate tetrahedron distributions, a)j(Q2’u) and b)j(Q}”J) for the binary phosphate

glass,xR~~O*(l – X)P20~, 0.5 S x <0.67.

Fig. 3 The phosphate tetrahedron distributionsflQ3’;/~) for a alternating Q“-Qn’structural model in

the binary phosphate glass, xRJjnO*(l–X)P205, 0< x <0.5, for a) AE = 10 k~l”, b) AE = 5

kBT,c) M = 1 kBTand d) AE = 0.5 kBT. Details are given the text.

Fig. 4 The phosphate tetrahedron distributions j(Qz’ti) for an alternating Q“-Q’” structural model in

the binary phosphate glass, xR~~OO(l – X)PZ05, O < x <0.5, for a) AE = 10 kBT, b) AE = 5 kBT,

c) AE = 1 kBTand d) AE = 0.5 kBT.

Fig. 5 The phosphate tetrahedron distributions for an alternating Q“-Q’’’structural model in the

binary phosphate glass, xR~~O.(1 – x) PzO~, 0.5< x <0.67, for a)j(Q2”0) with AE = 1 kBT, b)

flQ2’ti) ~ = 0.5 kET, C)flQ1”) with AE = 1 k~Tand d) flQ1’i) with &E = 0.5 kBT.Details are

given the text.

Fig. 6 The phosphate tetrahedron distributions for a structural model incorporating Q“ clustering

for the binary phosphate glass, xR~~,O*(l – x) PzO~, 0< x < 0.5; a) flQ3’Y~)with AE = 1 kBT, b)



.$(Q3>~k)with AE = 0.5 kBT,c)fiQ3’tik) with AE = 0.25 kBT,d)flQ2>ti) with AE = 1.0 kBT,e)flQ2’y)

with AE = 0.5 kBTand e) flQ2’U) with AE = 0.25 kBT.Details are given the text.

Fig. 7 The phosphate tetrahedron distributions for a structural model incorporating Q“ clustering

in the binary phosphate glass, xR~~O*(l – X)P205, 0.5 ~ x < 0.67; a)flQ2’”)with~ = Ikd,b)

j(Q2>U)with AE = 0.5 kBT, c)flQ2”$ with AE = 0.25 kBT,d)flQ’”) with AE = 1.0 k& e)fiQ’”)

with AE = 0.5 kBTand e) flQ~7;) with AE = 0,25 kBT.

Fig. 8 A comparison between the experimental ( ●, O) RFDR 2D NMR exchange cross-peak

intensities and the theoretical predictions for a random distribution model, an Q“-Q’*’alternating

structural model (AE = 10 kBT), and an Q’zclustering model (M = 5 kET). In a) the Q3+Q3

intensities (0, solid lines) and the QS+Q2 intensities (O, dotted lines) are presented, while in b)

the Q2+Q intensities (0, solid lines) and the QZ+Q2 intensities (O, dotted lines) are presented.

Fig. 9 A comparison of theflQ2’u) andflQ1’;) connectivity distributions determined for calcium

orthophosphate glasses by 2Q 2D 3*P MAS NMR and the predicted distributions for a random

( ), alternating, AE = 0.25 kBT(@o*@@), and a cluster model, AE = 0.25 kBT(— ..). In a)

the experimentalflQz>22) (0), flQ2’]z) (0)andflQ2’11, ( H) values are shown, while in b) fiQl’2)-

(0), flQ]’l) (0) are presented. The concentrations were calculated from relative intensities

reported in Ref. [27].
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