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Abstract

Distributed systems have been studied for twenty years and are now coming into wider use as fast
networks and powerful workstations become more readily available. In many respects a massively
parallel computer resembles a network of workstations and it is tempting to port a distributed
operating system to such a machine. However, there are significant differences between these
two environments and a parallel operating system is needed to get the best performance out of
a massively parallel system.

This report characterizes the differences between distributed systems, networks of workstations,
and massively parallel systems and analyzes the impact of these differences on operating system

design.

In the second part of the report, we introduce Puma, an operating system specifically developed
for massively parallel systems. We describe Puma portals, the basic building blocks for message
passing paradigms implemented on top of Puma, and show how the differences observed in the
first part of the report have influenced the design and implementation of Puma.



Acknowledgment

Operating systems work is seldom carried out by a single person. We would like to thank the
other members of the Puma, team for their help, insights, and friendship. Specifically, David van
Dresser, Lee Ann Fisk, Chu Jong, and Mack Stallcup have contributed to this report with their
ideas, designs, and implementations. We also would like to thank Lance Shuler, David Greenberg,
George Hartogensis, and the anonymous reviewers who assisted by reading our manuscript and
made polite suggestions to improve it. Most of all we would like to thank our users, who have
been willing to test our systems even in early stages of development. Their feedback helped in
the design of Puma and is much appreciated.



Contents

Preface vi
Introduction 7
System Environment 7
Node Architecture 10
Node Interconnect 11
Convergence of Parallel and Distributed Systems 13
Puma Overview 15
Puma Portals 16
The Portal Table . . . . . . . . . . . e e e e e e e e 17
Single Block Memory Descriptor . . . . . . . .. it i e 18
Independent Block Memory Descriptor . . . . . . . . ... . e 19
Combined Block Memory Descriptor . . . . . . . . . o v it ittt 20
Dynamic Memory Descriptor . . . . . . . . o i i i i e e e e e e e 20
Matching LiSts . . . . o o o ot i et e e e e e e e e e e e e e e e e e e e 20
Portal Example . . . . . . . . o o e e e e e e e e e e 20
Portal Event Handlers . . . . . . . . . . i o i i e e e e e e e e e e e e 21
Puma Design Influences 21
Related Work 23
- Conclusion 24
References 25
Figures
1 Gang Scheduling . . . . . . . ... e e e e e 9
2  Network interface (NI) integration . . ... ... ............ ... ... ..... 10
3 Bandwidth. . . . . . . . . . e e e e e e e e e e e e e e e 11
4 Bisection bandwidth . . . . . . . . . . . . e e e e 12
) Puma Node Configuration. . . . ... ... ... ... ..., 16
6 System Partitioning . . . . . . . . .. . . . L e e e 17
7 Portal Table . . . . . . . . . e e e e e e e e e e e e e 18
8 Single Block Memory Descriptor . . . ... . ... ... ... .0 18
9 Independent Block Memory Descriptor . . ... ...................... 19
10 Combined Block Memory Descriptor . . . . . . . . . .. . . vt 19
11 Dynamic Memory Descriptor . . . . . ... ... .. ... .. e e 20
12 Portal Example . . . . . . . . . e e e e e 21
Tables

1  Summary of Distinguishing Features . . . . . . . .. .. ... i o 14
2 Convergence between MP and distributed systems and (dedicated) NOWs . . .. ... .. .. 15



Preface

This technical report, written in late 1996, presents an analysis of the differences between dis-
tributed and parallel systems. While many of the research projects referenced in this report
have concluded and many of the examples and results are obsolete, the fundamental basis of this
report remains intact: unique characteristics of each system need to be exploited to meet the
overall goals of the platform.

vi



Differences Between Distributed
and Parallel Systems

1 Introduction

Distributed (computing) systems have been investigated for about twenty years. In 1985 Andrew Tanenbaum
and Robert van Renesse offered the following definition for an operating system controlling a distributed
environment:

A distributed operating system is one that looks to its users like an ordinary centralized
operating system but runs on multiple, independent central processing units (CPUs) [30].

No existing system has completely achieved the functionality mandated by this definition. However,
.research in distributed systems and networks of workstations (NOWSs) has produced a number of useful
results in the areas of algorithms, languages, and resource management.

With the advent of massively parallel (MP) systems, it seems straightforward to use the technology
developed for distributed systems and apply it to the latest generation of supercomputers. After all, the
individual nodes of an MP system are similar to workstations lacking only an attached keyboard, monitor,
and possibly disk. Furthermore, many MP and large distributed systems compute similar problems.

Attempts to treat an MP system as if it were the same as a distributed system have produced disap-
pointing results. Performance has often not been as high as expected and has been well below the limits
imposed by the hardware.

There are fundamental differences in the structure, usage, and performance of MP and distributed sys-
tems. An operating system for MP machines must take advantage of these differences and provide a different
set of services to the applications than an operating system designed for a distributed environment.

This report explores the observable differences between a distributed system and a modern MP machine
and tries to separate the differences that are artifacts of historical development from the ones that are
fundamental. As technology improves, differences in characteristics and performance will get smaller and
eventually disappear. However, some differences will not disappear. For this reason, an operating system
for an MP system cannot be the same as one for a distributed system.

This report is divided into two parts. The first part discusses the differences between distributed and
MP systems. The second part gives an overview of Puma, an operating system specifically developed for an
MP system.

2 System Environment

In this section, we consider differences in the environment presented to users and applications. We examine
how resources in the system are managed, how the systems are used, and what system behavior users and
applications see and expect.

A distributed system usually consists of a set of workstations. Idle resources during the day, and es-
pecially during the night, led to the desire to treat individual workstations as part of a larger integrated
system. In contrast, an MP system is purchased and tailored for high-performance parallel applications.
These applications use all available resources. The different reasons for the existence of a particular MP or
distributed system lead to a set of observable differences that we identify in this section.

Differences can be observed in a number of areas. The types of resources, their management, and the
functionality offered by the systems are different between distributed and MP environments. The number of
processes per node as well as the number of users on each node is also different. Granularity of parallelism
is not the same, and the problem of gang scheduling is handled differently in each environment. The two
types of systems also locate services and peripheral devices in different areas of the machine.

Resources: The primary goal of a workstation is to provide a user interface for a computing environment.
The resources present in a workstation are determined by the need to provide a highly interactive user



interface. Importantly, resource utilization is not the primary influence in the acquisition of additional
resources for a workstation. Thus, idle resources will be available. The desire to utilize these idle resources
has led to the idea of combining workstations into a distributed system or a NOW [2]. The resources of
a workstation (memory, processor, and disks) can be assigned to other applications while the user is not
making full use of them. It is the task of a distributed operating system to locate and manage available
resources.

In an MP environment, utilization drives the acquisition of resources. A new MP machine is carefully
tailored to the application with the largest demands on resources. When this application is running, no
idle resources are available for other applications. For distributed systems, resources must be accessible as
efficiently as possible. '

Resource management: Various programming models have been proposed for distributed systems.
All have the common goal of maintaining the parallelism and the structure of the underlying system hidden
from the users. Ideally, an application should take advantage of as available resources without the need to
write or run the application in a different manner than on a single workstation.

An often cited example is parallel make which can distribute the compilation of individual modules onto
several nodes.

In an MP system, the primary goal is to minimize the turn-around time for an application. To achieve
this, a set of nodes is assigned to a specific user for the duration of an application run.

High-performance MP applications, do resource management. Load balancing is either inherent in the
algorithms used, or applications make use of libraries which dynamically shift the computational load.
Information about the topology and the location of neighboring nodes is frequently used to minimize network
congestion and latency.

Functionality: Distributed systems have the conflicting goals of providing full workstation functionality
and a pool of available resources to run parallel programs efficiently. There is functional overhead on nodes
which have been dedicated to parallel applications. The compute nodes in an MP system only need the
functionality required to run parallel applications. Many of the time and space consuming features required
in a general purpose workstation can be omitted in a parallel operating system.

Users per node: The nodes in a distributed system are full featured workstations with a monitor,
keyboard, and local disk storage. The workstations in most distributed systems must serve and respond to
one or more interactive users. In addition, the workstations may be required to participate in distributed
computations!. Typically there are one or more users per node in a distributed system.

In an MP system there are many nodes dedicated to a single user. The individual nodes and the
operating system do not directly support interactive users. (This does not preclude interactive parallel
programs; interaction is with the entire program through messages sent to the nodes.)

Processes per node: Another distinguishing feature between distributed and MP systems is the number
of processes per node. A single workstation in a distributed system must manage tens, sometimes hundreds,
of processes. These processes include daemons (e.g. networking daemons, print spool managers, cron jobs,
etc.), a window system server and its clients, and background processes.

Most of the services provided by these processes are not needed by parallel applications, and most do not
need to be replicated on every node in the system. Therefore, a parallel operating system can be optimized
for a small and fixed number of processes per node.

Parallelism: We have mentioned parallel make as an application well suited for a distributed systems.
This application exploits parallelism at the program level, where several, independent, programs can be
distributed among a set of available nodes.

MP applications exploit parallelism at a much finer granularity. Applications use a large set of nodes
and communicate more frequently than distributed programs.

Gang scheduling: The individual processes of a parallel application in a distributed system are un-
der the scheduling control of the local operating system. Different workstation configurations and current
utilization determine the frequency and duration of the time slices allocated to each process. It is quite
unlikely that the processes of a parallel application will actually run in parallel (Figure 1). This has a severe
impact on performance. Large data transfers require the immediate consumption of data on the receiving
side. Otherwise, data buffers will fill and the sending process must be blocked. Bursts of small requests

! Amoeba [31), which has dedicated compute servers, is an exception.



also require immediate attention. If the individual processes in a parallel application are scheduled to run
at different times, message latency will rapidly increase, bandwidth will drop, and overall performance will
suffer. ’

Application 1
Application 2
| Application3 -
| Application 4

ASDOWIRR. S SUVEUO.

message path

Figure 1: Gang Scheduling: The two sprocket wheels represent the process scheduling on two separate
nodes. Application 2 on the left and application 3 on the right are active. They could exchange data
immediately, since both are active and have access to the communication network. However, application 2
on the left must wait for the wheel on the right to turn until application 2 on that side gains access to the
communication channel, before a reply to a message can be sent. Gang scheduling would synchronize the
two wheels so that the processes belonging to the same application are always lined up with each other.

Many applications written for MP machines are self-synchronizing. Data exchanges among nodes happen
at regular intervals, and nodes cannot proceed with computation until results of the last time-step have been
received. If the individual processes do not run concurrently, resources will be wasted. Additional buffer
space and context switches are necessary to allow the application to progress.

Location of services: The individual workstations in a distributed system often have local disks. Files
accessed by a parallel application might be on a network file server, or might be on local disks. Other shared
resources, such as access to an external network, printers, and other external devices, are present on some
workstations, but not others. A distributed operating system creates the illusion that resources and services
are all available locally.

The nodes in an MP system are usually uniform and no additional services or resources are provided
locally. Therefore, access is always remote, and the request is satisfied remotely.

In this section, we have listed differences between distributed and MP systems observed by users and ap-
plications. In most cases, these differences are due to differences in the node architecture and the network
connecting the individual nodes. We will examine these aspects of distributed and MP systems in the next
two sections.

A recent trend has been to buy individual workstations, connect them with a high-speed network such
as fast Ethernet, ATM, or Myrinet, and use these components as a dedicated NOW. In this case, many
characteristics of an MP machine apply, and the operating system controlling the NOW should have the
characteristics of a parallel operating system controlling an MP system.



3 Node Architecture

Our second characterization of differences between distributed and MP systems is based on dissimilarities
in the node architecture. In this section we analyze the characteristics of compute nodes in an MP system
and compare them to the workstation architectures found in distributed systems.

There are differences in the type and number of devices attached to a node. The nodes in a distributed
system are often heterogeneous, and the network interface is integrated differently.

Node devices: While the nodes in an MP system share many of the characteristics of a modern
workstation (e.g. CPU, memory, etc.), there are differences that must be considered. The nodes in a
distributed system are full-featured workstations with keyboards, monitors, disks, and other peripheral 1/0
devices. Most nodes in an MP system have no peripherals other than a network interface. All requests and
data arrives at the node in the form of messages through the network interface. .

Node homogeneity: Distributed systems are much less homogeneous than MP machines. The indi-
vidual workstations often have CPUs with different performance ratings or different architectures. There
are different amounts of physical memory, possibly different operating systems, and varying configurations
(number and size of peripherals such as disks, printers, tape drives, etc.) to contend with. The nodes in
the compute partition of an MP system may have different amounts of memory, but are otherwise very
similar. An exception are I/O nodes, which look like regular compute nodes but have additional interfaces
to peripherals.

A parallel operating system should take advantage of this homogeneity. For example, system software can
assume that the data representation does not change from one node to another and omit the functionality
to convert from one format into another.

Network interface: The network interface in an MP node is usually more integrated into the node
architecture than in a typical workstation (Figure 2). Some MP systems make it possible to access the
network interface from user level. Most provide direct memory access (DMA) to local node memory (if not
the capability to transfer data to and from the cache or even the registers of the CPU). This tight integration
with the CPU and memory subsystem on the node allows for low-latency and high-bandwidth access to the
network(see [18], {23], or [17] for examples).

CPU Memory ICI;U—l I Me‘;wry |
I I Memory Bus
Memory Bus
| 1O Controller |
NI |
1I/0 Bus
NI
Y
Network
Network

Figure 2: Network interface (NI) integration: On modern MP systems the network interface is either
integrated into the CPU or is tightly coupled with the memory and CPU on a node, as shown on the left.
Most workstations have an I/O controller, and the network interface is another device on the I/O bus. Often,
this is a relatively low speed bus designed for high latency devices, such as disk, modems, and printers.

In contrast to the tight integration in MP nodes, the network interface in a typical workstation is another
peripheral device, often without intelligence and with no direct access to local memory. The CPU must copy
data between the buffers of the network interface and local memory, or transmit data over a relatively slow
I/0 bus.

A tight integration is necessary to avoid memory copies. The ratio of network bandwidth to memory
copy bandwidth is increasing as networks become faster. One or more memory copies per transfer is no
longer acceptable. In the future, approaches designed to avoid memory copies, such as Puma portals, will
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be crucial to achieve high bandwidth and low latencies.

Figure 3 shows the performance of a memory copy on successive implementations of the Sun SPARC-
station architecture and compares it to the network bandwidth achievable in an MP system. Compared to
workstation networks such as Ethernet (~ 1M B/s), Fast Ethernet (~ 10M B/s), ATM (OC-12 ~ 80M B/s),
and Myrinet (~ 75M B/s), memory copy speeds of modern workstations (for example a SPARC Ultra model
170) are good enough and allow one or two copies to be made during a message transfer. With the network
bandwidth achievable in an MP system (Intel Paragon ~ 155M B/s), a single memory copy is disastrous.

For example, in a system with a 160M B/s network and the necessity to copy network data from a
buffer to memory (also at 160M B/s), the overall bandwidth can be at most 80M B/s. Messages could be
packetized, and the memory copy of one packet can be done at the same time as the next packet is arriving.
This strategy does not help much. Shorter packets have lower bandwidth on the network due to start-up
overhead. Also, the memory bus must be shared between the memory copy and the reception of the incoming
packet.

A parallel operating system must be highly tuned for message passing and must avoid memory copies.

-e-Ultra ——S20 ——S2 —»—1i860

200
180
160 <« Pumamsg
140 (measured)
o
g 120
‘= 100 ATM OC-12
r AN (peak)
g 80 — =
60 o ikt il Fortrttted Mirynet
(peak)
40
20 M
S o <«— Fast
0 b e AR RAR LA AL i Ethernet
0 100 200 300 400 500 (peak)”
Size in kB

Figure 3: Bandwidth: Memory copy speeds of successive generations of Sun SPARCstations are keeping
up with workstation network speeds. In an MP system, memory copies are disastrous during a message
transfer, due to the high bandwidth of MP networks. Performance was measured on lightly loaded SPARC
systems and pre-release Puma. (i860). Measured message passing bandwidth is from pre-release Puma on
Intel Paragon. ATM, Myrinet, and Fast Ethernet numbers are peak for technology.

4 Node Interconnect

In this section, we examine the network itself. The network connecting the individual workstations in
a distributed system, and the communication fabric shared by the individual nodes of an MP system,
exhibit differences in trust, bisection bandwidth, topology, broadcast ability, network transparency, prevailing
communication paradigm, IPC performance, and configuration.

Network trust and reliability: Distributed systems can span a campus, a country, or whole continents.
The network connecting the individual pieces crosses administrative domains and often consists of several
different physical media (e.g., example public telephone network, satellite connections, radio links, Ethernet,
etc.)

The network of an MP system is typically contained in a single cabinet or in a small collection of cabinets
located in a single room. The distance between two adjacent nodes is only a few centimeters. Hardware
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cyclic redundancy checks (CRC) and parity error detection keep the probabilities for undetected errors very
low. In addition, the network can easily be protected from physical intrusion, since it is confined to a single
room.

The kernels that compose a parallel operating system can trust each other and ensure the integrity of
system information in message headers. System information, such as source and destination address, message
length field, and process identifiers, is needed to route messages to the appropriate destination and protect
one application from another. The ability to trust each other reduces the amount of checking the kernels
must do and reduces the amount of system information (overhead) in each message. This leads to lower
latencies and higher bandwidths.

Bisection bandwidth: Bisection (or cross-section) bandwidth is an important measure in MP systems.
It is the bandwidth through an imaginary plane, dividing the nodes in a system into two, equal sized, sets
(Figure 4). In a well balanced MP system this number is many times the bandwidth of a single link. On
a bus or ring, the bisection bandwidth is usually one or two times the bandwidth of a single link between
two nodes. Generally, the achievable bandwidth in an MP system is an order of magnitude higher than in
distributed systems. The individual network links are faster, the bisection bandwidth is much higher, since
the network interface is more tightly integrated into the node.

A large bisection bandwidth connotes more independent pairwise paths between nodes. This lowers
congestion on the network and improves application communication performance.

Figure 4: Bisection bandwidth: The nodes in a system are divided into two equal sized sets by an
imaginary plane. The sum of the bandwidth of the communication links crossing the plane is the bisection
bandwidth. The plane is placed so that the number of links crossing it is minimal and the number of nodes
on each side is equal.

Topology: The nodes of a distributed system are usually connected with a bus-like network, such as
Ethernet, or a ring, which do not scale well. As more nodes are added to the system, bandwidth between any
two nodes is lowered because the network capacity must be shared with the new nodes. Adding gateways
or star routers to keep local traffic in a subnet does not solve the scalability problem because the bisection
bandwidth is not increased.

The nodes of a scalable MP system are arranged in a hypercube, 2-D or 3-D mesh or torus, a fat tree, or
some other scalable topology. A parallel operating system needs to expose the topology to the application. A
well tuned library can take advantage of the knowledge of who the nearest neighbors are. Using non-blocking
message transfer operations, a library or application can also achieve higher throughput by saturating all
links that lead to a node.

Hardware broadcast: Distributed systems connected with an Ethernet or other bus-like networks often
have broadcast and multicast abilities. A message sent over the bus can be read by any node on the same
network. A distributed operating system makes the decision whether the message should be delivered to
local processes or not at the receiving node. In contrast, modern MP machines use wormhole routing and
messages are only delivered to a single node?.

2Some machines, such as the Intel Paragon, provide a hardware broadcast. However, it is restricted to the nodes in a
rectangular region, and is seldom used because of the possibility of deadlock when it overlaps with another broadcast.

12



An operating system or an application running on an MP system that assumes a hardware broadcast is
available, will not perform well in a large system. A parallel operating system must expose the network to
the application level and use algorithms that are tuned to a particular topology, to do broadcast and other
global operations well.

Network transparency: The goal of a truly distributed system is to be network transparent. Individual
processes in a distributed application should not need to know where other processes are located. In fact, this
information is often purposely hidden. Conversely, a well-written parallel application needs this information
to place processes that communicate frequently onto nodes which are physically adjacent on the network.

Communication paradigm: Remote procedure calls (RPC) are the dominant form of information
exchange in distributed systems. MP systems use explicit message passing. Some MP systems support
distributed shared memory (DSM) in hardware and provide the illusion of a single large memory without
the need for message passing. To maintain scalability, even DSM MP systems use small messages at the
lowest hardware level.

Invoking a remote procedure (handler) for each message transfer incurs overhead that should be avoided
when a simple data transfer is sufficient. This is especially true for MP systems with high network bandwidth.
Any overhead will decrease the achievable bandwidth and impact latency.

IPC performance: Interprocess communication (IPC) performance is one or two orders of magnitude
lower in distributed systems than in MP systems [19, 3]. This gap is closing as the network interfaces in
distributed systems get more closely integrated into the node (workstation) architecture and the network
performance of distributed systems is increasing {32].

As long as the difference remains significant, operating systems and applications must take them into
consideration.

System Configuration: MP systems are more static than distributed systems. For any given system,
it is known at boot time how many nodes there are, what the configuration of the peripheral devices is, and
how the machine is going to be partitioned into service, compute, and I/O regions. In a distributed system,
the amount of available resources fluctuates as workstations become loaded or idle.

A distributed operating system must have the ability to tolerate changes in the configuration. An
operating system specifically written for an MP architecture can take advantage of the static configuration
and omit many services required in a distributed system. A parallel operating system should be fault tolerant
and be able to handle node failures and faulty network links. The overhead required for these operations
is smaller than in a distributed operating system, since the maximum configuration of the MP machine is
known at boot time, and only faulty components must be removed from service. Even if hot-swapability is
available, the system does not grow beyond the configuration established at boot time.

5 Convergence of Parallel and Distributed Systems

Table 1 enumerates the differences in the order they were presented in the previous three sections. In
Section 2 we looked at differences that can be observed by users and applications. The reason that these
differences exist are mostly due to differences in the node architecture (Section 3) and the interconnect
(Section 4).

The existing dissimilarities make it necessary to design operating systems specifically for MP systems.
If, at some time in the future, MP and distributed systems sufficiently converge, then it will no longer be
necessary to have two different types of operating systems.

The location of devices in an MP system will remain confined to a few service nodes. Cost and scalability
prevent the duplication of devices such as disks and Ethernet interfaces on each node in the compute partition.
Similarly, it does not make sense to have a monitor or keyboard attached to each node in a system consisting
of thousands of nodes.

Since the goal of a distributed system is to make use of idle resources, these systems must deal with
non-homogeneous nodes. Additional nodes will not usually be excluded from a distributed system because
they have a different CPU type. Distributed systems are designed to handle this situation and any additional
resource can be utilized. This may not be the case for a dedicated NOW. These systems lay somewhere
between MP and distributed systems. As in a distributed system, they connect a number of workstations to
form a single computer. However, certain precautions, such as making sure that all the workstations are the
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Table 1: Summary of Distinguishing Features

Criteria MP System Distributed System
Resources Dedicated Utilize idle resources
Resource management By the application By the system
Perf. / Functionality ratio | High Low

Users per node ratio Low High

Processes per node Few Many

Parallelism Fine grained Coarse grained
Gang scheduling Yes No

Location of services Remote Transparent

Node devices No or few I/O devices | Full featured

Node homogeneity Homogeneous Heterogeneous
Network interface Integral part of node | Separate device
Trusted network Yes No

Bisection bandwidth High Low

Scalable topology Yes No

Hardware broadcast No Yes

Network transparent No Yes
Communication paradigm | Message passing RPC

IPC performance High Low

Configuration Static Dynamic

same, allow these kind of NOWs to support applications that ordinarily require an MP system to be solved.
More frequently, workstations are integrating the network interface to access memory directly. With an
increasing demand for NOWs and better network performance, all workstation vendors may soon choose to
offer this option.
So far, we have no convergence in the location of devices and the homogeneity of nodes (with the possible
exception of dedicated NOWs). There is at least an indication of convergence as far as the integration of the
network interface is concerned. Now, let us consider the differences in the interconnect.

As distributed systems grow and eventually span the globe, there is no hope of ever being able to trust the
network. Exactly the opposite is true for MP systems, since the same processing power can be put into
smaller and smaller spaces. Physical protection of the backplane (network) is more easily achieved, since
the system can be confined to a small room or even a desktop. Again, NOWs lay somewhere in the middle
between these extremes. Most of the NOWs consist of tens to hundreds of workstations that can be housed
in a single, or a few adjacent, rooms. Physical protection of the network is feasible, though harder to achieve
than in an MP system.

Bisection bandwidth is largely a function of topology and the networks used in distributed systems are
not scalable to thousands of nodes. This is not likely to change in the foreseeable future, yet a high bisection
bandwidth is crucial for many high-performance applications. This is one of the key differences between
distributed and MP systems.

Hardware broadcast ability is disappearing from distributed systems due to the emergence of smart hubs
in 10baseT Ethernets and the push towards networks such as ATM over fiber-optics, and Myrinet which are
more point-to-point than the bus-like Ethernet.

Network transparency is a main goal in distributed systems and has advantages such as the ability to
relocate services or substitute failed nodes. In order to get the highest possible performance, MP applications
need to take advantage of the network topology and node allocation. This means the network cannot be
transparent in an MP system.

Message passing systems, such as MPI [15] and PVM, are being used on NOWs. At the same time, certain
forms of RPC, for example active messages [34], are now being used in MP systems. Some convergence is
taking place.
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IPC. performance is a function of software overhead and network interface performance. As the network
interfaces get more closely integrated and low-overhead protocols, such as U-net [33] and fast messages
(FM) [24], start taking advantage of these interfaces, the distinction between MP and distributed systems
will not remain a distinguishing factor.

Finally, the environment of an MP system will, by its nature of being a single machine, remain static in
the sense that it is known at boot time what the maximum configuration can be. Distributed systems, as
they become larger, spanning continents and even the entire globe, are by their nature very dynamic.

Table 2 summarizes our beliefs whether MP and distributed systems will converge and the observable
differences will disappear. We have seen that for some differences, the answer is slightly different for NOWs,
especially dedicated NOWs that are built for the purpose of high-performance computing.

Table 2: Convergence between MP and distributed systems and (dedicated) NOWs
Criteria Convergence? | (Dedicated) NOW?
Node devices No No
Node homogeneity No Some
Network interface Probably Yes
Trusted network No Maybe
Bisection bandwidth No No
Scalable topology No No
Hardware broadcast Yes Yes
Network transparent No No
Communication paradigm | Some Some
IPC performance Probably Yes
Configuration No No

6 Puma Overview

Puma [35, 27] is an operating system specifically designed for scalable, high-performance applications in
an MP environment. Today, most of the applications running under Puma and its predecessor, SUNMOS,
are scientific applications. However, the design of Puma has been influenced by other types of applications
as well. Database engines, video servers, and other applications, such as simulations of economic models,
should run well under Puma. An effort currently under way, will make Puma available in secure, real-time
systems.

The main goal in the design of Puma was scalability. MP machines with several thousand nodes need
an operating system that does not grow in size or time consumption as more nodes and applications are
added. For example, maintaining a buffer in kernel space for every other node in the system is not scalable.
Great care has been taken to keep all buffers and data structures needed for communication in user space.
An application builds the necessary structures to communicate with only the nodes it spans. Specific
communication patterns inherent and known to the application can be exploited to keep the amount of
memory used as buffers to a minimum.

Because of the properties of an MP environment and the demands of high-performance applications,
Puma is a minimal operating system. It attempts to keep resource management overhead to a minimum
while still protecting the system’s integrity and shielding user applications from each other.

Many services routinely offered by other operating systems are implemented in user level libraries. This
has the advantage that applications only “pay”, in the form of unavailable memory and decreased perfor-
mance, for the services they require.

Puma is backward compatible with its predecessor SUNMOS, the Sandia and University of New Mexico
Operating System. SUNMOS has been quite successful. It currently holds the world record for the MPLIN-
PACK benchmark performance [10], [14]. Further, the application that won the 1994 Gordon Bell award
also ran under SUNMOS [36].
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Figure 5: Puma Node Configuration: The Puma operating system on each node in the machine consists
of the quintessential kernel (QK), a process control thread (PCT), and libraries linked with the applications
running on the node. Only the QK runs in privileged mode. The QK, PCT, and each application run in
separate address spaces. The solid, horizontal line separates user mode from supervisor (privileged) mode,
and the dashed, vertical lines separate address spaces.

On each node, Puma consists of a quintessential kernel (QK), a process control thread (PCT), and
various libraries (see Figure 5). The QK is kept as small as possible and is the only part of Puma that runs
in privileged mode. Most of the functions traditionally associated with an operating system are contained
in the PCT. The PCT is responsible for memory management and process control. It runs at user level,
but has more privileges, in the form of QK services, than a regular application. One of Puma’s main goals
is to move functionality from the QK into the PCT or into the user libraries whenever possible. The PCT
establishes the policies while the QK enforces them. The principle of separating mechanism and policy dates
back to Hydra [38] and Per Brinch Hansen’s nucleus [16}.

The nodes of an MP system running Puma are grouped into service, I/O, and compute partitions (Fig-
ure 6). The nodes in the service partition run a full-featured host OS to enable users to log into the system,
perform administrative tasks, and start parallel applications. Nodes which have I/O devices, such as disks
. attached to them, are logically in the I/O partition. They are controlled by the host OS or PumaZ. The
compute partition consists of nodes dedicated to run parallel applications. A copy of the Puma QK and
PCT run on each node in the compute partition.

At the lowest level, Puma provides a send operation to transmit data to other nodes in the system,
and portals to receive messages. Portals let a user level application or library define the location, size, and
structure of the memory used to receive messages. Portals can specify matching criteria and the operation
(read or write) applied to the user memory. We discuss portals in more detail in the next section.

Puma is currently undergoing first user testing on the Intel Paragon. Intel SSD is in the process of
porting and productizing Puma for the Pentium Pro nodes of the Teraflop system being built for DOE.

7 Puma Portals

Message passing performance is an important aspect of MP machines. We have seen in Section 3 that even
a single memory copy can severely impact performance. For this reason, Puma portals have been designed
to allow data transfers directly from user memory on one node to user memory on another node.

While MP1 is gaining acceptance, there are still many other message passing schemes in use. Furthermore,
new paradigms, such as active messages and one-sided communications, are created almost daily. To get the
highest performance possible, library and runtime system writers want access to the lowest level message
passing mechanism available on any given machine. Puma portals must be flexible enough to support a wide
variety of message passing and related mechanisms.

3The current implementation of Puma on the Intel Paragon uses OSF 1/AD on the I/0 nodes. An earlier version of Puma
on the nCUBE 2, ran Puma on the disk nodes, since a device driver was already available from SUNMOS.
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Figure 6: System Partitioning: A full-featured operating system is needed in the service partition to allow
users to logon and to start parallel applications. In the case of the Intel Paragon, the Paragon OS, a variant
of OSF 1/AD, authenticates users and provides full distributed Unix services. The Puma QK and PCT run
on each node in the compute partition. The operating system running in the I/O partition could be Puma
or another operating system with the appropriate driver for the I/O device and the capability to exchange
messages with Puma.

During the design of Puma portals, we paid close attention to existing and proposed message passing
schemes. Through case studies, we made sure that our ideas could be implemented efficiently and are
sufficient to support any message passing paradigm. A Puma portal consists of a portal table, possibly a
matching list, and any combination of four types of memory descriptors. We regard these pieces as basic
building blocks for other message passing paradigms. A library writer or runtime system designer should be
able to pick the appropriate set of pieces and build a communication subsystem tailored to the needs of the
particular library or runtime system being implemented.

As a proof of concept, and to make Puma more user friendly to application programmers, we have
implemented MPI, Intel NX, and nCUBE Vertex emulation libraries, as well as collective communication
algorithms using Puma portals as basic building blocks. Work is currently under way to port runtime
systems, such as Cilk [6] and Split-C [9], on top of portals. Work is also in progress implementing Puma
portals in other operating systems such as Linux and OSF 1/AD.

Puma portals have been designed to be efficient, portable, scalable, and flexible to support the above
projects. We will now look at Puma portals in more detail. We will discuss the portal table, the memory
descriptors, and the matching list. We will then give a simple example of how these building blocks can be
combined to present a message passing system, like Intel’s NX, to an application. This section will close
with a discussion of portal event handlers.

7.1 The Portal Table

A message arriving at a node contains in its header the portal number for which it is destined. The kernel
uses this number as an index into the portal table. The entries in the portal table are maintained by the
user (application or library code) and point to a matching list or a memory descriptor (Figure 7).

If a valid memory descriptor is present, the kernel sets up the DMA units and initiates transfer of the
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Figure 7: Portal Table: Messages are sent to a portal number which is an entry in the portal table. A
matching list or a memory descriptor is attached to an active portal table entry.

message body into the memory descriptor. If the portal table entry points to a matching list, the kernel
traverses the matching list to find an entry that matches the criteria found in the current message head. If
a match is found and the memory descriptor attached to that matching list entry is valid, then the kernel
starts a DMA transfer directly into the memory descriptor.

User level code sets up the data structures that make up a portal to tell the kernel how and where to
receive messages. These data structures reside in user space, and no expensive kernel calls are necessary
to change them. Therefore, they can be rapidly built and torn down as the communication needs of an
application change.

The kernel must validate pointers and indices as it traverses these structures. This strategy makes these
structures somewhat difficult to use, since the slightest error in setup forces the kernel to discard the incoming
message. Most users will not use portals directly, but will benefit from their presence in libraries.

‘User memory
> ba < *
From portal ~ !m )
table or
matching list

Figure 8: Single Block Memory Descriptor

7.2 Single Block Memory Descriptor

Four types of memory descriptors can be used by an application to tell the kernel how and where data
should be deposited. This method gives applications and libraries complete control over incoming messages.
A memory descriptor is laid over the exact area of user memory where the kernel should put incoming data.
Most memory copies can be avoided through the appropriate use of memory descriptors.

The least complex memory descriptor is for a single, contiguous region of memory (Figure 8). Senders can
specify an offset within this block. This descriptor enables protocols where a number of senders cooperate
and deposit their individual data items at specific offsets in the single block memory descriptor.
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For example, the individual nodes of a parallel file server can read their stripes from disk and send them

to the memory descriptor set up by the user’s I/O library. The library does not need to know how many
nodes the parallel server consists of, and the server nodes do not need to synchronize their access to the
user’s memory.

Several options can be specified with a single block memory descriptor. In the parallel file server example,
the offset into the memory descriptor is specified by the sender. Alternatively, the application that sets up
the memory descriptor may control the offset. Instead of writing to the memory descriptor, other nodes have
the option to read from it. It is also possible to have the kernel generate an acknowledgment when data is
written to a portal.

User memory

From portal Loed

mtchng D]
matching list B s

Figure 9: Independent Block Memory Descriptor

7.3 Independent Block Memory Descriptor

Figure 9 shows an independent block memory descriptor. It consists of a set of single blocks. Each block
is written to or read from independently. That is, the first message will go into the first block, the second
message into the second block, and so forth.

With a memory descriptor, if a message does not fit, it will be discarded and an error indicator on the
receive side will be set. This is true for each individual block in the independent block memory descriptor.

No offset, is specified for this type of memory descriptor, but it is now possible to save the message header,
the message body and header, or only the message body. The user also specifies whether the independent
blocks should be used in a circular or linear fashion.

User memory
] %~““*‘“ Tasas ~ M‘x
> —>‘iData ,ﬂ Data }
From portal || eesdthesens
table or | Data i1 Dataj} Data
matching list = - /

—>[Da |

Figure 10: Combined Block Memory Descriptor
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7.4 Combined Block Memory Descriptor

A combined block memory descriptor is almost the same as an independent block memory descriptor (Fig-
ure 10). The difference is, that data can flow from the end of one block into the next one in the list. A
single message long enough to fill all blocks in a combined block memory descriptor will be scattered across
all blocks. If the memory descriptor is read from, it can be used in gather operations.

User memory
> Data
From portal : :
table or ‘ :
Data. - :
matching list { s 1
Data

Figure 11: Dynamic Memory Descriptor

7.5 Dynamic Memory Descriptor

The last memory descriptor is the dynamic memory descriptor (Figure 11). Here, the user specifies a region
of memory and the kernel treats it as a heap. For each incoming message, the kernel allocates enough
memory out of this heap to deposit the message.

This memory descriptor is not as fast as the others, but it is very convenient to use if a user application
cannot predict the exact sequence, the number, or the type of messages that will arrive. It is the user’s
responsibility to remove messages from the heap that are no longer needed.

7.6 Matching Lists

A matching list can be inserted in front of any memory descriptor. This list allows the kernel to screen
incoming messages and put them into a memory descriptor only if a message matches the criteria specified
by the user.

Matching occurs on source group identifier, source group rank, and 64 matching bits. A 64-bit mask
selects the bits that must match the 64 match bits. Source group identifier and source group rank can be
wild-carded.

The matching list consists of a series of entries. Each points to a memory descriptor into which the
message is deposited if a match occurs. The entries are triply linked. If there is no match, the kernel follows
the first link to the next match list entry to be checked. If a match occurs, but the message is too long to fit
into the memory descriptor, then the kernel follows the second link. If the memory descriptor is not valid,
the kernel follows the third link.

Building a matching list with the appropriate set of links and memory descriptors allows the implemen-
tation of many message passing protocols. We look at an example in the next section.

7.7 Portal Example

Figure 12 shows how the elements described in earlier sections can be combined to implement a message
passing protocol.

Messages that are preposted by the user are inserted into the matching list. When a message arrives,

the kernel goes through the matching list and tries to pair the message with an earlier receive request. If a
match is found, the message is deposited directly into the memory specified by the user.
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Figure 12: Portal Example

If the user has not posted a receive yet, the search will fail, and the kernel will reach the last entry in
the matching list. It points to a dynamic memory descriptor. It is used as a large buffer for unmatched
incoming messages. When the user issues a receive, this buffer is searched first- (from user level). If nothing
appropriate is found, the receive criteria are inserted into the matching list.

More complex and robust protocols can be built. For example, instead of storing the whole message
in the dynamic memory descriptor and possibly filling it up very quickly, another scheme can be used. A
second dynamic memory descriptor can be added at the end of the matching list. If the first one fills up, the
kernel will continue down the matching list and then just save the message header in the second dynamic
memory descriptor. When a receive is posted for one of these messages, the protocol can then request that
the body of that message be sent again.

7.8 Portal Event Handlers

Each portal table entry can have an event handler. This handler is run after the data has been deposited
into the memory descriptor or been discarded. The handler runs in user space, and a full context switch is
necessary. This switch is very expensive on a CPU such as the i860 used in the Intel Paragon.

We are currently working on an extension to Puma that lets users install these handlers inside the kernel.
Software based fault isolation or interpretation will be used to ensure the integrity of the kernel and the rest
of the system.

8 Puma Design Influences

In this section we describe specific Puma features that have been influenced by the differences between
distributed and MP systems.

Puma can multi-task applications on a node. However, we anticipate that high-performance applications
will not make use of this feature. It is possible to load a PCT that has no multitasking support at all.
The gang scheduling problem disappears in a single tasking environment. Even when Puma is run with a
multitasking PCT, portals help to alleviate some of the problems introduced by multitasking. For example,
an application sets up a portal to receive messages. From that point on, the kernel handles data reception
and acknowledgments. The application does not need to be running when the message arrives.

While Puma provides much of the functionality provided by a standard Unix system, it is not completely
Unix compatible. Some features were omitted because they do not scale to thousands of nodes. Other features
are not, required by high-performance MP applications. Many of the features left out for performance reasons
are those dealing with direct user interactions or user management. User logins, password management,
screen control, and keyboard or serial line protocols are examples of features left out of Puma.

Nearly all of the services a Puma application can request are routed by the library and the QX into
the service partition. The Puma libraries and PCTs are aware of what services are available and which
nodes in the service partition provide them. This strategy allows requests to be streamlined. Arguments are
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marshaled up and the request is sent into the service partition. There are no provisions in the kernel or the
PCT to try to find the services locally. The reason we can simplify Puma’s design in this manner is that
message passing is fast and the compute nodes do not have any devices attached.

Puma does not provide demand paged virtual memory. Most MP systems do not have a disk attached
to each node. Therefore, paging would be prohibitively expensive and would interfere with the activities
of other nodes using the same network paths and disks. Well designed applications can better determine
which memory pages are not needed anymore. These pages can be filled with more data from disk. Taking
advantage of high-performance I/O and network access is much more efficient than a general memory page
replacement strategy implemented in the operating system [37].

Under Puma, an application can send messages to any other node in the system. The receiving kernel
checks whether the destination portal exists and whether the sending process has the right to send to or
receive from that portal. This improves send performance and requires no state information on the sending
node. For example, there is no complicated protocol to ensure that the receiving process will accept the
message or that the receiving process even exists. Performing the few checks that are necessary to ensure
integrity of the system, can be done faster on the receive side because information about the sender (from
the message header) and information about the receiver (from the process’ control structures) is available
to the kernel at the time it needs it to make the decision where to put the message or whether to discard it.
Eliminating message authentication is only possible, if the network can be trusted.

The main purpose of Puma portals is to avoid memory copies. In an environment where network speed
is equal or greater than the memory copy speed, this is an absolute requirement. A single memory copy at
the same rate as the data streams in from the network, halves the achievable bandwidth.

Puma builds on the assumption that the nodes are homogeneous. There are no provisions in the QK
to handle byte swapping or to convert to other protocols. This leads to a very shallow protocol stack and
allows streamlining of message passing operations.

About one-third of the QK is devoted to handling messages, including code to deal with the portal
structures and highly tuned code to access the network interface. Since the kernel is small and only a
few different types of nodes are supported, the message passing code can be tuned for each architecture.
Optimizations, such as preventing the CPU from accessing the memory bus while the DMA engines transfer
data from the network into memory and making sure that the cache contains a messages hader that is being
assembled, are possible.

A homogeneous environment also allows Puma to efficiently access unique resource, such as the second
" CPU on each Intel Paragon node. Under Puma, it is possible to use the second CPU as a message co-
processor or as an additional compute processor. In the first case, the two CPUs exchange information
through a shared memory region. One of the CPUs is always in the kernel and handles the message passing.
The other CPU remains at the user level and runs the application. In the second mode, both CPUs are at
the user level running individual threads of the application. One of the CPU traps into the kernel to send
and receive messages on behalf of both threads [22].

For each application, Puma builds a node map that gives the application exact information about the
location and distances of each node on which the application is running. We mentioned earlier that this
information is very important for applications that need to optimize communication patterns. Puma can
provide this information easily because the environment is static.

Puma and portals provide a very basic message passing paradigm. Everything else is built on top of that.
This core functionality is available to all applications. Most of the time, a library, such as our Intel NX and
MPI libraries, hide the idiosyncrasies of the Puma portal interface from the user. However, to get the very
best performance, applications can access this lowest level directly, circumventing libraries that may provide
functionality and overhead not desired by a particular application.

Node allocation is done by the program that loads the application. Entire nodes are allocated and assigned
to the same user. The low users per node ratio and the static configuration simplifies this procedure in Puma.

Traps and interrupts on a Puma node can be highly optimized. Since the nodes are homogeneous, only
one kernel version that is optimized for the given architecture is used throughout the system. Since the
kernel is small and relatively simple, certain optimizations, such as not using any floating point operations
in the kernel, can be implemented easily. This method removes the need to save the floating point pipelines
on kernel entry and exit. On the i860 XP of the Intel Paragon, this saves at least 45us per save or restore.
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9 Related Work

Enslow [13] gives the classical definition for a distributed system. He explains in detail what features a
distributed system should have. Tanenbaum [30] gives a very good introduction to distributed systems
and provides an in-depth look at four systems that were being researched in the mid-80s: the Cambridge
Distributed Computing System, Amoeba, V, and Eden. The Tanenbaum paper compares those four systems
in such areas as naming, communication primitives, resource management, fault tolerance, and the services
each system provides.

Network of workstations are distributed systems with an emphasis on higher-performance. Some of the
requirements for a truly distributed system are relaxed in favor of a more efficient implementation. For
example, demanding that all workstations in a NOW are of the same type and similarly equipped, not
completely hiding the underlying architecture, and giving user applications more control over resources are

often found in NOWs, but not distributed systems.

In [2] we find this more modern view of distributed systems and a, list of issues that need to be addressed
to bring NOW performance closer to the MP level. The goal is to get the performance of an MP system at
lower cost.

There have been many distributed operating systems whose goal is to make a group of computers appear
to a user as if it were a single system. Some of the better known ones are Eden [28, 5] and Amoeba [31], and
more recently systems built on the Mach [1] kernel. A modern object-oriented operating system designed for
MP computers is PEACE [26]. PEACE aims to achieve the goals of a parallel operating system as described
in this report. However, PEACE also retains some features that are characteristic of a classical distributed
systems.

Amoeba is somewhat of an hybrid. Its foremost goal is to provide system transparency and other key
features of a distributed system. However, it also tries to be a parallel system. It allows users to pool groups
of CPUs and use them for parallel applications, much as one would on an MP system.

There are few parallel operating systems. Most operating systems running on MP machines are derivatives
of Unix [25, 20]. Usually a message passing system is integrated into the OS to make the fast network
accessible to user programs. Often, aspects of distributed systems are also present. For example, the service
partition operating system on the Intel Paragon is a version of OSF 1 /AD running on Mach. It provides a
single system image that gives processes on any service node the illusion of a single file system and a single,
large node.

Several papers describe MP systems and their networks [18, 7, 11, 21]. The need to lower software
overhead to access MP networks as well as in distributed systems with high-performance network interfaces
has been noted in several papers. A thorough treatment of this topic can be found in [32]. A theoretical
model that takes real-world aspects of message passing, such as latency and message transmission overhead,
into consideration is described in [8].

Recent mechanisms to exploit new network technology and lower the system software overhead include
active messages (34}, Illinois Fast Messages [24], U-Net [33], and Puma portals [35, 27].

There is also a movement in the operating systems community to move the address space boundary
between kernels and user applications to a lower level [12] or above (parts) of the application [4]. In both
cases the hope is to avoid expensive context switches between kernel and user level. This should also improve
message passing performance and lower overhead and message latencies.
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Conclusion

There are important, differences between distributed and MP systems. Most that are observable by users
and applications are caused by differences in the node architecture and the network. While distributed and
MP systems are converging, and some of these differentiating characteristics will disappear, there remain a
few will always separate these two types of parallel systems. This separation is most notable in bisection
bandwidth, network topology and transparency, configuration of the system, and location of peripheral
devices.

An operating systemn must take these differences into account. An operating system cannot be the same
on an MP and a distributed system. To get the highest performance possible on an MP system, the operating
system must take advantage of unique MP features and provide applications with information that lets them
optimize their communication patterns.

Dedicated NOWSs have characteristics of distributed as well as MP systems. Since they are more perfor-
mance oriented than a distributed system that makes otherwise idle resources available, these NOWs should
be controlled by an operating system designed for an MP environment.

In the second part of this report we have introduced Puma, an operating system specifically designed
for an MP environment. We have looked at some specific features of Puma and showed what differences
between MP and distributed systems were responsible for particular design choices in Puma.

At the beginning of this report we quoted a definition for a distributed operating system. Another, more
detailed, but agreeing definition can be found in Enslow’s paper [13]. In our view, a massively parallel
operating system can be characterized as follows:

A parallel operating system allows a user run an application explicitly on multiple nodes.

It explicitly provides resource information such as topology, available physical memory, and nodes
allocated, to the application. It provides efficient message passing primitives and leaves as much
of the resource control to the application as possible.

Since scalability is important, the following constraint must be applied:

A scalable parallel operating system is a parallel operating system whose size and time
requirements do not grow significantly when used on a larger (i.e. more nodes) system.
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