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ABSTRACT

Existing radar algorithms assume stationary statistical characteristics for environment/clutter. In practical
scenarios, the statistical characteristics of the clutter can dynamically change depending on where the radar
is operating. Nonstationarity in the statistical characteristics of the clutter may negatively affect the radar
performance. Cognitive radar that can sense the changes in the clutter statistics, learn the new statistical
characteristics, and adapt to these changes has been proposed to overcome these shortcomings. We have recently
developed techniques for detection of statistical changes and learning the new clutter distribution for cognitive
radar. In this work, we will extend the learning component. More specifically, in our previous work, we have
developed a sparse recovery based clutter distribution identification to learn the distribution of the new clutter
characteristics after the detected change in the statistics of the clutter. In our method, we have built a dictionary
of clutter distributions and used this dictionary in orthogonal matching pursuit to perform sparse recovery of
the clutter distribution assuming that the dictionary includes the new distribution. In this work, we propose
a hypothesis testing based approach to detect whether the new distribution of the clutter is included in the
dictionary or not, and suggest a method to dynamically update the dictionary. We envision that the successful
outcomes of this work will be of high relevance to the adaptive learning and cognitive augmentation of the radar
systems that are used in remotely piloted vehicles for surveillance and reconnaissance operations.

Keywords: Cognitive Radar, Sparse Recovery, Hypothesis Testing, Distance/Similarity measure

1. INTRODUCTION

Radar signal processing has been extensively studied and investigated in literature by assuming stationary
clutter environments. However, in practice, the statistical characteristics of the clutter can dynamically change
depending on the radar operating scenarios.!® For example, the environment of the target under detection
and tracking may vary in different time period because of the motion of the target, and the radar echo may be
corrupted by even different types of clutter. These changes, if not well-addressed, could degrade the performance
of radar algorithms, and thus cause negative impacts to higher level data processing applications. Further, to
remain the usage of the algorithms proposed for stationary environments and maintain their performance at
some desired levels, it is important for operating radars to determine the statistical characteristics of the clutter
and integrate an adaption module.

The concept of cognitive radars®~'? has been proposed to address this issue by: (i) sensing the changes in
clutter characteristics from measured data, (ii) learning the new clutter characteristics after the change, and (iii)
adapting the radar algorithms to the new clutter distribution that is learned /identified after the change. In our
previous work, for the issue (i), we developed a data-driven method and use the (extended) CUSUM algorithm to
find out whether the assumed clutter distribution model has changed or not.!? For the issue (ii), a method based
on the sparse recovery theory is proposed.'®'° Specifically, we applied the kernel density estimation (KDE)
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to learn the probability density function (pdf) from the received clutter data, and an orthogonal matching
pursuit (OMP) method to identify the clutter distributions after the changes. We assumed that there existed
a pre-trained dictionary that consists of versatile potential candidate clutter distributions, and the clutter pdf
that the radar encounters in operation should be included in the dictionary. We also compared our proposed
clutter distribution identification method with the classical Ozturk algorithm,®'7 and showed the robustness

and improved accuracy of the proposed method.'®> We further studied the impact of different kernel types that
were involved in the clutter distribution learning, and compared the identification accuracy.'*

For the proposed clutter distribution identification method, we usually assumed that the pre-trained dictio-
nary of the clutter distributions remained unchanged during the radar operation period. However, it would be
possible that the radar encounters new clutter distribution that is not pre-learned by the dictionary, and in this
case the radar may have a biased identification result. To resolve it, an additional adaptation module should be
taken into account. In this paper, we propose a hypothesis testing method to recognize the new clutter distri-
bution that is not included in the pre-trained dictionary. Moreover, we also compare the behaviors of different
probabilistic similarity/distance measures, where each forms a specific decision rule in the hypothesis test, to
figure out a proper choice of measures for our application. Through our numerical simulations, we observe that
the probabilistic distance measure has the best overall performance.

The rest of paper is organized as follows. In Section 2, we describe the sparse-recovery based clutter-
distribution identification method, and introduce the hypothesis testing approach that decides whether the
encountered clutter distribution has been learned by the dictionary or not. In Section 3, we present our simulation
results and discuss the observations from the comparison of different probablistic similarity/distance measures.
In Section 4, we conclude the paper and provide the future work.

2. CLUTTER DISTRIBUTION IDENTIFICATION METHOD

In this section, we first present the clutter-distribution identification method based on sparse recovery that
employs a dictionary which has kernel density estimations of different parametric distributions as the column
(pre-trained dictionary based on kernel density estimation). In this method, the distribution of the test data
(newly encountered clutter) is also estimated through kernel density estimation and used together with the
dictionary for the parametric identification of the distribution of the encountered clutter. The identification
is based on different distance and similarity measures between distributions. As we also stated above, this
method assumes that the true distribution of the encountered clutter distribution already exists in the pre-
trained dictionary and does not account for the cases in which a new distribution is encountered. In order to
overcome this, we propose a hypothesis testing approach to identify if the distribution of the encountered clutter
is already in the dictionary or not.

2.1 Distribution Identification via Sparse Recovery

Similar to our previous work,'® we formulate the distribution identification as a sparse recovery problem , i.e.,
Dz = y, such that y is a vector of observation (estimation of the distribution of the observed clutter), with D
as a dictionary matrix containing a pre-trained clutter distribution (estimation of well-known parametric clutter
distributions) in each column. Since D is a fat matrix with more columns than rows, there are many solutions to
this equation. In this paper, we apply kernel density estimation (KDE) to form the dictionary D and vector y
and an algorithm based on orthogonal matching pursuit (OMP) to identify the clutter distribution, distribution
of y, under the assumption that the clutter follows a specific parametric distribution.

The first step in sparsity-based clutter identification is the design of a dictionary matrix. For the design
of such a matrix, we rely on KDE, a method for estimating the probability density function (pdf) from the
sampled data, to create the dictionary D, which is given as D = [ f1(8) f2(8) --- fr(8)]; each column-vector
fi(s), 1 =1,2,..., L, denotes a discretized estimated clutter distribution based on the samples s; and L is the

total number of different distributions in the dictionary. Specifically, in order to obtain each column fi(s), NV
samples are first used to estimate the pdf f;(s) through KDE, then the pdf is discritized to be a W-dimensional
vector. Thus, a dictionary D has the size W x L. Also, we take IV; target-free samples from the radar echo (i.e.,
clutter) to estimate the unknown clutter distributions y in practical application. Given the estimation of clutter



distributions y and dictionary matrix D, we then use OMP to recover the clutter distribution of the measured
radar data. We assume that the sparsity level is 1; that is, the new clutter returns follow a specific distribution
rather than a mixture of distributions. Then, we recover the clutter distribution of the measured radar data by
finding a solution to following equation

[ := arg optimize, |Similarity or Distance between d; and y| (1)

Note that [ is an index number, and d; is a vector formed by indicated columns of D. As the inner product is
commonly used as similarity measure in OMP method, we introduce six more probabilistic similarity/distance
measures to identify the dictionary-column that best matches with measuring similarity and distances between
probability distributions (i.e., we use different measures in the Equation (1). Specifically, we consider Kulczynski,
Intersection, Fidelity, Sorensen and Soergel.'® These distance measures are commonly used to identify proba-
bilistic similarity/distance between probability distributions. The similarity/distance measures that we utilized
in this work are listed in Table 1, where r; is the ith element of the estimated density g(y) obtained from the
measurements, d; ; is the element in the ith row and /th column of dictionary D. Inner Product, Intersection and
Fidelity are similarity measures, while Kulczynski, Sorensen and Soergel are probabilistic distance measures. Sj
denotes the similarity between r and d;, M; denotes the distance between r and d;, [ = 1,2,...,L. In addition,
both r and d; are non-negative vectors because they represent the pdf of a random variable. Besides, in order
to prevent division by zero error, when the denominators of the measures are zero, they are replaced by a small
value €.

Table 1. Similarity and Distance Measures

Similarity and Distance

Function
Measures
Inner Product SZ(I“P“’) =W dir,
Intersection simter) — s~ W min (d; g, )
Fidelity S;Fidel) - 21‘11 \/di,l *r;
w
Wl o
Kulczynski MZ(KUIC) — %Vz=1|. il — Tl
Zi_v?z min (diy, ;)
Wod. — s
Sorensen MI(SOreﬂ) _ Zév=1| il — Tl
Z z‘]/V(dz',l + Ti)
Soergel MI(SOQYE) _ Dizldiy — i

ZVZ] max (d; ,7;)

2.2 Detection of A New Clutter Distribution

Sparse recovery based distribution identification technique can identify a distribution from the dictionary D
that is most similar to the distribution of the encountered clutter (test data) g(y) when the distribution of the
encountered clutter is already represented in the dictionary. However, this method does not currently consider
the cases in which the distribution of the encountered clutter distribution is new to the dictionary. In other words,
in practice there will be cases in which distribution of test data is not pre-learned, and thus is not included in
the dictionary D. In order to overcome this issue, we propose a hypothesis testing method to determine whether
the clutter distribution (distribution of the test data) is new (already included in the dictionary) or not. The
hypothesis test is given as follows,

Hjy: the clutter distribution has already been included in the dictionary D)
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Figure 1. Histogram of the test statistic S;

H;: the clutter distribution is new to the dictionary D.

As we described in (1), we denote the maximum similarity between the encountered clutter distribution and
the columns in dictionary as S;, and the minimum distance between the clutter distribution and the columns
in dictionary as Mj. Intuitively, when the clutter distribution is new, S; is relatively small (or M; is relatively
large). Based on this intuition and properties of the similarity and distance measures shown in Table 1, we use
S; (or M;) as the test statistic for the hypothesis test. Specifically, if S; is greater than a certain threshold A (or
M; is less than a threshold '), then Hy is accepted; if S; is less than the certain threshold A (or M; is greater
than the threshold X'), then H; is accepted. The decision rule is summarized as follows,

S }Q A M gl N 2
=0 or - (2
For practical use, we need to find a proper threshold A (or X'). fig. 1 shows an example of the distribution
of S; under Hp and Hi, and it is visible that these two distributions are distinguishable. We can vary the
threshold A € (0,10), and get the probability of detection (Py) and probability of false alarm (P) to obtain
a receiver operating characteristics (ROC) curve for a specific distance/similarity measure that is used in the
sparse recovery based distribution identification, see Section 3 for simulation results of obtained ROC curves for
different distributions and the distance/similarity measures described in Table 1.

3. SIMULATION RESULTS

In this section, we show the performance of the hypothesis tests with extensive numerical results. For KDE,
we use Epanechnikov kernel function, that has been shown in our previous work to provide the most robust
estimation (in terms of the changes in the kernel parameters and dictionary training size) among all the kernel
functions we have tested.!* To consider various clutter characteristics, we simulate the received clutter samples
using 61 different distributions from 4 different groups:

1. K-distribution: sg = |\/7u|, where sk follows a K-distribution when 7 ~ Gammal(k, ) | k is the shape
parameter and 6 is the scale parameter| and n ~ CN(0, o’ﬁ).

2. Weibull distribution: sw ~ Wbl(a, ), where swr,) follows a Weibull distribution with the shape param-
eter a and the scale parameter 3.



3. Log-normal distribution: spn ~ LogN(uLN,02y), where spn follows a log-normal distribution, implying
that (lnyLN - ,uLN)/ULN ~ N(O, 1).

4. Student-t distribution: ss; = /7w, where sgs; follows a non-standardized Student-t distribution when
1/7 ~ Gamma(v,1/v) and w ~ N (0,02).

In our simulations, the sample size to learn the distributions of the test samples is set as N; = 300, N, = 1300,
or N, = 2800, and the W is set to be 400. To generate the dictionary D, we randomly select 31 of the total 61
different distributions as the pre-learned clutter distributions, and we specify the sample size as N = 2800, to

learn these pdfs that form the columns of D. The rest of the distributions are assumed to be new distributions
that radar may encounter. We test the performance of six different similarity/distance measures in Table 1 (i.e.,
inner product, Fidelity, intersection based similarity, and Kulczynski, Sorensen, Soergel probabilistic distances)
for the hypothesis testing. Every time radar received N; clutter samples, we compute the S; (M;) using (1).
After 31000 times Monte Carlo runs, we get the histogram of S; (M;) under Ho and H;. Applying the decision
rule in (2), if S; is greater than threshold A (or M; is less than threshold )\'), Hy is accepted; If S; is less than
threshold A (or M;j is greater than threshold )\'), H; is accef)ted. The probabilit%/ of detection Py is defined
as the probability that H; is accepted when H; is true; while the probability of false alarm is defined as the
probability that H is accepted when Hj is true. By varying the threshold A (\’), we plot the receiver operating
characteristic (ROC) curves in fig. 2, and fig. 3 as the per%z)rmance metrics when similarity and distance measures
are used for sparse recovery, respectively.

In figs. 2 and 3, the subfigures on the left-hand-side show the histogram of S; and M;, and the subfigures
on the right-hand-side show the corresponding ROC curves. In each subfigure on the right-hand-side, there are
three different curves corresponding to three different N, values. From figs. 2 and 3, we first observe a general
trend that the detection performance increases as IV; increases. Moreover, we observe that all the probabilistic
measures perform better than the inner product, as inner product does not necessarily identify the similarities
between distributions. Within the similarity measures, intersection has the best performance, while Soergel is
the best performing distance measure. Comparing Intersection and Soergel, it can be seen that Soergel is more
robust to the changes in the testing sample size (IV;) while Intersection has higher performance when there is
more testing data for very low probability of false alarm values. Considering the probability false alarm values
between 1072 and 0.1, Soergel outperforms the intersection measure. If the radar could wait longer to record
more clutter data, intersection could be used for the clutter identification when very low false alarm values
are desired. However, achieving large test sample size is not very practical; therefore, for practical usage, we
recommend employing Soergel in the sparse recovery based distribution identification as it has the best overall
performance especially for small N;. If the hypothesis testing based approach detects that the encountered
distribution is not in the pre-trained dictionary, the estimation of the distribution of the newly observed clutter
will be added to the dictionary as a new column.

4. CONCLUSION

In this paper, we adapt a sparse recovery based clutter distribution identification method for cognitive radar to
detect if the radar clutter is already pre-learned by the dictionary or not. In this identification method, both the
dictionary and the test samples were probabilistic distributions learned through radar data. In addition to Inner
Product similarity measure that is used for orthogonal matching pursuit for sparse identification, we also tested
five different type probabilistic similarity/distance measures for new clutter detection. We performed numerical
Monte Carlo simulations for various clutter distributions to demonstrate that Soergel distance measure provided
the best overall performance. Especially, it has good performance for small test sizes for acceptable probability
values, which is very important for practical implementation of cognitive radar. Note also that after determining
that a new distribution is encountered, this new distribution needs to be learned through the test sample and
added to the dictionary. Therefore, in order to achieve this in a fast fashion for practical purposes, it is essential
to learn the distribution of this new data through small test sample size and add to the dictionary. Our future
work will focus on shrinking dictionary dynamically based on the frequency of encountered distributions.
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Figure 2. Histogram and ROC curves of new distribution detection, using probabilistic similarity measure
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