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ACES Project Goals and Applications

Achieve Cs Beam Clock
performance in a mass and power
constrained package
50 cm3, 250 mW, 3x I 0-14 performance

Low environmental sensitivity
i 0-151c, i 0-13/g, I 0-13/Gauss,

- ACES Goal

- Microsemi 5071A Cs Beam Clock 1 .
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Applications--Excellent timing for:
Rapid GPS acquisition, and GPS
denied navigation and timing

Nano/pico (cube) satellites

Pulsed radio and spread spectrum
communications

Microsemi
5071A

Miniature primary
frequency standard

1
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Trapped Ion Clock for Miniaturization

Trapped ion clocks are already compact while
delivering excellent performance.

Low mass, size, power
Trapped ion lifetime: up to 10,000 hrs
Coherence time: > 100s

Other approaches for ACES:
Miniature fountain clock
Miniature optical clock

Fr
ac

ti
on

al
 f
re
qu
en
cy
 i
ns
ta
bi
li
ty
 

10-13

10-14

10-15
10° 101 102 103 104 105 106 107

Integration time [s]

-ACES Goal
- Microsemi 5071A Cs Beam Clock
-JPL Hg lon Clock 

199Hg Trapped Ion Clock from JPL
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Portable lon Clock Technology (PICT)

Microwave Optical Double Resonance Clock
Operation (Continuous Mode)

Lasers and microwaves are on for continuous
feedback

Fast attack time for use with degraded local oscillators

Elimination of optical shutter

Challenges: Signal to noise, bandwidth, light shift

Technology
Passively pumped vacuum package
Challenges: F-state and Yb-1-1± trapping

Optical pumping and detection VCSEL at 369 nm
Very challenging:Will be a first ever demonstration

Low power, low phase noise microwave synthesis

The views, opinions, and/or findings expressed are those of the author(s) and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.



Critical Elements of the 171Y1D+ lon Clock

Vacuum Package

Yb Source

Ions

t 
/
,

Electrical Feedthroughs

 Ir Trap Electrodes 

Magnetic
Shield and
Coil Ionization UV

Light Source

Lens

Fluorescence Detector
Photo Multiplier Tube (PMT)

r 
Repump
(935 nm)

Beam
Combiner

4_____Optical Pumping/
  State Detection

Laser (369 nm)

Physic Package

Control and
Power

Electronics
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I Pulsed Mode 171Y13+ lon Clocl<

200:1 branching ratio
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1 3 cm3Vacuum Package and Ion Trap

Vacuum package w/ Detector

PMT+Eiv

k mod

7,s
Crti

3

lon-trap electrodes

00*

.0
4.401-zzcl5

• Titanium body with sapphire
windows.

• Linear Quadrupole RF Paul Trap
• Pinched off since April 25th, 2012

7 mm

37/

1. Vacuum package

2. µ-metal shield

3. Copper pump-out
tube

4. Yb oven appendage

5. Electrical
feedthroughs

6. C-field coils

7. Laser port (sapphire)

8. Fluorescence
collection window
(sapphire)

9. Lens and filters tube

• Buffer gas cooling with He
• Getter Pumped.
• Trapped ion lifetime > 3 weeks.

Jet Propulsion Laboratory
California Institute of Technology

— Nan Yu
— John Prestage
— James Kellogg
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Complete Physics Package (circa 2013)

Sandia
935nm VCSEL

Preciseley
MEMS Shutter

Integrated Optics

Vacuum Package

Physics Package Interface

MEMS
Shutter

Optics &
Lasers

935 nm
VCSEL

''-71111 UAW 111111UM

NV 46F  Signal Def n
4‘41441PMT

Vacuum Package

311

Physics Package
Interface PCB

Ondax
369 nm ECDL

Lens

Nichia Laser
Diode

Volume
Holographic

Grating
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Integrated Clock Performance: Pulsed Mode, 297 nm Fluorescence
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I* 171 Y13+ lon Clock Performance: Pulsed Mode, 369 nm Fluorescence

jRaN Spectroscopy
= Hz 

Data
Fit

150..DD -

0
52,10000 -

5000 -

-20 ri o 0

Frequency (I-Ez)

1.6

Closed-loop clock
CICX0

X 10-12 T-112

lo' 10' 10-

• Table top laser and vacuum system

• Clock cycle time, Tc = TR + ToP

• TR = 100 ms, TOP= 35 ms
D. R. Scherer et al., "Analysis of Short-Term Stability of Miniature 171Yb+ Buffer
Gas Cooled Trapped Ion Clock," al-My:1802.04832, 2018.

T (S)

Microsemi
David Scherer
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1 Continuous Mode I 71Yb+ lon Clock

F' = 1  2 

P1/2
F' = 0  A
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• Optical and microwave power broadening
determine linewidth

LO
Tuning

Loop
Control

1
FWHM = -
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D 2
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• R369: optical pumping rate. Q: microwave
Rabi frequency.

• Clock interrogation time set by the FWHM
and optical pumping time

a
Top = 

71" FWHM
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Continuous Mode Optimization

Calculate stability at 1 s
1

av = 
-, Q.SNR

Assume photon shot noise and fixed
FWH M 1 0-1° -

-in'
FWHM = 1 a i-22 + (R369)2

7T 2 2 - C 6

Broad linewidth o' _iiio -
Fast attack time for locking local oscillator
and lasers

Narrow linewidth
Better stability
Smaller light shift

Calculation ofAllan Deviation

1 0-12  
1 0-4

I 1 I

30 Hz
10 Hz
3 Hz
1 Hz

I I I I I I 1 1 1 1 11

10-3 10-2
369 nm Laser Power (Ai)

I 1 1 I

1 0-1
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Light Shift Characterization of the Clock Transition

Tabletop lasers and electronics with
sealed 3 cm3 vacuum package

Experimentally measure the light shift
• FWHM = 30 Hz, P369 = 220 nW
• lon temperature = 1140 K

Calculation of the AC Stark Shift
Include 369-nm laser intensity, detuning,
and polarization and ion temperature
Assume FWHM = 30 Hz
Manually adjust frequency shift and
detuning offsets and ion temperature
Ion temp = 1050 K
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. Light Shift Sensitivity
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Light shift coefficient = 1.09 x 10-11/(GHz nW)
1 Hz:4.5 MHz laser stability for ay = 10-13

(- 30 Hz:0.15 MHz laser stability for ay = 10-13
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Clock Linewidth Measurements
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Continuous-Mode Clock Stability

>, 10-11

Short-term stability
30 Hz: 1.3 x 10-11/T1/2

1 Hz: 3 x 10-12/T1/2

Long-term stability
30 Hz: light-shift limited

1 Hz: reference limited
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F-State Trapping Problem

• Collisions of Yb ions in the
P1/2 and D312 states with He
will transfer Yb ions into the
F712 state.

• Noble gasses do not quench
the F712 state.

• Lasers at 760 nm, 638 nm, or
864 nm will clear the F-state.
• Another laser is too

complicated.
• Nci  rogen is known to clear the
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Testing Methane as a Quenching Gas
Methane Pressure = 5.3 x 1040

-(7) 'Jo' 150
1-

a)
E 5-3 125

,

a)
c
o 100

o °
c 75

LL
O
0_

E 50C 

cN 25

0 100 200 300

Time (s)

Methane Pressure = 1 x 10-6

300

250co --C-
(.7)

c.) 2 200
c (J)
o 
o c
9,2 o 150

o °
C

LL 0 100

E 2
C 0_

50
a)

400

760 nm Laser
 Off

On

co

F-
st
at
e 
fr

ac
ti

on
 

10

F-State Decay Rate

0.01 7

• Yb-171
• Yb-172

- - - - 171Yb Slope: 2.8e6/s/torr
• /

sh/
/
/
/
/

/
• /

/•

I

1E-10 1E-9 1E-8 1E-7 1E-6 1E-5 1E-4

CH4 RGA pressure reading (torr)

Fraction Remaining in the F-State
to
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CH4 pressure (Torr)

Jau, Y-Y., J. D. Hunker, and P. D. D. Schwindt. "F-state quenching with CH4 for
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Effects of Methane on the Clock State

• Estimated methane pressure
required for F-State quenching
in 171Yb
• 10-8 to 10-7 Torr

• F-state Fraction
• < 20%

Frequency Pulling of Methane
2 

o -2

• -4

-6

-8
a)

• -10 -
4-

a) -12 -
>

ea -14 -
TD

• Data

(-2.89 +/- 0.2)xl 0-6/torr
PTB paper

-16 
0 0 1.0x10-5 2.0x10-5 3.0x10-5 4.0x10-5 5.0x10-5

CH4 RGA pressure reading (torr)
A. Bauch, D. Schnier, and C. Tamm, "Microwave Spectroscopy of 171 Yb+ Stored in a Paul Trap,"
Proceedings of the 5th Symposium on Frequency Standards and Metrology, pp. 387-388,1995.

• Effects on the 171Yb ground state
• Frequency shift due to collisions

- 10-14 to 10-13

• Relaxation and decoherence of
171Yb ground state due to collisions
- T2 = 1000 to 100 s

Decoherence Rate in 171Yb Ground State
5 

0
0 0 1.0x10-5 2.0x10-5 3.0x10-5 4.0x10-5 5.0x10-5

CH4 RGA pressure reading (torr)

• Data

1/T2 = (9.7 -Fl- 0.7) x 104 sec-1/torr

The views, opinions, and/or findings expressed are those of the author(s) and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.



Evidence for Yb1-1±

• Implement Continuous Mode clock
• Observe evidence for formation of Yb1-1±

molecule
• Increasing methane pressure gives more

Yb1-1±

0 8

o

a_
T
c 0.4
o

0.0

369 nm Laser Only
State Populations : F = 1 to F' = 0

P369 -0.26 uW Puw= -56 dBm 5 P760 = 0 rT1W 5 P935 = 0 mW

5. x 10 -9 1..10-8 1.5.10-8 2..10-8

Methane Pressure (Torr)

2.5 x 10-8 3. x 10-8

• Molecule formed out of the D312

state
• Tuned to a Yb1-1+ dissociation

transition at 369.482 nm and
observe rapid signal recovery

369 nm and 935 nm Lasers

1.0

o 0.8

t7i
o_
O 0.6

u_ 0.2

0.0

State Populations : F = 1 to F' = 0
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•: F state
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Methane Pressure (Torr)
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I Study of Packages Sealed since 2012
Populations with 935 nm Laser on

Package S-State F-State YbH+

JPL 2.2 31% 13% 56%

JPL 2.3 33% 43% 24%

120

1.00

80

60

Pulsed-Mode Clock
369 nm laser: F = 1 4 F' = 1, 10 plW

• IMPACT JPL Vacuum packages:

• F-state and molecular state trapping
present in both packages

• Continuous-Mode operation seems
to suppress the trapped population
likely due to low photon scattering
rates
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2 140
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- 20
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Populations with 935 nm Laser on

Package S-State F-State YbH+

JPL 2.2 57% 9% 34%
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1,10:1011W0
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I Determining Rates (Preliminary Data

Study rates into and out of the
F-State and theYb1-1+ molecule

2 0

0 5

0 0
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Observe changes over time in a
seals package si

50 100 150
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200 250

2 0

0 5
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I Estimating the State Populations from the Model

1 2
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369-nm VCSEL

Vertical Cavity Surface Emitting
Laser (VCSEL)

Develop hybrid-mirror DBR (HM-DBR)
VCSEL with top dielectric DBR (DDBR)
and bottom epitaxial semiconductor
DBR (SDBR)

Semiconductor DBR uses air gaps for
high index contrast

Demonstrated optically pumped laser
operation

Primary challenges
Current Injection

Heat extraction

SEM of
Air-Gap DBR

Air-gap

iirreargiannkstituteof noloqy

Si02/1002
Dielectric DBR

I p-:•.1,,;.-IN 1
 1

n'-AlGaN

Ye 

bz 

UID GaN or AIN buffer

Substrate

1
AlGaN/lnGaN I
MQWs

AIGaN
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Yb Source: Silicon Micro Hotplate

• Cup size: 0.7 mm and 0.9 mm diameter

• Evaporate Yb into the Si micro hotplates

• Heat base to 750 °C for 8 min in vacuum

• 30-50% is deposited into the Si micro
hotplate: 0.2-0.6 mg

• Typical power for Yb evaporation: 1.5 V x
0.17 A = 255 mW

Yb Deposition Assembly
Yb is deposited here

Si Hotplate

Glass with —*
Tapered Hole

Si Wafer

Alumina
Fixturing

Si Hotplate
Glass with
Tapered Hole
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I Highly Miniaturized Vacuum Package: 1 cm3

• The vacuum package was pinched-off on
Thursday, October 30th, 2014.

• Trapped ion lifetime is —50 hours.
• Pulsed-mode clock

• Tmicrowave = 700 ms

• Toptical pumping = 300 ms
• Magnetic field correlations removed

Copper
Pinch-Off

Fluorescence
Port

Schwindt, Peter DD, et al. "A highly miniaturized vacuum package for a trapped
ion atomic clock." Review of Scientific Instruments 87.5 (2016): 053112.

The views, opinions, and/or findings expressed are those of the author(s) and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.
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Conclusion i

Clock performance
determined by clock mode
and fluorescence wavelength
and collection efficiency

Compact clock with 369-nm
fluorescence challenging

System Clock
Mode

Fluorescence Short-Term Clock
Wavelength Stability Linewidth

Compact
Clock

Tabletop

Tabletop

Pulsed

Pulsed

Continuous

Continuous mode can give fast attack time
and no optical shutter

But light shift must be controlled

Continuous mode does not have a problem
with F-state orYb1-1± trapping

Future work: VCSEL development, compact
clock design and construction

297 nm

369 nm

369 nm

20 x 10-12r-112 1 Hz

1.6 x 10-12r-112

3 x 10-12r-112
13 x 10-12r-112

8 Hz

1 Hz
30 Hz
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