

PDV analysis with SIRHEN 2.0

D.H. Dolan and T. Ao

May 16, 2018

Sandia National Laboratories is a multi-mission laboratory managed and operated by the National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-NA0003525.

What is SIRHEN 2.0?

- Sandia InfraRed HeterodynE aNalysis program
 - Part of the Sandia Matlab AnalysiS HierarchY (SMASH) toolbox
 - Beta version available for government users
 - Open-source release later this year
- What's new?
 - Completely revised graphical interface
 - Multi-signal analysis of a common velocity
 - Dynamic uncertainty estimation
 - Bounce management
 - Much more...

Loading data

- Text files and binary file support
 - Agilent/Keysight, Tektronix, LeCroy, Yokogawa
 - Lab formats: DIG, PFF, SDA
- Raw signal no longer displayed by default
 - Large memory overhead
 - Not particularly useful in frequency shifted measurements
- Spectrograms are for your benefit only
 - History calculations are entirely separate
 - Avoids gigapixel/terapixel images

Measurement tab

- Distinct measurements of the same velocity are allowed
 - Separate wavelengths (1550/1064 nm) and offsets
 - Dissimilar bandwidths
- Channel settings table can be directly edited
 - Wavelength, offset, bandwidth, window correction
- Channel actions launched with a double click
 - Shift/scale time base (separate or linked)
 - Crop data (linked)
 - Calculate offset (separate or linked)

Analysis tab

- FFT options
 - Window type, number of frequencies, negative frequency display
- Partition settings
 - Duration/advance (time units)
 - Points/skip (used internally)
 - Blocks/overlap (sometimes convenient)
- Actions
 - Update spectrograms (not automatic!)
 - ROI, reference region, and generate history
- View results

Region selections

- ROI(s) restrict allowed time/frequency range
 - Variable width now supported!
 - Flexible point selection and editing
 - Multiple regions can be selected
- Reference selection used to determine noise spectrum
 - Select a time range where nothing changes
 - Uncertainty calculations based on this region

History analysis

- Power spectrum analysis is currently the only type available
 - No adjustable options at this time
 - Warning shown when no ROI selected
- Setting changes make results obsolete
 - Still available for display
- Uncertainty estimates account for **random** effects only

Viewing results

- Options
 - Velocity, uncertainty, and effective signal amplitude
 - Velocity and uncertainty only
 - Effective signal amplitude only
 - Velocity history overlaid on spectrogram
- Note: infinite uncertainties are permitted
 - Appear as missing data in the plot
- Tabs show all history settings
 - Where data came from
 - Analysis parameters

Saving your work

- Session files (*.sda)
 - Results can be loaded back into the SIRHEN
 - Contains everything: signal data, spectrograms, settings
 - Adjustable compression level
- Export files (text)
 - Extracted history with configuration header
 - Full/compact format
- PDV class objects
 - These objects can be saved to the workspace or loaded from the workspace

PDV objects

- All SIRHEN features are tied to a custom object class
 - Part of the Velocimetry package
- These objects can be saved to the workspace or loaded from the workspace

Summary and future work

- SIRHEN2 is out for beta testing
 - Most previous features carried over
 - Lots of enhancements
 - There are certainly bugs and unexpected behaviors
- New analysis techniques under development
 - Sinusoid fitting
 - Complex (real + imaginary) spectral analysis

Bonus round

- Measurements that bounce can benefit from negative frequencies
 - FFT options
 - Enable **before** calculating offset frequency
 - Values outside the bandwidth may be specified manually (leapfrog)
 - Work through bounces with ROI selection
 - Multiple signals may be needed to resolve bounces, particular for shocks