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Multivariate calibration techniques have been used in a wide variety of spectroscopic OSTI
situations. In many of these situations spectral variation can be partitioned into

meaningful classes. For example, suppose that multiple spectra are obtained from each

of a number of different objects wherein the level of the analyte of interest varies within

each object over time. In such situations the total spectral variation observed across all

measurements has two distinct general sources of variation: intra-object and inter-object.

One might want to develop a global multivariate calibration model that predicts the

analyte of interest accurately both within and across objects, including new objects not

involved in developing the calibration model. However, this goal might be hard to

realize if the inter-object spectral variation is complex and difficult to model. If the intra-

object spectral variation is consistent across objects, an effective alternative approach

might be to develop a generic intra-object model that can be adapted to each obj ect

separately. This paper contains recommendations for experimental protocols and data

analysis in such situations. The approach is illustrated with an example involving the

noninvasive measurement of glucose using near-infrared reflectance spectroscopy.

Extensions to calibration maintenance and calibration transfer are discussed.
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Introduction

Multivariate calibration has received significant attention in analytical chemistry,

particularly in spectroscopy. Martens and Naesl provide an excellent general reference

on multivariate calibration. Examples of multivariate calibration in a spectroscopic

context are associated with applications in the agricultural and food industries,

manufacturing industries, medical sciences4, the pharmaceutical industries, and in many

other contexts. See the review by Lavine6 for more examples.

The development of a multivariate calibration model in spectroscopy involves the

measurement of n specimens at q different wavelengths comprising the calibration set. In

the case of a linear multivariate calibration model, the resultant predictive model can be

expressed in the form,

j= bo+bl. x1+ b2. x2+... +bxq,q, (1)

where ~ is the predicted value of the analyte of interest for a new specimen given the

spectral measurements (xi’s) associated with the new specimen and the model parameters

(hi’s). Common methods for obtaining the model parameters include partial least-squares

regression (PLS) and principal components regression (PCR)l. The efficacy of the

predictive model depends on the applicability of the model form and how well the

calibration set represents the compositions of the new specimens on which the predictive

model will be applied. The efficacy of the predictive model also depends on how well

the calibration set spans instrumental/environmental conditions expected in the future.

This is particularly critical when spectral effects induced by instrumental variation (e.g.,

source fluctuations) and the instrument’s local environment (e.g., temperature) are

nontrivial when compared to effects introduced by varying the compositional factors7.
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In many situations, it would be desirable to apply the predictive model to spectra

obtained across and within different objects. It is assumed that the objects are dynamic in

the sense that the level of the analyte of interest can vary from spectrum to spectrum

within an object. In such situations, the nature of the spectral variation across objects

might make it difficult to develop a single model of the form in Equation 1 that is valid

across objects. However, if the intra-object spectral variation is similar across objects

and amenable to a model of the form in Equation 1, there is a viable alternative approach.

This approach, which is the topic of this paper, is to develop a generic model (operable

within an object) that can be adapted to each object separately. This paper contains

recommendations for experimental protocols and data analysis in such situations. The

approach is illustrated with an example involving the noninvasive measurement of

glucose using near-infrared reflectance spectroscopy where the objects are different

individuals. Extensions of this approach to calibration maintenance and transfer are

discussed.

Theory

Consider q-dimensional spectral measurements that are obtained within and

across a population of objects. Let xv = [xtil, Xvz,..., xu~] denote thejt~ spectrum

associated with the ithobject. This spectrum can be represented by

xo=p-+ai+zq,

where P=[,U1, P2,..., ~~ ] is the average spectrum across the population,

ai =[ail, ai2,..., aiq] is the specific effect of the ithobject on the spectrum, and

&ti=[&i,, &i2,..., &i~] is the specific effect of thej~~ spectrum of the ithobject. It is
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assumed that the ZYterm describes random spectral effects that, in a sense, have a

common distribution across objects. That is, these effects are just as likely to be

associated with one object as well as another. In contrast, the ai effects are specific to an

object. It is also assumed that the level of the associated analyte of interest varies across

the measurements of each object (e.g., the analyte of interest could be changing in time).

Furthermore it is assumed that a unit-change in the analyte of interest induces an identical

spectral effect across objects.

The usual strategy for developing a global model (one that is applicable across

objects) is to use a modeling method such as PLS or PCR in conjunction with an

appropriate calibration set containing spectra from multiple objects. The calibration set

consists of Xand Y, where X = [X1,X2, . . .. X1], Y= ~1, y2, . . .JYIl,xi = [Xii, %2, . . .. xinJ is

the nix q matrix (i.e. number of spectra by number of pixels) of the calibration spectra

from the iti of I objects, and ~i = [yiI, ~i2, ,..,yin) is the ni x 1 vector of the associated

analyte reference values. The dimensions of X and Y are Nxq and Nxl respectively,

where N = ~ ni . A linear calibration model is obtained by using a method such as PLS
isl

(or PCR) withXand Y. The resulting predictor of the analyte level associated with thej’~

spectrum of the i~kobject (denoted by yy) can be expressed as

The set of coefficients {bk}k.1,.... ~are sometimes referred to as final regression

coefficients. Note that Equation 3 can be expanded (via Equation 2) as

9

)~j=bo+~bk”(pk+aik+sgk ~
k=l
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In the usual strategy for developing a global model, the inter-object spectral effects and

intra-object spectral effects are not considered independently. That is, the model is

developed in view of the combined inter- and intra-object effects ( ai and Zv). As long

as both the inter- and intra-object effects are amenable to modeling, this strategy can be

effective. On the other hand, if the inter-object spectral effects are for some reason

difficult to model (e.g., the calibration data do not sufficiently span the inter-object

effects), then this approach may be ineffective.

An alternative approach involves modeling the intra-object spectral effects

separately and then adapting the model to a target object. In many cases, the intra-object

effects are small relative to the inter-object effects and are distributed similarly across

objects. The latter condition is assumed here. In this approach the calibration data are

mean-centered by object. That is Xm = [Xlm, Xzm,..., XIm ] and

~ =[ylm, y~,..., y~], where

Xp = [xzy , x; , m...~xini l=[xil ‘zi>xi2 ‘Xi>. -->xini ‘xi]

Y/w‘[J’’il-Yi7Yi2 ‘Yi~”””~Yi., ‘Yil?

1 n] 1 i’li
yi=—.

z ~J>~dJi=x”ZyJ. The mean-centering operation on the spectra
ni j=l i jnl

removes the average spectrum @) and the object-specific spectral effect ( ~i) from the

original calibration spectra leaving only the specific effect of thej~h spectrum of the itk

object (see Equation 1). That is

(5)

(6)

(7)

W’ and ~’ will heretofore be referred to as generic calibration data.
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Standard multivariate calibration techniques like PLS and PCR can be applied to

the generic calibration data to develop a calibration model that relates variation of the

analyte of interest to intra-object spectral effects. Note that the mean-centering

operations ensure that both ~ and ~c have a mean of zero. Thus it is unnecessary to

include an intercept in these modeling activities, resulting in a predictive model of the

form,

(8)

This model is referred to as a generic model as it is applicable to intra-object spectral

variation from all objects. The model coefficients ({g~)bl,,,., J are differentiated from

those in Equation 3. Because the generic model is developed with regard to intra-object

spectral variation only, these model coefficients will not generally be the same as those

associated with the global model ({b~}~l,,,., J. Note that the quality of the model

depends on the level of the intra-object variation of the analyte of interest (i.e. the

variation in ~c). For maximum benefit, it is important to observe each object in the

calibration set at a relatively wide range of analyte levels.

In order to be a viable predictor of the analyte of interest, the generic model must

be adapted to each new target object. The global model (in Equation 4) does this

adaptation implicitly through the fitted model coefficients that are developed in

recognition of inter-obj ect spectral

Equation 4, ~ bk “pk is a constant
k=l

a

effects as well as the intra-object spectral effects. In

that does not depend on i orj. Furthermore,

$ bk “~ik is an object-specific constant. Thus, Equation 4 can be rewritten as
k=l
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jv=di+~bk”&~k. (9)
k=l

Cast in this formulation, it is clear that di = ~ bk “a ik provides an adaptation to the it~
k=l

object through the interaction of the regression coefficients ({bk}) and the object-specific

spectral effects (at). Hence the adaptation is linear with respect to the object-specific

spectral effects.

In the case of the generic model, the proposed adaptation takes a similar form.

That is, for the P* prediction sample associated with the ~~target object (where the ~A

target object is not normally represented in the calibration set), we seek to find an

appropriate value of c~such that

9

~tp=ct+ ~ gk”&tpk

k=l

is a good predictor of yp. Equivalently, we want to find a value offi such that

9

ip ‘ft+~gk”xtpk
k=l

(lo)

(11)

is a good predictor ofy@ given the spectral measurement, xp~. A direct way to

accomplish this is to use one or more representative spectra and associated reference

values from the tt~ target object. Let Xt = [x~~,x~z,...,Xtii] and yt = ~~~,M2,. ... Ytit] denote %

representative spectra and associated reference values from the t~fitarget object.

Adaptation to the t~~target object is provided by

The predictor based onfi given in Equation 12 is constructed so that, over the nt
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representative spectrzq the average prediction will equal the average of the associated

reference analyte values. It is important to emphasize that this method of adaptation

depends on an accurate reference value for each representative spectrum that is used to

adapt. Inaccuracies in the reference analyte values will adversely affect the quality of the

adaptation.

An important benefit of the generic modeling approach is the potential for the

detection of outliers in prediction that is focused entirely on intra-object spectral effects,

In the case of the development of global models, outlier detection metrics are likely to be

based heavily on inter-object effects and, therefore, not be sufficiently responsive to

unusual intra-object effects. In the generic modeling approach, inter-object effects are

ancillary. While outlier detection metrics in the generic modeling approach can be very

effective for identi~ing anomalous spectra, some care is required in their construction.

In order to illustrate how outlier metrics can be constructed in the generic

modeling context, let dp = J+ – mean(XJ represent the deviation of thep~k prediction

spectrum from the average of the associated nf adaptation spectra with all spectra

associated with the target object. Note that the elements of dp can be rewritten m

dpk= Gpk– mean(ajk), (13)

since the object-specific spectral effects are removed from Xp via the subtraction of

mean(XJ. In the sense that object-specific spectral effects have been removed, dp

conforms to the modeling space given by ~. To continue, let the integrated unmodelled

residual of the p~~spectrum from the target object be defined by,

Rp = e@Tep,

where ep is the unmodelled portion of dp (see e.g., p. 291 in Martens and Naesl).

(14)
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Normally, a prediction spectrum is deemed anomalous if its integrated unmodelled

residual is unusually large when compared to the distribution of similarly computed

values from the calibration set. Here, however, due to the use of the adaptation spectra,

n~
one should compare StP = —. R@ with the distribution of Rti’s that are derived from

nt+l

nt
the calibration set. The normalizing factor — is needed due to the fact that the

nt+l

nt+l
variance of dpk is inflated by the factor — when compared to the variance of ~~kthat

nt

is associated with the calibration set.

Example – Noninvasive Measurement of Glucose

Accurate noninvasive measurement of in vivo glucose levels in diabetics via near-

infrared

spectral

number

spectroscopy has proved to be a very difficult task due to the relatively small

effect of glucose at physiological levels and the complexity of human tissue. A

of researchers and commercial entities have been heavily involved in this area

(see e.g., Heise8). Arnold et a19 discuss a number of the issues that confront those who

attempt to measure glucose noninvasively using multivariate calibration with spectral

measurements. The ultimate objective of these activities is to provide a mechanism for

diabetic subjects to accurately and conveniently monitor their glucose levels without the

pain and inconvenience associated with current monitoring technology that involves

measuring the glucose in blood obtained by pricking the skin. The purpose of this

example is to demonstrate the feasibility of coupling a generic model with subject-

specific adaptation to provide clinically uselid noninvasive measurements of glucose.

9
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Researchers at Sandia National Laboratories, the University of New Mexico, and

Rio Grande Medical Technologies, Inc. have conducted a number of clinical studies

associated with the noninvasive measurement of invivo glucose using near-infrared

reflectance spectroscopy. One such study is discussed here. To protect the interests of

the commercial party involved in this collaboration, many details of the study (which are

important but unrelated to the focus of this paper) are not discussed here. Nevertheless,

some of the relevant specifics concerning the study can be provided and are as follows.

Calibration data were obtained from 18 diabetic subjects who were repeatedly

measured over a span of 7 weeks. The intent of observing the subjects for such a long

period of time was to develop calibration data that spanned significant levels of natural

intra-subj ect physiological variation (including but not limited to glucose variation) and

sampling variation. In addition, the study protocol involved the deliberate perturbation of

the spectrometer and its local environment to induce instrumental/environmental effects

into the generic calibration data. These perturbations were carefilly selected to span the

expected long-term operating conditions of the instrument. Activities, such as these, are

extremely important for developing calibration data that will facilitate valid predictions

into the fi-dme7711.

Spectral and reference data were acquired twice per week from most subjects. A

few subjects were unable to keep all of their appointments to provide spectral and

reference data. During each appointment, 5 separate spectral measurements at different

spatial positions on the underside of the forearm were acquired over a 15-minute period

using reflectance sampling from 4200-7200 wavenumbers (390 discrete wavelengths

were involved). In addition, two capillary glucose reference measurements were

10



obtained via blood draws from each subject during each data acquisition period. The

blood draws were performed immediately before and after the acquisition of the spectral

data. The spectra, based on the logarithm of the reflected intensities, were not

background corrected. Time-based interpolation was used to assign an appropriate

capillary glucose reference value to each spectrum. A total of 1161 spectra (other

acquired spectra were deemed outliers and were discarded) and associated reference

glucose values comprise the calibration data.

The total variation in the spectra within the calibration set is due to a combination

of inter- and intra-subject effects. In the case of this example, intra-subject effects

include those effects associated with the deliberate perturbation of the spectrometer and

its local environment. The total spectral variation was decomposed into intra- and inter-

subject spectral variation via a wavelength-by-wavelength variance components analysis

of the calibration datal 1. Figure 1 displays estimates of the standard deviations of the

inter- and intra-subject spectral variation obtained by this analysis. The estimate of intra-

subject spectral variation is an aggregate measure obtained across all subjects. Clearly,

the inter-subject spectral variation dominates the intra-subject spectral variation. The

inter-subject effects were difficult to model in this particular experiment (where the

number of subjects was modest) and in many other related experiments where the total

number of subj ects was much larger. However, the intra-subject effects were found to be

consistent in nature across subjects. Thus, a generic modeling approach was deemed

appropriate.

In order to test the efficacy of the generic modeling approach, a generic

calibration model was developed by using PCR (no intercept) on the spectral and
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capillary glucose reference data that were mean-centered by subject (see Equation 8).

The resulting generic model coefficients ({g~}~l,.,., J are shown in Figure 2. In a

qualitative sense, this model corresponds well with the relatively strong glucose bands in

the vicinity of 4300 cm-l and 4400 cm-l. The generic model was then adapted to two

additional diabetic subjects who were distinct from the 18 subjects whose data were used

to develop the generic calibration data/model. The period of observation for these two

additional subjects spanned more than six months, beginning with the initial

measurements of the original 18 subjects. Thus, the two additional subjects were

observed for more than four months following the acquisition of the generic calibration

data. As in the case of acquiring the calibration data, 5 separate spectral measurements at

-different spatial positions on the underside of the forearm were acquired over a 15-minute

period. In addition, capillary glucose reference measurements were acquired fi-om each

of the two subjects during each data acquisition period according to the protocol

described earlier.

During the first 7 weeks of observation and coinciding with the measurements of

the original 18 subjects, the two additional subjects were observed twice per week (with

one exception). The additional measurements were made roughly 2 and 4 months beyond

the initial 7-week period. The spectra and reference values obtained during the first data

acquisition period were used to adapt the generic model to each of the two additional

subjects via Equation 12. These adapted models were used to predict the glucose levels

associated with subsequently obtained spectra. Figures 3 and 4 compare these

predictions (averaged within a data acquisition period) with the reference measurements

(also averaged within a data acquisition period) for each subject. The bottom half of each
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figure allows for a direct comparison of predicted glucose with the reference glucose.

The top half of each figure provides a visualization of prediction performance versus the

measurement sequence. Note that the measurement sequence is not linear in time. The

following conventions are used in each figure. The solid lines connect the reference

glucose values in the top half of each figure and provide a line of identity in the bottom

half of each figure. The “x” symbol denotes the predictions during the adaptation period

(by definition the average prediction is identical to the average reference in this case).

The ‘*‘ symbols denote predictions made during the remainder of the initial 7-week

period that was spanned by the calibration data. Therefore, these predictions are not

prospective with respect to instrument effects. However, the model building process was

completely blind with respect to all effects associated with the two additional subjects.

The ‘o’ symbols denote predictions made after the initial 7-week period. These

predictions are prospective in every sense (subject and instrument effects) as the model

building process was completed immediately following the end of the initial 7-week

period. Again, as in the calibration, the spectra were not background corrected.

It is interesting to note that there is no apparent degradation in prediction

performance with respect to the first subject over the 6-month period of observation

following tailoring (see Figure 3). In contrast, with respect to the second subject (see

Figure 4), prediction performance worsened over time. In this case, the adapted model

consistently underpredicted glucose (by about 40 mg/dL) over the last several data

acquisition periods @erhaps due to some unmodeled physiological effect).

Unfortunately, in these particular cases, the outlier metric described in Equation 14 did

not indicate a problem. One way to remedy the systematic prediction errors such as those
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observed in the case of the second subject would be to re-adapt the generic model to a

subject on a regular basis. This would have the effect of reducing the fi-equency of

painful finger sticks from several times per day to perhaps several times per month or

less. Implicitly such a procedure would also provide some benefit with regard to

calibration maintenance as the re-adaptation might adjust to a new instrument state that

was improperly modeled.
1

Discussion

The previous section has provided a single example of the proposed method in a

limited context. In fact, adaptation could be thought of in a much broader sense. For

example, the adaptation could target a specific geophysical site or measurement

environment (e.g., chemical reactor) wherein the analyte of interest is varying over time

and where each environment produces a consistent and unique spectral effect. One might

want to employ the proposed methodology when the spectral variation across sites or

environments is significant and/or difficult to model. Independent of the context, the

successfid use of generic modeling requires that the intra-object

spectral effects are similar across objects. Furthermore, it is also

calibration data that are collected span an appropriate variety of

(or e.g., intra-site)

imperative that the

ntra-object spectral

effects. In this regard, the importance of an effective experimental design cannot be

overstated. In the example that was given, a significant amount of thought was given to

developing the protocols that were used to acquire the intra-subject spectral data.

The concept of generic modeling might also be profitably extended to

calibration transfer, which here refers to the process of migrating a master calibration
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model developed on one or more host spectrometers to a specific target spectrometer.

Here, all spectrometers are assumed to be of the same fixed make/model. Due to

manufacturing variation across instruments, each instrument will differ in subtle ways

such that the same object will appear slightly different across instruments (e.g., resulting

in slightly different spectra).

As an example, consider the noninvasive measurement of glucose in the home by

a diabetic who is paired with a single instrument. The prospects for developing an

effective calibration model based solely on the data fi-om that one diabetic subject would

seem to be dubious because of the intensive sampling (associated with that subject) that

would be required to develop an operable model. A more effective (and efficient)

approach might be to construct a generic calibration model based on intra-

subjectlinstrument spectral variation that is collected from one or more instruments of the

same make/model (as was done in the example that was described earlier). If the intra-

subj ectiinstrument variation is consistent across instruments, then the series of

measurements that are taken to adapt to the subject simultaneously provide adaptation to

the specific instrument and current instrument state. Thus, a single generic model could

be adaptable to an arbitrary subject being measured on an arbitrary unit from an entire

production run of instruments of the same make/model.

At this point the extension to calibration transfer might seem somewhat

speculative. However, if one were to pursue this approach, it would be important to

identi~ and replace hardware components that give rise to inconsistent intra-subject

effects across instruments of the same make/model. Given a family of instruments with

such characteristics, it is also important to develop the generic calibration data over a
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broad set of conditions (using the host instrument(s)) that span the conditions that are

expected during the operation of the target instrument(s).

Conclusion

This paper proposes a new approach for predicting an analyte of interest within

and across new objects when it is difficult to model inter-object spectral effects

adequately. This approach requires an accompanying experimental protocol that focuses

on the acquisition of a sufficiently wide variety of intra-object spectral variation

(including that due to variation of the level of the analyte of interest). The proposed

approach also requires spectra and associated analyte reference values to adapt to a new

object. While not suited for all applications (e.g., where the required reference values are

difficult to obtain), this approach could be very usefbl in a number of applications

including the noninvasive measurement of glucose in a home environment. Furthermore,

this approach could easily be extended to calibration transfer.
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FIGURE CAPTIONS
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Figure 1 – Standard Deviation of Inter-Subject and Intra-Subject Spectral Variation.

Figure 2 – Generic Model Coefficients.

Figure 3 – Generic Model Performance: Subject 1, Predicted Glucose versus Reference

Glucose. Solid line connects reference glucose values, ‘x’ denotes prediction during

adaptation period, ‘*’ denotes prediction during remainder of initial 7-week period, and

‘o’ denotes prediction following initial 7-week period.

Figure 4 – Generic Model Performance: Subject 2, Predicted Glucose versus Reference

Glucose. Solid line connects reference glucose values, ‘x’ denotes prediction during

adaptation period, ‘*’ denotes prediction during remainder of initial 7-week period, and

‘o’ denotes prediction following initial 7-week period.
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