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ABSTRACT 

Existing radar algorithms assume stationary statistical characteristics for environment/clutter. In practical 
scenarios, the statistical characteristics of the clutter can dynamically change depending on where the radar 
is operating. Nonstationarity in the statistical characteristics of the clutter may negatively affect the radar 
performance. Cognitive radar that can sense the changes in the clutter statistics, learn the new statistical 
characteristics, and adapt to these changes has been proposed to overcome these shortcomings. We have recently 
developed techniques for detection of statistical changes and learning the new clutter distribution for cognitive 
radar. In this work, we will extend the learning component. More specifically, in our previous work, we have 
developed a sparse recovery based clutter distribution identification to learn the distribution of the new clutter 
characteristics after the detected change in the statistics of the clutter. In our method, we have built a dictionary 
of clutter distributions and used this dictionary in orthogonal matching pursuit to perform sparse recovery of 
the clutter distribution assuming that the dictionary includes the new distribution. In this work, we propose 
a hypothesis testing based approach to detect whether the new distribution of the clutter is included in the 
dictionary or not, and suggest a method to dynamically update the dictionary. We envision that the successful 
outcomes of this work will be of high relevance to the adaptive learning and cognitive augmentation of the radar 
systems that are used in remotely piloted vehicles for surveillance and reconnaissance operations. 
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1. INTRODUCTION

Radar signal processing has been extensively studied and investigated in literature by assuming stationary 
clutter environments. However, in practice, the statistical characteristics of the clutter can dynamically change 
depending on the radar operating scenarios.1-8 For example, the environment of the target under detection
and tracking may vary in different time period because of the motion of the target, and the radar echo may be 
corrupted by even different types of clutter. These changes, if not well-addressed, could degrade the performance 
of radar algorithms, and thus cause negative impacts to higher level data processing applications. Further, to 
remain the usage of the algorithms proposed for stationary environments and maintain their performance at 
some desired levels, it is important for operating radars to determine the statistical characteristics of the clutter 
and integrate an adaption module. 

The concept of cognitive radars9-12 has been proposed to address this issue by: (i) sensing the changes in
clutter characteristics from measured data, (ii) learning the new clutter characteristics after the change, and (iii) 
adapting the radar algorithms to the new clutter distribution that is learned/identified after the change. In our 
previous work, for the issue (i), we developed a data-driven method and use the (extended) CUSUM algorithm to 
find out whether the assumed clutter distribution model has changed or not.12 For the issue (ii), a method based
on the sparse recovery theory is proposed.13-

15 Specifically, we applied the kernel density estimation (KDE)
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to learn the probability density function (pdf) from the received clutter data, and an orthogonal matching 
pursuit (OMP) method to identify the clutter distributions after the changes. We assumed that there existed 
a pre-trained dictionary that consists of versatile potential candidate clutter distributions, and the clutter pdf 
that the radar encounters in operation should be included in the dictionary. We also compared our proposed 
clutter distribution identification method with the classical Ozturk algorithm, 16, 17 and showed the robustness 

and improved accuracy of the proposed method.15 We further studied the impact of different kernel types that 
were involved in the clutter distribution learning, and compared the identification accuracy.14

For the proposed clutter distribution identification method, we usually assumed that the pre-trained dictio­
nary of the clutter distributions remained unchanged during the radar operation period. However, it would be 
possible that the radar encounters new clutter distribution that is not pre-learned by the dictionary, and in this 
case the radar may have a biased identification result. To resolve it, an additional adaptation module should be 
taken into account. In this paper, we propose a hypothesis testing method to recognize the new clutter distri­
bution that is not included in the pre-trained dictionary. Moreover, we also compare the behaviors of different 
probabilistic similarity/ distance measures, where each forms a specific decision rule in the hypothesis test, to 
figure out a proper choice of measures for our application. Through our numerical simulations, we observe that 
the probabilistic distance measure has the best overall performance. 

The rest of paper is organized as follows. In Section 2, we describe the sparse-recovery based clutter­
distribution identification method, and introduce the hypothesis testing approach that decides whether the 
encountered clutter distribution has been learned by the dictionary or not. In Section 3, we present our simulation 
results and discuss the observations from the comparison of different probablistic similarity/ distance measures. 
In Section 4, we conclude the paper and provide the future work. 

2. CLUTTER DISTRIBUTION IDENTIFICATION METHOD

In this section, we first present the clutter-distribution identification method based on sparse recovery that 
employs a dictionary which has kernel density estimations of different parametric distributions as the column 
(pre-trained dictionary based on kernel density estimation). In this method, the distribution of the test data 
(newly encountered clutter) is also estimated through kernel density estimation and used together with the 
dictionary for the parametric identification of the distribution of the encountered clutter. The identification 
is based on different distance and similarity measures between distributions. As we also stated above, this 
method assumes that the true distribution of the encountered clutter distribution already exists in the pre­
trained dictionary and does not account for the cases in which a new distribution is encountered. In order to 
overcome this, we propose a hypothesis testing approach to identify if the distribution of the encountered clutter 
is already in the dictionary or not. 

2.1 Distribution Identification via Sparse Recovery 

Similar to our previous work, 15 we formulate the distribution identification as a sparse recovery problem , i.e., 
Dx = y, such that y is a vector of observation (estimation of the distribution of the observed clutter), with D 

as a dictionary matrix containing a pre-trained clutter distribution ( estimation of well-known parametric clutter 
distributions) in each column. Since Dis a fat matrix with more columns than rows, there are many solutions to 
this equation. In this paper, we apply kernel density estimation (KDE) to form the dictionary D and vector y 

and an algorithm based on orthogonal matching pursuit (OMP) to identify the clutter distribution, distribution 
of y, under the assumption that the clutter follows a specific parametric distribution. 

The first step in sparsity-based clutter identification is the design of a dictionary matrix. For the design 
of such a matrix, we rely on KDE, a method for estimating the probability density function (pdf) from the 
sampled data, to create the dictionary D, which is given as D = [fi(s) h(s) · · · h(s) ]; each column-vector 
fz(s), l = 1, 2, .. . , L, denotes a discretized estimated clutter distribution based on the samples s; and Lis the 
total number of different distributions in the dictionary. Specifically, in order to obtain each column fz(s), N 

samples are first used to estimate the pdf fz(s) through KDE, then the pdf is discritized to be a W-dimensional 
vector. Thus, a dictionary D has the size W x L. Also, we take Nt target-free samples from the radar echo (i.e., 
clutter) to estimate the unknown clutter distributions y in practical application. Given the estimation of clutter 



distributions y and dictionary matrix D, we then use OMP to recover the clutter distribution of the measured 
radar data. We assume that the sparsity level is 1; that is, the new clutter returns follow a specific distribution 
rather than a mixture of distributions. Then, we recover the clutter distribution of the measured radar data by 
finding a solution to following equation 

[ := arg optimize1 !Similarity or Distance between d1 and YI (1) 

Note that l is an index number, and d1 is a vector formed by indicated columns of D. As the inner product is 
commonly used as similarity measure in OMP method, we introduce six more probabilistic similarity/distance 
measures to identify the dictionary-column that best matches with measuring similarity and distances between 
probability distributions (i.e., we use different measures in the Equation (1). Specifically, we consider Kulczynski, 
Intersection, Fidelity, Sorensen and Soergel.18 These distance measures are commonly used to identify proba­
bilistic similarity/ distance between probability distributions. The similarity/ distance measures that we utilized 
in this work are listed in Table 1, where Ti is the ith element of the estimated density g(y) obtained from the 
measurements, di,l is the element in the ith row and lth column of dictionary D. Inner Product, Intersection and 
Fidelity are similarity measures, while Kulczynski, Sorensen and Soergel are probabilistic distance measures. S1 
denotes the similarity between rand d1, M1 denotes the distance between rand d1, l = l, 2, ... , L. In addition, 
both r and d1 are non-negative vectors because they represent the pdf of a random variable. Besides, in order 
to prevent division by zero error, when the denominators of the measures are zero, they are replaced by a small 
value£. 

Table 1. Similarity and Distance Measures 

Similarity and Distance 

Measures 

Inner Product 

Intersection 

Fidelity 

Kulczynski 

Sorensen 

Soergel 

Function 

S(InPro) _ LW d· 
l - i=l i,lTi

S(Inter) LW . (d )l = i=l min i,l, Ti 

s(Fidel) Lw yd l = i=l . i,l * Ti 

M(Kulc) _ I::1 ldi,l - Til1 - I;�, min (dil , Ti )

M(Soren) _ L:1ldi,I - Til
l 

- W L�, (di!+Ti ) 

M(Soerg) _ L:1ldi,I - Til
l 

- W I;�, max (di 1, Ti ) 

2.2 Detection of A New Clutter Distribution 

Sparse recovery based distribution identification technique can identify a distribution from the dictionary D
that is most similar to the distribution of the encountered clutter (test data) g(y) when the distribution of the 
encountered clutter is already represented in the dictionary. However, this method does not currently consider 
the cases in which the distribution of the encountered clutter distribution is new to the dictionary. In other words, 
in practice there will be cases in which distribution of test data is not pre-learned, and thus is not included in 
the dictionary D. In order to overcome this issue, we propose a hypothesis testing method to determine whether 
the clutter distribution (distribution of the test data) is new (already included in the dictionary) or not. The 
hypothesis test is given as follows, 

H0: the clutter distribution has already been included in the dictionary D;
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Figure 1. Histogram of the test statistic S1 

H1: the clutter distribution is new to the dictionary D.

As we described in (1), we denote the maximum similarity between the encountered clutter distribution and 
the columns in dictionary as S1, and the minimum distance between the clutter distribution and the columns 
in dictionary as M[- Intuitively, when the clutter distribution is new, S1 is relatively small (or M1 is relatively 
large). Based on this intuition and properties of the similarity and distance measures shown in Table 1, we use 
S1 (or M1) as the test statistic for the hypothesis test. Specifically, if S1 is greater than a certain threshold>. (or 
M1 is less than a threshold >.'), then Ho is accepted; if S1 is less than the certain threshold >. (or M1 is greater 
than the threshold>.'), then H1 is accepted. The decision rule is summarized as follows, 

or (2) 

For practical use, we need to find a proper threshold >. (or >.'). fig. 1 shows an example of the distribution 
of S1 under Ho and H1, and it is visible that these two distributions are distinguishable. We can vary the 
threshold >. E (0, 10), and get the probability of detection (Pd) and probability of false alarm (Pra) to obtain 
a receiver operating characteristics (ROC) curve for a specific distance/similarity measure that is used in the 
sparse recovery based distribution identification, see Section 3 for simulation results of obtained ROC curves for 
different distributions and the distance/similarity measures described in Table 1. 

3. SIMULATION RESULTS

In this section, we show the performance of the hypothesis tests with extensive numerical results. For KDE, 
we use Epanechnikov kernel function, that has been shown in our previous work to provide the most robust 
estimation (in terms of the changes in the kernel parameters and dictionary training size) among all the kernel 
functions we have tested.14 To consider various clutter characteristics, we simulate the received clutter samples
using 61 different distributions from 4 different groups: 

1. K-distribution: SK = lv'TµI, where SK follows a K-distribution when T ~ Gamma(k, 0) [ k is the shape
parameter and 0 is the scale parameter] and n ~ CN(O, o-�)-

2. Weibull distribution: swbl ~ Wbl( a, /3), where swbl follows a Weibull distribution with the shape param­
eter a and the scale parameter /3.



3. Log-normal distribution: SLN ~ LogN (µLN , O-£N), where SLN follows a log-normal distribution, implying
that (In YLN - µLN)/o-LN ~ N(0, 1).

4. Student-t distribution: sst = ,.fiw, where Sst follows a non-standardized Student-t distribution when
1/T ~ Gamma(v, 1/v) and w ~ N(0, a-;).

In our simulations, the sample size to learn the distributions of the test samples is set as Nt = 300, Nt = 1300, 

or Nt = 2800, and the Wis set to be 400. To generate the dictionary D, we randomly select 31 of the total 61 
different distributions as the pre-learned clutter distributions, and we specify the sample size as N = 2800, to 

learn these pdfs that form the columns of D. The rest of the distributions are assumed to be new distributions 
that radar may encounter. We test the performance of six different similarity/ distance measures in Table 1 (i.e., 
inner product, Fidelity, intersection based similarity, and Kulczynski, Sorensen, Soergel probabilistic distances) 
for the hypothesis testing. Every time radar received Nt clutter samples, we compute the Si (Mi) using (1). 
After 31000 times Monte Carlo runs, we get the histogram of Si (Mi) under Ho and H1. Applying the decision 

rule in (2), if Si is greater than threshold >. (or Mi is less than threshold >.'), Ho is accepted; If Si is less than 
threshold >. (or Mi is greater than threshold >.'), H1 is accepted. The probability of detection Pd is defined 
as the probability that H1 is accepted when H1 is true; while the probability of false alarm is defined as the 

probability that H1 is accepted when Ho is true. By varying the threshold >. (>.'), we plot the receiver operating 
characteristic (ROC) curves in fig. 2, and fig. 3 as the performance metrics when similarity and distance measures 
are used for sparse recovery, respectively. 

In figs. 2 and 3, the subfigures on the left-hand-side show the histogram of Si and Mi, and the subfigures 
on the right-hand-side show the corresponding ROC curves. In each subfigure on the right-hand-side, there are 
three different curves corresponding to three different Nt values. From figs. 2 and 3, we first observe a general 
trend that the detection performance increases as Nt increases. Moreover, we observe that all the probabilistic 
measures perform better than the inner product, as inner product does not necessarily identify the similarities 
between distributions. Within the similarity measures, intersection has the best performance, while Soergel is 
the best performing distance measure. Comparing Intersection and Soergel, it can be seen that Soergel is more 
robust to the changes in the testing sample size (Nt) while Intersection has higher performance when there is 
more testing data for very low probability of false alarm values. Considering the probability false alarm values 
between 10-2 and 0.1, Soergel outperforms the intersection measure. If the radar could wait longer to record 
more clutter data, intersection could be used for the clutter identification when very low false alarm values 
are desired. However, achieving large test sample size is not very practical; therefore, for practical usage, we 
recommend employing Soergel in the sparse recovery based distribution identification as it has the best overall 
performance especially for small Nt. If the hypothesis testing based approach detects that the encountered 
distribution is not in the pre-trained dictionary, the estimation of the distribution of the newly observed clutter 
will be added to the dictionary as a new column. 

4. CONCLUSION

In this paper, we adapt a sparse recovery based clutter distribution identification method for cognitive radar to 
detect if the radar clutter is already pre-learned by the dictionary or not. In this identification method, both the 
dictionary and the test samples were probabilistic distributions learned through radar data. In addition to Inner 
Product similarity measure that is used for orthogonal matching pursuit for sparse identification, we also tested 
five different type probabilistic similarity/ distance measures for new clutter detection. We performed numerical 
Monte Carlo simulations for various clutter distributions to demonstrate that Soergel distance measure provided 
the best overall performance. Especially, it has good performance for small test sizes for acceptable probability 
values, which is very important for practical implementation of cognitive radar. Note also that after determining 
that a new distribution is encountered, this new distribution needs to be learned through the test sample and 
added to the dictionary. Therefore, in order to achieve this in a fast fashion for practical purposes, it is essential 
to learn the distribution of this new data through small test sample size and add to the dictionary. Our future 
work will focus on shrinking dictionary dynamically based on the frequency of encountered distributions. 
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Figure 2. Histogram and ROC curves of new distribution detection, using probabilistic similarity measure 
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(d) ROC curve of Soergel.
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Figure 3. Histogram and ROC curves of new distribution detection, using probabilistic distance measure 
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