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Abstract

Monte Carlo simulations of phosph"ate tetrahedron connectivity distributions in alkali and alkaline
earth phosphate glasses are reported. By utilizing a discrete bond model, the distributidn of next-
nearest neighbor connectivities between phosphate polyhedron for random, alternating and
clustering bonding scenarios was evaluated as a function of the relative bond energy difference.
The simulated distributions are compared to experimentally observed connectivities reported for
solid-state two-dimensional exchange and double-quantum NMR experiments of phosphate

glasses. These Monte Carlo simulations demonstrate that the polyhedron connectivity is best

described by a random distribution in lithium phosphate and calcium phosphate glasses.
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1. Introduction

Phosphate glasses are technologically important materials for a variety of applications
including nuclear waste form encapsulants, glass-to-metal seals, optical devices and biomedical
componeﬁts.[l-S] /The continued interest in understanding the relationship between structure and
function has resulted in extensive structural investigations of phosphate glass systems. Solid-state
nuclear magnetic resonance (N MR) spectroscopy has proven to be a powerful tool for the
investigation of both local and medium range order (MRO) in amorphous systems.[6-8] Several
NMR active nuclei are available to probe the local structure in phosphate glasses, including *'P
magic angle spinning (MAS) NMR investigations of the phosphate béckbone,[8-1 117AI MAS
NMR of aluminophosphate glasses,[12] plus »Na and *’Li MAS NMR investigations of the
cation environment.[13-15] Information about the extended range connectivity within the
phosphate network has recently been obtained using two-dimensional (2D) NMR exchange
experiments, by reintroduction of the dipolar coupling during the mixing period or through 2D
double-quantum (2Q) MAS NMR techniques. For some phosphate glasses and ceramics both 2D
exchange experiments using the radio frequency dibolar recoupling (RFDR) sequence and 2Q 2D
MAS NMR experiments have been reported.[16-27].

A variety of different structural models have been proposed for phosphate glasses, and
have been used to explain the experimentally observed connectivities of the phosphate
polyhedron determined from 2D NMR techniques. The Q" notation is commonly used to identify
and describe the different phosphate tetrahedral species within the glass. For the Q" notation, »n
represents the number of bridging oxygens attached to the phosphate (where n =0, 1, 2, 3), and
can range from the fully polymerized Q’ tetrahedral species in .P205 to the depolymerized Q°
orthophosphate. Additional superscripts can be included to describe the next-nearest neighbor

bonding distribution as detailed below. Three limiting case scenarios or structural models can be

presented to describe phosphate polyhedron connectivity; including a random bonding




distribution of Q" phosphate species, a structure incomorating alternation of Q" and Q" 'species, or
a structure with preferential segregation or clustering of similar Q" phosphate species. All of these
limiting scenarios have been forwarded to describe the observed RFDR and 2Q NMR resuits.

Unfortunately, the majority of NMR investigations to date have evaluated these structural
models in a superficial and qualitative manner in my opinion. There has not been a detailed
investigation that predicts the network connectivity or next-nearest neighbor distribution that
would be observed for these different structural models. Al‘am and Brow [21] recently derived the
distribution of Q" bonding that would result from a random distribution of bond formation in
binary phosphate glasses, but they did not evaluate the distributions for an alternating or
clustering model. The ability of different NMR techniques and experiments to distinguish
between these limiting case structural models also remains unanswered, and needs to be
addressed. In addition, variation of the Q" polyhedron connectivity distribution for a structure that
is described by a combination of these different models also needs to be evaluated.

In this paper the discrete bond model (DBM) proposed by Sprenger et al.[28] was
implemented using Monte Carlo (MC) simulations to predict the éhosphate tetrahedron
connectivity in alkali and earth-alkali phosphate glasses. We performed simulations of the three
limiting-case structural models; random, alternating and like species clustering. By varying the
relative energy differences between similar Q"-0-Q", and dissimilar Q"-0-Q" type bonds, we
were able to evaluate the changes in the distributions of different connectivity patterns and

corresponding NMR observables over a continuous range from the pure alternating strugture to

the pure clustering structure.




2. Computational details

Monte Carlo simulations were performed by allowing bond formation between 8192
phosphate Q" species placed bn a non-constrained 3D lattice, with no long-range steric effects
included. The concentration of Q" and Q" species was derived from the glass compbsitions
assuming a simple binary glass system. The MC simulations were allowed to continue until all
bonding connectivity constraints were fulfilled, followed by identification of the distribution of
next-nearest connectivities. The probability of bond formation was obtained utilizing a discrete

bond model (DBM)[28] to determine the relative bond energies (AF) ( details given the results
section). This bonding probability was defined as P(AE) = ¢™***  where B = 1/kpT, with kg being

the Boltzman constant and 7 the temperature. The relative energies reported in the results section

are given in terms of k7.

3. Results

For binary phosphate glasses the addition of a modifying oxide (R O ) depolymerizes
the structure through the production non-bridging oxygens (NBO) from bridging oxygens within

cross-linked polyhedra. This depolymerization can be denoted by[29]

2Q°+R3,0 - 2Q°, (1a)
2Q*+R2 0 > 2Q', (1b)

2Q'+R1T 0 - 2Q°. (1o)




The connectivity of the resulting Q" tetrahedral types is expected to vary based on the relative

energies for the different bond types present in the glass structure.[28] For a binary phosphate
glasses of composition, xR}, Os(1 - x)P,Oy, only the two glass compositional regions where
unique Q"-Q” distributions occur are of interest; namely 0 <x < 0.5 where only Q’ and Q’ species

are present, and 0.5 <x < 0.67 where Q? and Q' species are present. At higher modifier mole
fractions ( x > 0.67) only Q' and Q° phosphate species are present and do not produce different
distributions in connectivity. For these two compositional regions the different limiting-case

structural models are defined by

Random distribution

E 3_03 ZEQZ—QZ =E

: pon AE=0; 0<x<05, )

Eyp p=Ey y=Ey ,AE=0; 0.5<x<0.67.

Alternate distribution . -
Epgp <Ep p=Ep g, AE=Ey =By i 02x<05, 3
EQZ_Q, < EQqu = EQI_QX, AE = EQZ_Q2 —EQZ_Q.; 0.5<x<0.67.

Cluster distribution

EQ3_Q3 =EQ2_Q2 < EQ,_QZ,AE=EQ3_Q2——EQ2_Q2; 0<x<0.5, 4
EQZ_Q2 = EQ._Ql < EQZ_Q, ,AE = EQZ_Q. ‘Egz_gz; 0.5<x<0.67.

In some phosphate glass systems disproportionation reactions lead to the existence of more that
two types of Q" species being present within the glass for a given composition. For example, in
the zinc phosphate glass series, xZnOe(1-x)P,0s (0.5 < x < 0.71), both the Raman and *'P MAS
NMR results indicate some disproportionation of Q' species to produce Q° and Q* species.[30]
The connectivity of phosphate polyhedron in these non-binary phosphate glasses is therefore a

more complex issue, and will not be pursued here.




3.1 Random distributioh

Analytical solutions for the distribution of next-nearest neighbor phosphate connectivity
resulting from a random distribution of bond types can be obtained for simple binary glasses. The
distribution of connectivities for a mixture of Q" and Q" species is most easily described by the

fraction of Q" species having differing number of Q" groups directly bonded to it. Following the

nomenclature of Witter ef. al,[27] this fraction is defined by £(Q"”*) where n describes the

number of bridging oxygen attached to the phosphate tetrahedron, and the additional superscripts

- i,k denote the types of adjacent bonded Q" tetrahedra. For example, £Q****

) represents the
fraction of Q* having three Q’ tetrahedra directly bonded, while £Q>*) represents the fraction of
Q’ species that are bonded to a single Q® and single Q? tetrahedron.

For modifier concentrations between 0 < x < 0.5 only Q’ and Q* species are present, So

the fraction of Q° tetrahedra having 0, 1, 2 or 3 Q* species directly bonded in a random bond

distribution is defined by a binomial distribution [21,31]

F@Q7)=(1-b,), (5a)
FQ*)=3b,(1-5,), (5b) .
f(Q3,223) = 3béz (1 - sz ), . (SC)
FQ™) =38, | 5

where sz is the mole fraction of Q bonds available. For modifier concentrations between 0 < x

< 0.5 the mole fraction of Q* and Q* bonds is given by




b, = , (62)
¢ 3-4x

ho= 2 (6b)
¢ 3-4x .

Using Egs. (5a), (5b), (5¢), (5d) and (6b) the Q" connectivities for the Q phosphate tetrahedron as
a function of modifier concentration can be calculated, and are shown in Fig. la. Similarly the

distribution around the Q” tetrahedral species is again given by a binomial distribution

fQ@P)=(-by), (72)
F(Q**)=2b,(1-by), | (7b)
f(Q)=2b;. - (7¢)

Using Egs. (6a), (7a), (7b) and (7c) the distribution of the Q* species can be calculated and is
shown in Fig. 1b. These distribution curves for the random connectivity will be compared to the

distributions simulated for other structural models below.
For modifier concentrations between 0.5 < x < 0.67, where the glass is composed of only

Q’ and Q' species, the bonding distribution around the Q” tetrahedral species is given by

fQ**)=01-b,), (82)
f(Q*)=b,(1-0,), . (8b)
Q=8 ' (8¢)

~ where the normalized mole fractions of the Q” and Q' bonds is given by[32]




b 2 _4—6x (93)

p =271 (9b)

Using Eqs. (8a), (8b), (8c) and (9b) the distribution of Q? connectivities can be calculated and is

shown in Fig. 2a. The distribution around the Q' species is easily, defined by

f@Q?)=by, =1-fQ". (10)

Using Eqs (9a) and (10) the variation of the Q' distributions as a function of modifier

concentration are shown in Fig. 2b.
3.2 Alternate connectivity

The distribution of connectivities assuming that Q-Q’ (i # j ) bond forrﬁation is
energetically preferred over Q-Q' formation (Eqn 3) leads to glass structures in which the identity
of the Q" species alternates within the network. Alternating Q" structures have been proposed for
zinc phosphate glasses.[33] The MC simulation of the Q" connectivity distributions as a function

of differences in relative energies (AE) are shown for the modifier concentrations ranges, 0 < x <

0.5 (Figs. 3,4) and 0.5 < x <0.67 (Fig. 5). For the largest AE the resulting structures show

alternation of Q" species, and clearly dominate the distribution (Fig. 3a, 4a, 5a and 5c¢). For

2,33

example, below the metaphosphate concentration (0.0 < x <0.5), the fQ“"”) connectivity fraction

(Fig. 4a) is dominant for almost the entire range and only diminishes when the concentration of

the Q* species becomes smaller than ~ 33%. Similarly, the j(Q3’222) fraction (Fig. 3a) becomes




dominant after fulfilling the initial coordination constraints of the Q’ polyhedra. The altemgtion
of Q" species is obtained in lieu of coordination environments that are not fully alternating. For
example, the £Q**) and AQ**) connectivities are not observed in Fig. 3a, nor is the AQ7)
coordination environment observed in Fig. 4a. As expected, when the energy differences between
bond types diminishes ( AE — 0) the observed distributions approach those predicted for a
random distribution. Note the similarity between Fig. 3d and la, Fig. 4d and 1b, Fig. 5b and 2a,
and Fig. 5d and 2b. The MC simulations for the alternating distribution model also reveal that the
phosphate connectivities respond differently as-a function of AE, and therefore provide an
additional way of estimating the degree of pure alternating connectivity versus a mixed
alternating-random connectivity distribution. For example, as AE’s are reduced to ~1 through 5
ks T, for 0 < x < 0.5, the concentration of the AQ>***) and AQ***) connectivities begin to increase
(Fig. 3b and 3¢), s.ignaling the breakdown of the pure alternating structure. The same trend is also
observed for the concentration of the {Q™*) connectivity (Fig. 4b and 4c). For 0.5 £ x <0.67 this
breakdown of the alternating connectivity is observed at much smaller AE’s, occurring between
~1 and 0.5 £3T (Fig. 5). The MC simulations for the alternating structural model described above
will be compared to the experimentally observed distributions from RFDR and 2Q NMR

experiments in the discussion section.
3.3 Cluster connectivity

Monte Carlo simulations assuming that Q-Q’ bond formation is energetically preferred over
dissimilar Q'-Q/ (i # j) bond formation (Eqn 4) leads to network structures containing clustering
of similar Q" species. The MC simulations of the resulting connectivity distributions as a function

of relative energy differences (AE) are shown for the modifier concentrations ranges, 0.0 < x <

0.5 (Fig. 6) and 0.5 <x < 0.67 (Fig. 7). The impact of the cluster model on the distributions is




larger than the effect observed for the alternating structural model, and requires much smaller

AE’s for deviations from the pure clustering distribution to be observed. For example, when AE is
> 2.5 kgT (not shown), the j‘(Q3’3 3 ) and f(Q2‘22) species dominate with approximately unity for the
entire concentration range, 0 < x < 0.5, whereas the AQ*?) and AQ"') are the dominant species
observed for 0.5 < x <0.67. For AE <1 kT the distribution becomes quite complex as seen in
Fig. 6 and 7. In general, cluster type connectivities are preferred with a suppression of those
species that contain alternating conhec’tivity. As noted above, the connectivity distributions
approach those distributions predicted for a random model as AE approaches zero (Compare Fig
6¢ and 1a, Fig. 6f and 1b, Fig. 7c and 2a, Fig. 7f and 2b). The AE’s obtained from these
simulations do not correspond to any experimentally measured AE, but do provide a metric for
comparison of the uniqueness and mixing of the various struc.tural models. The results of these

MC simulations for the clustering structural model will be compared to the experimentally

observed distributions from RFDR and 2Q NMR experiments in the discussion.

4. Discussion
4.1 RFDR 2D exchange experiments

There have been several RFDR 2D exchange investigations reported for phosph-ate
glasses.[16,17,21,22] The majority of these NMR investigations discuss connectivities
qualitatively due to concerns of differential exchange rates as well as interference from
unexchanged magnetization along the diagonal. Alarﬁ and Brow {21] recently reported a more
quantitative analysis of 2D RFDR exchange experiments for a series of lithium ultraphosphate

glasses. Unfortunately the individual £Q"%) connectivities can not be directly measured from 2D




exchange spectra. Instead these experiments provide estimates of the relative concentration of Q"
- Q™ linkages through integration of the exchange cross-peaks at short mixing times.[21] The
relative fraction of Q"-Q" linkages present in the glass structure can be related to the linear

combination of individual £Q"%) values. For 0 <x < 0.5, the relative fraction of bridging P-Og

bonds in a Q® polyhedron that are attached to Q” species is defined by

L Qs_ : Q?
_1_p, [P OP]

P 3 T
e [P-Oz]

Q.

1 2
= gf Q)+ gf Q)+ £(Q7), (11)
while the fraction of P-O bonds in the Q* polyhedron that are attached to Q? species is defined by

Q@ _p?
PO rey e r@). (12)

P P,.=
@ T p.0,] 2

o =1

Similar arguments for the polyphosphate region, 0.5 < x <0.67, lead to the relative populations of

P-O bonds in the Q7 species that are bonded to Q' species:

PQZ_ - Ql 2,12 2,11
—1-p, =B OB L L qanyy pqem, (13)

P 2642 T
@ TP, 2

Q’.Q
Because the Q' species has only a single bonding oxygen, the relative PQl o distribution is simply

given by 'sz (Eqn. 9a). By using Egs. 5-13 the predicted variation of linkages as a function of

modifier concentration can be determined, and are shown in Fig. 8 along with the experimental

distributions reported for the lithium ultraphosphate glasses series.[21] For these comparisons the

limiting case scenarios were investigated by utilizing large AE during the MC simulations of the




alternate (AE = 10 k3T ) and cluster models (AE = 5 kT ). Fig. 8 shows that only the random
distribution describes the experimentally observed intensities of the cross-peaks. The alternating
structural model predicts that the Q’—Q’ (solid line, Fig. 8a) intensity decreases more rapidly
than observed experimentally, while Q’ —)Qzlintensity (dotted line, Fig. 8a) increases more
rapidly than thé experimental data. For the pure cluster model the Q*—Q’ (solid line, Fig. 8a)
and Q*—>Q? intensities (dotted line, Fig. 8a) show little variation with modifier concentration, and

are near one and zero, respectively. For the Q*—>Q’ and Q*—Q? exchange intensities (Fig. 8b)
large deviations between experiment and simulations of both the alternating and clustering
structural models were observed, with only the random distribution model predicting the correct
dependence as a function of modifier content. As AE decreased for the alternating and clustering
models the resulting structures become more random, with corresponding improvement in the fit
to the experimehtal data. These results demonstrate that pure alternating or clustering structures

are not present in lithium ultraphosphate glasses.
4.2 Double quantum 2D exchange experiments

While there have been several double-quantum (2Q) >'P MAS NMR 2D exchange
experiments reported for phosphate systems, the non-quantitative 2Q experiment has hindered
analysis of connectivity distributions in glasses. Recently Wiﬁer and co-workers[27] pre.sented a
novel approach utilizing the chemical shifts obtained from 2Q *'P NMR experiments to
deconvolute the simple 1D MAS *'P spectra, for a series of calcium phosphate glasses. Using the
quantitative intensities of 1D MAS experiments, an estimate of the phosphate tetrahedron
connectivity distributions for these calcium phosphate glasses was obtained. More detailed
information is available from the 2Q experiment in comparison to the RFDR exchange

21, ik

experiments, since individual £Q™"") values can be directly measured. The reported experimental




distributions for the calcium phosphate glasses are shown in Fig. 9, along with the predictions for
a random, alternate (AE = 0.25 k3T ) and a cluster model ( AE = 0.25 k5T). The experimental

2,12

observation of AQ*'?) species for these glasses in comparison to the Q™) for a pure alternating

structure shown in Fig. 5a, and the j(QZ’l2

) for a pure clustering structure in Fig. 7a, immediately
eliminates both a pure alternating structure and a pure clustering structure, and demonstrates that
the bonding distribution is predominantly random. Observations of 2Q NMR Q-Q!
connectivities, along with Q*-Q*and Q'-Q' connectivities in sodium phosphate glasses,[26] and
silver iodine-phosphate glasses[22] haé also been reported. Those 2Q NMR results also prove thét
for these glasses, pure alternating or cluster type structures are not present, but instead must
contain some amount of random connectivity. Preliminary 2Q NMR investigations of zinc
phosphate glasses suggest that an alternating Q” structure may be the dominant strucfural motif,
but a more detailed analysis of the NMR results is warranted.[34]

In attexﬁpt to improve the fit with the observed experimental distribution in the calcium
phosphaté glasses reported by Witter er al.,[27] simulations for smaller AE, representing mixed
random-alternate or random-cluster structural types, are shown in Fig. 9. The AQ>%) distributions
have the largest deviation from the random connectivity predicted fractions (Fig. 9a), but neither
the alternating or cluster model can improve these deviations for all three £Q>Y) fractions. The
low energy cluster model (AE = 0.25 kT ) improves the fit of £Q™) and AQ™'?) fraction, but

2,11

offers no improvement in the fit of {Q™""). Similarly the low-energy alternate model (AE =0.25

ksT) improves the fit of AQ*'?) fraction, but under-estimates the Q%) fraction and over-

estimates the AQ™"!

) fraction at larger modifier concentration (Fig. 9a). For the Q")
distributions (Fig. 9b) predictions by the random model provides the best fit. These results also

demonstrate that the variations in the model distributions ( in this case £Q*") and Q") ) as a

function of modifier concentration are dependent on the details of the model being investigated.




For these calcium phosphate glasses it is also possible to envision a structure where the
Q? connectivity is described by a mixed cluster-random model, while the Q' connectivity is
described by a pure random distribution model. Such structural models involving changes in the
connectivity pattern as a function of Q" can quickly become very complex. With the limited
amount of experimental data directly addressing the next-nearest neighbor connectivity in
phosphate glasses, such Q" dependent models were not pursued here. Given the estimated 25%
error reported for the 2Q NMR experimental distributions,[27] the connectivity distribution

results for the calcium phosphate glass series are most accurately described by a random model.

5. Conclusions

| Comparison of the distribution of next-nearest neighbor Q" connectivities from Monte
Carlo simulations and experimental 2D RFDR and double-quantum *'P NMR experiments has
allowed a critical evaluation of different structural models including random, alternating and
clustering bonding distributions. The variation in polyhedron connectivity as a function of the
relative difference in bond energies for the structural models investigated enable the uniqueness
of the various models to be determined. Comparison of the MC simulations and the experimental
distributions demonstrate that for both the calcium pyrophosphate glass series and the lithium
ultraphosphate glass series, the phosphate polyhedron connectivity is most accurately described

by a random distribution.
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Figures

Fig. 1 The phosphate tetrahedron distributions, a) Q") and b) fQ**) for the binary phosphate

glass, xR} O+(1—x)P,0;, 0 <x <0.5. Details are given in the text.

Fig. 2 The phosphate tetrahedron distributions, a) AQ*) and b) Q") for the binary phosphate
glass, xR}, Os(1-x)P,0;, 0.5 <x <0.67.

Fig. 3 The phosphate tetrahedron distributions AQ*™) for a alternating Q"-Q” structural model in
the binary phosphate glass, xR}, O«(1-x)P,0,,0<x<0.5, fora) AE =10 k37,b) AE =5

kT, c) AE =1 kgT and d) AE = 0.5 kpT. Details are given the text.

Fig. 4 The phosphate tetrahedron distributions fQ>”) for an alternating Q"-Q" structural model in
the binary phosphate glass, xR}, O+(1-x)P,0,,0<x<0.5, fora) AE = 10 k3T, b) AE =5 kT,

¢)AE =1kzTand d) AE = 0.5 kyT.

* Fig. 5 The phosphate tetrahedron distributions for an alternating Q"-Q" structural model in the
binary phosphate glass, xR}, O+(1-x)P,0;, 0.5 < x < 0.67, for a) AQ*Y) with AE =1 k3T, b)

AQ* AE = 0.5 ksT, ¢) AQ") with AE =1 kzT and d) AQ") with AE = 0.5 ksT. Details are

given the text.

Fig. 6 The phosphate tetrahedron distributions for a structural model incorporating Q" clustering

for the binary phosphate glass, xR5; O+(1—x)P,0,, 0 < x <0.5; a) AQ*™) with AE =1 k3T , b)




AQ¥*) with AE = 0.5 ksT, ¢) AQ*™) with AE = 0.25 k5T, d) AQ™) with AE = 1.0 k5T, €) AQ™)

with AE = 0.5 ksT and ) AQ>) with AE = 0.25 k3T Details are given the text.

Fig. 7 The phosphate tetrahedron distributions for a structural model incorporating Q" clustering
in the binary phosphate glass, xR}, Os(1—x)P,05, 0.5 < x <0.67; a) AQ™") with AE =1 k3T, b)
AQ*y with AE = 0.5 k3T, ¢) AQ™) with AE = 0.25 k3T, d) AQ") with AE = 1.0 &7, e) AQ")

with AE = 0.5 k3T and e) AQ") with AE = 0.25 k,T.

Fig. 8 A comparison between the experimental ( @, O) RFDR 2D NMR exchange cross-peak

intensities and the theoretical predictions for a random distribution model, an Q"-Q" alternating
structural model (AE = 10 k37), and an Q" clustering model (AE =5 kgT'). In a) the Q*-Q’
intensities (@, solid lines) and the Q°*—Q? intensities (O, dotted lines) are presented, while in b)

the Q*—Q® intensities (@, solid lines) and the Q>—Q? intensities (O, dotted lines) are presented.

Fig. 9 A comparison of the AQ*?) and Q") connectivity distributions determined for calcium

orthophosphate glasses by 2Q 2D *'P MAS NMR and the predicted distributions for a random

( ), alternating, AE = 0.25 kT (eeees), and a cluster model, AE =0.25 k3T (— #e).In a)
the experimental /Q>*) (@), AQ>') (O) and AQ™'") ( M) values are shown, while in b) fQ*})~

(@), AQ"") (O) are presented. The concentrations were calculated from relative intensities

reported in Ref. [27].
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