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ACES Project Goals and Applications

Achieve Cs Beam Clock Applications--Excellent timing for:
performance in a mass and power > Rapid GPS acquisition, and GPS ‘
constrained package denied navigation and timing
> 50 cm3,250 mW, 3x 104 performance > Nano/pico (cube) satellites
> Low environmental sensitivity > Pulsed radio and spread spectrum
> 10°15/C, 10'3/g, 10'3/Gauss, communications
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Trapped lon Clock for Miniaturization

Trapped ion clocks are already compact while
delivering excellent performance.
> Low mass, size, power
° Trapped ion lifetime: up to 10,000 hrs
> Coherence time: > 100s

Other approaches for ACES:
° Miniature fountain clock
> Miniature optical clock

] —— ACES Goal
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Portable lon Clock Technology (PICT)

Microwave Optical Double Resonance Clock
Operation (Continuous Mode)

o Lasers and microwaves are on for continuous
feedback

> Fast attack time for use with degraded local oscillators

> Elimination of optical shutter

> Challenges: Signal to noise, bandwidth, light shift R Phase I
3 cm?
Technology e %
> Passively pumped vacuum package | |
> Challenges: F-state and Yb-H™ trapping Ph b
ase
> Optical pumping and detection VCSEL at 369 nm 10 cm?

> Very challenging:Will be a first ever demonstration IMPACT % 4

> Low power, low phase noise microwave synthesis Vacuum Phase Il "%
Packages 0.8 cm3

I L | 5



| Critical Elements of the '"'Yb* lon Clock
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Pulsed Mode '7"1Yb* lon Clock
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| 3 cm3 Vacuum Package and lon Trap

Vacuu page w/ Detector lon-trap electrodes 1. Vacuum package

2. u-metal shield

3. Copper pump-out
tube

4. Yb oven appendage

5. Electrical
feedthroughs

6. C-field coils Jet Propulsion Laboratory

7. Laser port (sapphire) California Institute of Technology

8. Fluorescence — Nan Yu

collection window

(sapphire) — John Prestage

9. Lens and filters tube — James Kellogg
« Titanium body with sapphire - Buffer gas cooling with He

windows. * Getter Pumped.
* Linear Quadrupole RF Paul Trap * Trapped ion lifetime > 3 weeks.
« Pinched off since April 25t, 2012




| Complete Physics Package (circa 201 3)

Ondax
Sandia Integrated Optics Physics Package Interface 369|_ennT ECDL
935nm VCSEL a‘ = |
i £ P
Nichi_a Laser Volume
Diode Holographic
Preciseley Grating
MEMS Shutter

MEMS
Shutter.
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Integrated Clock Performance: Pulsed Mode, 297 nm Fluorescence
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Signal (Counts)

17TYb* lon Clock Performance: Pulsed Mode, 369 nm Fluorescence
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D. R. Scherer et al., "Analysis of Short-Term Stability of Miniature 171Yb* Buffer
Gas Cooled Trapped Ion Clock," arXiv:1802.04832, 2018.

David Scherer




Continuous Mode 7'Yb* lon Clock
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Continuous Mode Optimization

Calculate stability at 1 s
1

’ Oy = Q-SNR
> Assume photon shot noise and fixed
FWHM

. FWHM = %\/%QZ + (R'f’zﬁ)z

o, (at 1s)

Broad linewidth

> Fast attack time for locking local oscillator
and lasers

Narrow linewidth
> Better stability
> Smaller light shift

Calculation of Allan Deviation

] 30 Hz

: —_— 10 HZz

l — 3 Hz
10_10—: — 1 HZz
10712
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Light Shift Characterization of the Clock Transition

Tabletop lasers and electronics with ot —

sealed 3 cm? vacuum package N "
, . . - 1-to-2

Experimentally measure the light shift - transition

> FWHM = 30 Hz, Py, = 220 nW
° lon temperature = | 140 K

Calculation of the AC Stark Shift

° Include 369-nm laser intensity, detuning,
and polarization and ion temperature
1-to-1

> Assume FWHM = 30 Hz . FFRRETHON

° Manually adjust frequency shift and 6+ -
detuning offsets and ion temperature L S A S S S

° lon temp = 1050 K
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Frequency Shift (10™"")

Light Shift Sensitivity
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Light shift coefficient = 1.09 x 10-1/(GHz nW)
> 1 Hz:4.5 MHz laser stability for o, = 1013
> 30 Hz: 0.15 MHz laser stability for o, = 10-13




Clock Linewidth Measurements
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Continuous-Mode Clock Stability
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F-State Trapping Problem

e Lasers at 760 nm, 638 nm, or

Photon signa®Counts/0.1s) ®

Collisions of Yb ions in the

and D, states with He
W|lI2transfer?Yb lons into the
F-, state.

Noble gasses do not quench
the F-,, state.

864 nm will clear the F-state.

Another laser is too
complicated.

=S
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......... > Radiative Decay
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¢n excited Yi+,” PhysicalReview A, 54, R2699 (3995) 5 be T7se 115 1078 f’-‘f’;.. R':LZJ?}" i -
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| Testing Methane as a Quenching Gas

297 nm Fluorescence Signal

297 nm Fluorescence Signal
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Jau, Y-Y., J. D. Hunker, and P. D. D. Schwindt. "F-state quenching with CH4 for
buffer-gas cooled 171Y b+ frequency standard.” AIP Advances 5.11 (2015): 117209.



| Effects of Methane on the Clock State

» Estimated methane pressure - Effects on the '7'Yb ground state
required for F-State quenching - Frequency shift due to collisions
in 771Yb _ 104t 1013

« 108t0 107 Torr « Relaxation and decoherence of

71Yb ground state due to collisions

- F-state Fraction - T2=100010 100 s
e <20%
Frequency Pulling of Methane Decoherence Rate in 171Yb Ground State
2 — 5 :
. = Data =  Data
— 0% —— (-2.89 +/- O.2)x10'6/torr 1/T2 =(9.7 +/-0.7) x 10* sec”ftorr
e 2 —— PTB paper 4 -
X
g ] —
% 6 ] i 3- i
> J
e g ] 9
(0] ~
> y = 2- ]
g 104 ' -
0 -12- 1
= 1 1+ .
S -14- % )
2 )
-16 T T T T T T T T L T
0.0  1.0x10° 2.0x10° 3.0x10° 4.0x10° 5.0x10° 0 - T —— 1 ;
0.0 1.0x10°  2.0x10° 3.0x10° 4.0x10° 5.0x10°
CH, RGA pressure reading (torr) _
A. Bauch, D. Schnier, and C. Tamm, “Microwave Spectroscopy of 171 Yb+ Stored in a Paul Trap,” CH4 RGA pressure reading (torr)

Proceedings of the 5th Symposium on Frequency Standards and Metrology, pp. 387-388, 1995.



Evidence for YbH™

» Implement Continuous Mode clock

* Observe evidence for formation of YbH"*
molecule

* Increasing methane pressure gives more

YbH*
369 nm Laser Only

State Populations : F=1toF'=0
P369~0.26 uw, Puw= -56 dBm, P7eg = 0 mw, Pgss = 0 mw

Fractional Population

0.8+
I ®: D state
0.6
r m: F state
A: M state
X e
0 5.x107° 1.x10°%  15x10% 2x10® 25x10® 3.x10°8
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* Molecule formed out of the D),
state

* Tuned to a YbH* dissociation
transition at 369.482 nm and
observe rapid signal recovery
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State Populations : F=1toF'=0
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¥b Fluorescence (a.u.}

| Study of Packages Sealed since 2012

Populations with 935 nm Laser on

Package S-State F-State YbH*

= [IMPACT JPL Vacuum packages:

* F-state and molecular state trapping
present in both packages

= Continuous-Mode operation seems

JPL 2.2 31% 13% 56% . JPL 2.2 57% 9% 34%
- - - to suppress the trapped population - - -
JPL 2.3 33% 43% 24% Ilkely due to low phOtOﬂ Scattering JPL.2.3 96% 4% 0%
Pulsed-Mode Clock rates Continuous-Mode Clock
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seals package S, . v
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Estimating the State Populations from the Model
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369-nm VCSEL “Tock nél@rgy _

Si0,/HfO,
Vertical Cavity Surface Emitting Diclenric DB
Laser (VCSEL) 4
> Develop hybrid-mirror DBR (HM-DBR)
VCSEL with top dielectric DBR (DDBR)
and bottom epitaxial semiconductor ) ) || AIGaN/InGaN
DBR (SDBR) T e | | VIS
[ 1 | |

> Semiconductor DBR uses air gaps for
high index contrast

> Demonstrated optically pumped laser air-gap<
operation

° Primary challenges
o Current Injection
> Heat extraction

n'-AlGaN

=7 n* AlGaN

x H'ii
\uu

UID GaN or AlN buffer

Substrate

SEM of
Air-Gap DBR




Yb Source: Silicon Micro Hotplate

Yb Deposition Assembly

Yb is deposited\ here
« Evaporate Yb into the Si micro hotplates |

* Cup size: 0.7 mm and 0.9 mm diameter

 Heat base to 750 °C for 8 min in vacuum

« 30-50% is deposited into the Si micro Glass with_— N
hotplatcoa: 0.2-8.6 mg i | ¥ k = Q)L(ltmi_na
\ S h 7 ' IXturing
« Typical power for Yb evaporation: 1.5V x | |
0.17 A=255mW
Glass with

‘Tapered Hole




| Highly Miniaturized Vacuum Package: 1 cm?

» The vacuum package was pinched-off on Pulsed-Mode Clock Stability

Thursday, October 30t, 2014. ol =5 iEmEais i e
« Trapped ion lifetime is ~50 hours. 1 [
* Pulsed-mode clock .\_
¢ Tmicrowave = 700 ms 1E-11 - \ll

Toptical pumping =300 ms 5 ]

« Magnetic field correlations removed g
: [0 L
i (@)
Copper - ,, /L <=% 1E-12+
Pinch-Off %
1E-13 T

Schwindt, Peter DD, et al. "A highly miniaturized vacuum package for a trapped
ion atomic clock." Review of Scientific Instruments 87.5 (2016): 053112.
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Conclusion

Clock Rerformance Clock Fluorescence Short-Term Clock
determined by clock mode Mode Wavelength  Stability Linewidth
and quores.cence.vYaveIength glomli)act Culsed T o % 10212 1 Hy
and collection efficiency oc

Tabletop Pulsed 369 nm 1.6 x 10-12¢-172 8 Hz

Compact clock with 369-nm 3 % 1012, 12 Tty
fluorescence challenging Tabletop Continuous 389 nm 0 ynm 2 30 HZ

Continuous mode can give fast attack time
and no optical shutter
o But light shift must be controlled

Continuous mode does not have a problem
with F-state or YbH™ trapping

Future work: VCSEL development, compact
clock design and construction




