Title: Natural deep eutectic solvents for lignocellulosic biomass pretreatment: Recent developments, challenges and novel opportunities

Authors names and affiliations: Alok Satlewal^{a,b,c,†}, Ruchi Agrawal^{c,†}, Samarthya Bhagia^a, Joshua Sangoro^c, and Arthur J. Ragauskas^{a,b,d,*}

^aDepartment of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, USA 37996, USA

^bJoint Institute for Biological Sciences, Biosciences Division, Oak Ridge National Laboratory (ORNL), TN, 37831, USA

^cDepartment of Bioenergy, DBT-IOC Centre for Advanced Bioenergy Research, Research and Development Centre, Indian Oil Corporation Ltd, Faridabad, Haryana 121007, India

^dDepartment of Forestry, Wildlife, and Fisheries, Center for Renewable Carbon, University of Tennessee, Institute of Agriculture, Knoxville, TN, 37996, USA

Authors' email addresses: Alok Satlewal (satlewala@indianoil.in; alok.satlewal@gmail.com; ORICID ID 0000-0003-1682-2968), Ruchi Agrawal (<u>dr.ruchiagrawal010@gmail.com</u>; ORICID ID 0000-0003-0168-6000), Samarthya Bhagia (<u>sbhagia@utk.edu</u>; ORICID ID 0000-0002-9495-1880), Joshua Sangoro (sangoro@utk.edu), and Arthur J. Ragauskas (aragausk@utk.edu)

†Alok Satlewal and Ruchi Agrawal contributed equally as first author

*Corresponding author: Arthur J. Ragauskas, Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA. E-mail: aragausk@utk.edu

** This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

Abstract

Conversion of lignocellulosic biomass to fuels and chemicals has attracted immense research and development around the world. Lowering recalcitrance of biomass in a cost-effective manner is a challenge to commercialize biomass-based technologies. Deep eutectic solvents (DESs) are new 'green' solvents that have a high potential for biomass processing because of their low cost, low toxicity, biodegradability, easy recycling and reuse. This article discusses the properties of DESs and recent advances in their application for lignocellulosic biomass processing. The effectiveness of DESs in hydrolyzing lignin-carbohydrate complexes, removing lignin/hemicellulose from biomass as well as their effect on biomass deconstruction, crystallinity and enzymatic digestibility have been discussed. Moreover, this review presents recent findings on the compatibility of natural DESs with enzymes and microorganisms.

Keywords: Lignocellulosic biomass; Natural deep eutectic solvents; Lignin removal; Cellulose crystallinity; Recalcitrance

Abbreviations: DES: Deep Eutectic Solvent, IL: Ionic liquid, HBA: Hydrogen bond acceptor, HBD: Hydrogen bond donor, ChCl: Choline Chloride, EG: Ethylene Glycol, TEG: Triethylene glycol, U: Urea, LA: Lactic Acid, EAC: ethylammonium chloride, HMF: 5-hydroxymethylfurfural

1. Introduction

Lignocellulosic biomass conversion to biofuels, biochemicals, and other value-added products has attracted global attention because it is a readily available, inexpensive and renewable resource (Lynd 2017; Satlewal et al., 2017). It primarily consists of polysaccharides, cellulose, and hemicellulose (50-65%), and the aromatic biopolymer, lignin (10-30%) (Agrawal et al., 2016; Wang et al., 2016). The most promising commercially viable route today for utilization of lignocellulosic biomass is fermentation of cellulose and hemicellulose sugars into ethanol. A conventional process design includes size reduction, pretreatment, enzymatic hydrolysis, fermentation, and distillation as the major process steps. Pretreatment is essential to reduce biomass recalcitrance for achieving high enzymatic hydrolysis efficiencies (Dutta et al., 2018). Sugars recovered from pretreatment and enzymatic hydrolysis can be fermented to produce ethanol or other biofuels and commodity chemicals through biochemical and thermochemical routes. Alternate process designs also exist such as combining enzymatic hydrolysis and fermentation in single step known as simultaneous saccharification and fermentation (SSF), or a one-pot process where the different processes are carried out in the same vessel, for reducing the production costs.

Deep eutectic solvents were introduced as low-cost eutectic mixtures, with physical and chemical properties comparable to ILs (Abbott et al., 2004). They are prepared by combining hydrogen bonding donors (HBDs) and hydrogen bonding acceptors (HBAs) to form eutectic mixtures. DESs are preferred over conventional ILs because they are easy to synthesize, stable, cost-competitive and typically most of them are environmental-friendly (Mbous et al., 2017). According to one estimate, the cost to synthesize a DES was only 20% of that of an IL (Xu et al., 2016b). In a similar study, Gorke et al., (2010) reported that components for DESs were ten

times less expensive than the components for ionic liquids. However, the relationship between molecular composition and the solvent properties of the resulting eutectic mixtures is not fully understood. Nevertheless, several promising DESs systems have been reported in recent literature. The numbers of publications on DESs have grown exponentially during last few years (Figure 1a & 1b). It indicates their potential primarily in the areas of electrochemistry, fossil fuels, fermentation and bio-industrial chemistry, pharmaceuticals, food and feed industry and lignocellulosic biomass processing. Biocompatibility of the DESs with biomolecules i.e. nucleic acids, proteins, enzymes and microbes is one the most significant properties of DESs which has attracted recent interest for their applications in bio-pharma industries for bioorganic catalysis, biotransformation, and molecular extractions (Mbous et al., 2017). The application of DESs as an alternative to ILs in dissolving the polysaccharides (i.e. cellulose, xylose, arabinose, starch, chitin) and lignin present in biomass has attracted a vast interest of the scientific community globally to produce biofuels, value added products and commodity chemicals (Oliveira et al., 2015).

This review article focuses on properties of DESs and recent advances in their application for lignocellulosic biomass processing It begins with the current status of lignocellulosic biomass pretreatment followed by discussion on synthesis and physiochemical properties of DESs, and key findings on the effects of DES on cellulose, hemicellulose and lignin solubilization then, biomass pretreatment and changes in biomass crystallinity. The article then progresses to enzymatic hydrolysis performance of DESs pretreated solids, compatibility of DESs with enzymes and microorganisms, and recycling potential of DESs. Finally, it covers the comparison of DESs with ILs, and challenges and opportunities for furthering DESs use in lignocellulosic processing.

2. Current status of lignocellulosic biomass pretreatment

A wide array of pretreatment technologies has been evaluated in last decade for lignocellulosic biomass valorization to produce biofuels and biochemicals with high cost efficiency (Abo-Hamad et al., 2015; Agrawal et al., 2015a). These include physical (mechanical extrusion, milling, microwave, ultrasound), physicochemical (steam explosion, hot-water, wet oxidation, sulfite pretreatment to overcome recalcitrance of lignocellulose (SPORL), ammonia), biological and chemical (dilute acid, dilute alkali, ozonolysis, organosoly, ionic liquids, inorganic salts and recently deep eutectic solvents) (Singh et al., 2015). The recently published reviews discussed about these comprehensively (Capolupo and Faraco 2016; Den et al., 2018; Seidl and Goulart 2016). Albeit, plethora of pretreatment processes exist but only few of them (i.e. dilute acid, steam explosion and hydrothermal) have been demonstrated at pilot and commercial scale levels while; many are still under process intensification stages or struggling for scale up (Satlewal et al., 2018). During certain pretreatments (dilute acid, dilute alkali, organosoly, hydrothermal, chemical pulping and ionic liquids (ILs)) especially at high severity conditions, hemicelluloses and/or lignin are solubilized and degraded to form inhibitors such as hydroxymethyl furfural, furfural, hydroxy acids, aliphatic carboxylic acids. Thus, an additional step of detoxification might become inevitable to reduce enzyme or microbial toxicity for realizing high product yields (Agrawal et al., 2015b; Akinosho et al., 2015). Ionic liquids have shown high efficiency for lignin extraction, reducing cellulose crystallinity, and improving enzymatic digestibility, under mild operating conditions. However, their industrial application has been restricted by high costs, incompatibility with enzymes and microorganisms and recycling challenges (Yoo et al., 2017). Thus, multiple factors play a critical role in selecting the right pretreatment approach for biomass based upon nature of feedstock (i.e. hardwood,

softwood, agricultural residue, grass), capital and operational expenditures, energy investment, yields, efficiency and environmental sustainability. In view of this, there is still a large scope to innovate and develop novel and disruptive biomass pretreatment technologies.

DESs offer several advantages over the conventional solvents and ionic liquids yet overcome many of their drawbacks such as easy to synthesize without any purification and waste generation step at mild temperature and atmospheric pressure, renewable in nature, wide availability and cost effectiveness of its components (for example ChCl is available as chicken feed while, urea is commonly used as fertilizer), biocompatibility and biodegradability(Loow et al., 2018). DESs are widely being exploited in electrochemical and organic synthesis areas and recently huge interest has been generated for their application in biorefinery due to their unique physicochemical properties (Xing et al., 2017).

DESs were reported to dissolve and extract high-quality lignin with more than 90% purity, and nearly 60±5 % (w/w) of the total lignin present in rice straw (Kumar et al., 2016; van Osch et al., 2017), but negligible cellulose solubility was observed (Oliveira et al., 2015). In few recently published reports, selected DESs have been reported to work efficiently during biomass pretreatments such as ethylammonium chloride:ethylene glycol (EAC:EG) for oil palm trunk (OPT) fiber pretreatment with 74% glucose production (74%) (Zulkefli et al., 2017), choline chloride:oxalic acid and choline chloride:urea for rice straw to achieve a glucose yield of 90.2% (Hou et al., 2017a), choline chloride:formic acid for corn stover with a hydrolysis yield of 99% (Xu et al., 2016b). Similarly, a high glucan conversion (92% – 95%) was achieved after pretreatment of corn cob with ChCl:glycerol and ChCl:imidazole, respectively (Procentese et al., 2015). Even though DESs possess more benefits than ILs, they are still not widely used because they are relatively new in biomass processing and more research is needed for their application

(Loow et al., 2017). Next few sections in this review will provide insights about the physicochemical properties of DESs and their application in biomass processing.

3. Deep eutectic solvents and their physicochemical properties

Typically, deep eutectic solvents consist of large, non-symmetric ions that have low lattice energy and hence, low melting points (Smith et al., 2014). They are usually prepared by mixing a hydrogen bond acceptor (HBA) (such as quaternary ammonium salts) and a hydrogen bond donor (HBD) such as amides, carboxylic acids, and alcohols at moderate temperatures (60 °C to 80 °C) to form eutectic mixtures (Figure 2) (Sarmad et al., 2017). Hydrogen bonding results in charge delocalization between the HBA and HBD and consequently, the freezing point of the eutectic mixture is much lower as compared to the individual compounds. For an example, the melting point of a choline chloride ChCl:urea mixture (1:2) is 12 °C which is far lower than 302 °C and 133 °C for ChCl and urea, respectively (Xu et al., 2017). The thermal phase behavior of a deep eutectic solvent system prepared by mixing together the lidocaine and decanoic acid in varied composition range was evaluated by differential scanning calorimetry (Griffin et al., 2014). It clearly showed the melting transitions of crystalline solids i.e. lidocaine (Tm = 341 K or 67.85 °C) and decanoic acid (Tm = 307 K or 33.85 °C) but no crystallization or melting was observed for the lidocaine:decanoic acid mixture which remains as liquid at room temperature with a glass transition at Tg =207 K or -66.15 °C (Figure 3). Since, different types of DESs exist as liquids at temperatures below 100 °C thus a suitable classification system is required for their identification as discussed in the next section. (García et al., 2015).

3.1. Classification of deep eutectic solvents

DESs have been classified based on the combinations of their chemical constituents

(**Table 1**). Type I DESs have limited application in biomass processing due to the high melting

points of the non-hydrated metal halides while, Type II DESs are more viable for industrial processes because of the relatively lower costs of the hydrated metal halides (Smith et al., 2014). However, Type III DESs are the most studied due to their quick and easy preparation, non-reactivity with water, biodegradable nature and cost effectiveness (Loow et al., 2017; Smith et al., 2014). Finally, Type IV DESs incorporate the use of inorganic transition metals with urea to form eutectic mixtures, even though metal salts would not normally ionize in non-aqueous media (Loow et al., 2017; Smith et al., 2014).

Table 1. General formula for the classification of DESs (Adapted with permission from (Smith et al., 2014))

Type	Components	General formula	Example
I	Metal salt + organic salt	Cat ⁺ X ⁻ zMClx; M = Zn, Sn, Fe, Al, Ga, In	ZnCl ₂ +
			ChCl
II	Metal salt hydrate +	$Cat^+ X^- zMClx.yH_2O; M = Cr, Co, Cu, Ni,$	CoCl ₂ .6H2O
	organic salt	Fe	+ ChCl
III	HBD + organic salt	$Cat^+ X^- zRZ; Z = CONH_2, COOH, OH$	Urea + ChCl
IV.	Zing/alyminiyan ahlamida l	MClar DZ = MCl + DZ MClar M =	7Cl
IV	Zinc/aluminium chloride +	$MClx + RZ = MCl_{x-1} + RZ + MCl_{x+1}$; $M =$	ZnCl ₂ +
	HBD	Al, $Zn \& Z = CONH_2$, OH	urea

Cat⁺, any ammonium, phosphonium, or sulfonium cation; X, a Lewis base, generally a halide anion; Y, a Lewis or Bronsted acid; z, number of y molecules that interact with the anion

The understanding of physiochemical characteristics of DESs is essential for its industrial applications. The key properties of DESs such as freezing point, density, viscosity, surface tension and conductivity are discussed as follows:

3.2. Freezing point

Although, DESs have lower freezing point as compared to their parent compounds but a few of them such as ChCl:glucose/sucrose/inulin/fructose possess high freezing point i.e. above 80 °C and remain as solids at room temperature which restricts their mixing and mass transfer efficiency and chemical interactions with solid substrates like lignocellulosic biomass at low temperatures (Oliveira et al., 2015). However, some of the DESs have freezing point below 50 °C and remained as liquids at room temperatures and attracted wide interest as solvents in industries and biomass processing applications (**Table 2**). In case of halide ion based DESs, charge delocalization due to hydrogen bonding with HBD leads to reduction in the freezing point. The reduction in freezing point is accompanied by disruption of crystalline structure by hydrogen bonding between quaternary ammonium salt and HBD (Domínguez de María 2014; Loow et al., 2017). Generally, the freezing point of the DESs decrease with increasing hydrogen bonding strength within the mixture (Espino et al., 2016).

3.3. Density

Most DESs are denser than water with densities in the range of 1.0 to 1.35 g/cm³ but metallic salts based DESs like ZnCl₂:urea and ZnCl₂:ethylene glycol have high densities in the range of 1.3–1.6 g/cm³ (García et al., 2015) (**Table 2**). The density of DESs is affected by the packing arrangement of the molecular components and testing temperature (García et al., 2015). As expected, an increase in the temperature or water content in DESs leads to lower densities (García et al., 2015; Shahbaz et al., 2011). In addition, the density also decreases with increasing alkyl chain length of DES components as well as the relative ratio of salt to HBD is increased (Chen et al., 2017; van Osch et al., 2017). Apart from this, increase in the water content of a DES molecule also results into decrease in density (García et al., 2015).

3.4. Viscosity

The viscosity of DESs is determined by their intermolecular interactions which could be influenced by numerous factors including the chemical nature of their constituents such as the type of HBD and HBA, molar ratio of HBD and HBA, temperature and water content (Smith et al., 2014). For instance, the viscosity of ChCl based DESs decreases with increasing temperature and ChCl content in certain composition ranges (Abo-Hamad et al., 2015; AlOmar et al., 2016; Smith et al., 2014). DESs with lower viscosity are desirable for industrial and biomass processing applications (Loow et al., 2017). It is generally observed that there is a linear correlation between the molar conductivity of DESs and their fluidity (reciprocal of viscosity) (Smith et al., 2014). DESs have a broad demand as replacements for conventional organic solvents because of their high stability and biodegradable nature despite poor conductivity (Li et al., 2016; Smith et al., 2014). Thus highly viscous DESs are reported to have poor conductivity which increases at elevated temperatures (**Table 2**) (Abo-Hamad et al., 2015).

3.5 Surface tension

The surface tension of DESs is highly dependent upon the dominant intermolecular forces and the type of cation (García et al., 2015; Vigier et al., 2015). It was observed that the hydroxyl group in the cation leads to higher surface tension due to their hydrogen-bonding ability (García et al., 2015; Vigier et al., 2015). Thus, surface tension of glucose-based DESs was higher than those reported for carboxylic acids-based DESs (Hayyan et al., 2013a). An increase in temperature has been reported to decrease the surface tension of DESs. This phenomenon is explained by the gain of energy in the salt, which causes the reduction of intermolecular forces (AlOmar et al., 2016).

One of the significant benefits of DESs is to fine tune its properties by precisely selecting the hydrogen bond donor and acceptor and varying their molar ratios depending upon the application (van Osch et al., 2017; Yoo et al., 2017; Zahn 2017). The preferred DESs for a biomass processing industry should possess low freezing point (< 50 °C) to remain as liquids at room temperatures with low viscosity for better mixing and heat and mass transfer efficiency. Nevertheless, both of these properties are also dependent upon temperature as well. With this basic understanding about DESs synthesis, their classification and physio-chemical properties it is now easier to understand their application in lignocellulosic biomass processing as discussed in next few sections.

Table 2. Properties of commonly used DES solvents (Adapted with permission from (Loow et al., 2017))

Hydrog en Bond Donor (HBD)	Hydrogen Bond Acceptor (HBA)	Molar ratio (HBD: HBA)	Freezing point (°C)	Density (g cm ⁻³)	Viscosity (cP)	Surface tension (mN m ⁻¹)	Condu ctivity (mS cm	Reference
Urea	ChCl	2:1	12	1.25	750 (25 °C)	52 (25 °C)	0.75 (25 °C)	(Smith et al., 2014; Zhang et al., 2012b)
Ethylene glycol	ChCl	2:1	-12.9	1.12	37 (25 °C)	49 (25 °C)	7.61 (25 °C)	(Smith et al., 2014; Zhang et al., 2012b)
Glycerol	ChCl	2:1	17.8	1.18	259 (25 °C)	55.8 (25 °C)	1.05 (25 °C)	(Smith et al., 2014; Zhang et al., 2012b)
CF ₃ CO NH ₂	ChCl	2:1	51	1.342	77 (40 °C)	_	-	(Smith et al., 2014; Zhang et al., 2012b)

ZnCl2	ChCl	2:1	-	_	85,000 (25 °C)	_	0.06 (42 °C)	(Smith et al., 2014; Zhang et al.,
Urea	ZnCl2	3.5:1	9	1.63	11,340 (25 °C)	-	0.18 (42 °C)	2012b) (Smith et al., 2014; Zhang et al.,
Imidazol e	Bu₄NBr	7:3	-	_	810 (20 °C)	_	0.24 (20 °C)	2012b) (Smith et al., 2014; Zhang et al.,
Ethylene glycol	$ZnCl_2$	4:1	_	1.45	_	_	_	2012b) (Smith et al., 2014)
2,2,2- Trifluor oacetam ide	ChCl	2:1	Liquid at (25 °C)	1.342	77 (40 °C)	35.9 (25 °C)	_	(Abo- Hamad et al.,
Acrylic acid	ChCl	1.6:1	Liquid at (25 °C)	_	115 (22 °C)	_	_	2015) (Abo- Hamad et al., 2015)
Glycerol	Methyltriphe nylphosphoni um bromide	3:1	-5.55	1.30	_	58.94 (25 °C)	0.062 (25 °C)	(Abo- Hamad et al., 2015)
Ethylene glycol	Methyltriphe nylphosphoni um bromide	4:1	-49.34	1.23	_	51.29 (25 °C)	1.092 (25 °C)	(Abo- Hamad et al., 2015)
Triethyl ene glycol	Methyltriphe nylphosphoni um bromide	5:1	-21	1.19	_	49.58 (25 °C)	_	(Abo- Hamad et al., 2015)
Malonic acid	ChCl	1:1	10	_	721 (25 °C)	65.7 (25 °C)	0.55 (25 °C)	(Tang and Row 2013)
1,4- Butaned iol	ChCl	3:1	-32	1.06	140 (20 °C)	47.17 (25 °C)	1.64 (25 °C)	(Tang and Row 2013)
Imidazol e	ChCl	7:3	56	_	15 (70 °C)	_	12 (60 °C)	(Tang and Row 2013)

4. Cellulose, hemicelluloses and lignin solubilization in DESs

Currently the major roadblock for the commercial feasibility bio-based refineries is the separation of lignin from polysaccharides at low costs for the production of fermentable sugars and other high-value products from both sugars and lignin. DESs are capable of donating and accepting protons and this characteristic enables the formation of hydrogen bonds with other compounds which enhances its solvation properties (Pandey et al., 2017). The recent advancements in solubilization of the lignocellulosic biopolymers (cellulose, hemicelluloses and lignin) in DESs are discussed here (**Table 3**).

Zhang et al., (2012a) reported that microcrystalline cellulose (i.e. Avicel PH-105) was not soluble in ChCl:urea (molar ratio 1:2) and ChCl:ZnCl₂ (molar ratio1:2) even after treatment at high temperature (110 °C) for a prolonged time period (12 h) however, in another report, amorphous cellulose (cotton linter pulp) was solubilized by 1.43 wt% and 2.48 wt% in ChCl:urea and ChCl:imidazole, respectively (Ren et al., 2016a; Ren et al., 2016b). Pulp solubility was further enhanced to 4.57 wt% in ChCl:imidazole by addition of 5 wt% polyethylene glycol (PEG) as co-solvents, which served as surfactant to reduce the hydrophobicity of cellulose (Ren et al., 2016a; Ren et al., 2016b; Tang et al., 2017). It showed that cellulose solubility is inversely proportional to the crystallinity of the substrate. Alike cellulose, hemicellulose was also sparingly soluble in DESs (**Table 3**).

In contrast to both cellulose and hemicellulose, DESs; especially acidic DESs i.e. lactic, malic and oxalic based DESs) were found highly effective for lignin dissolution (**Table 3**).

Vigier et al., (2015) suggested that one of the reasons for selective solubilization of lignin over cellulose is that, both cellulose and DESs possess strong hydrogen bonding networks, and dissolving cellulose in a DES requires the two hydrogen-bond networks to be dissociated and reorganized to form a thermodynamically more stable system. However, the cohesive energy of cellulose is so strong that it may hamper its dissolution in any DES. It was also found that lignin isolated from rice straw was solubilized to a greater extent in comparison to lignin embedded in rice straw structure (in its native state) (Kumar et al., 2016). The most plausible reason for this might be the disintegration of highly cross-linked architecture of biomass and strong bonding between lignin carbohydrate complexes (LCCs) (Kumar et al., 2016).

Thus, developing and synthesizing a novel DESs having a strong capability to solubilize cellulose and hemicellulose remains a grey area. Other significant issues for the industrial application of deep eutectic solvents based biomass processing is their recyclability and thermal stability (Yoo et al., 2017). The recovery and reuse of deep eutectic solvents after biomass processing is a cost and energy intensive process. The release of trimethylamine from ChCl based solvents at high temperatures (i.e., Hoffman elimination reaction) is a detrimental component for the industrial viability of this technology. These limitations must be overcome before DESs could be broadly implemented in an industrial scale for biomass processing (Vigier et al., 2015).

Table 3. Solubility of lignin and cellulose in various deep eutectic solvents

Hydrogen	Hydrogen bond	Ratio	T	Lignin	Cellulose	Hemicellulose	Reference
bond donor	acceptor		[°C]	[wt%]	[wt%]	[wt%]	
Lactic Acid	Proline	3.3 : 1	60	9	<1	<1	(Lynam et al., 2017)
Lactic Acid	Proline	2:1	60	7.56	0		(Francisco et al., 2012)
Lactic acid	Choline chloride	2:1	60	5.38	0.00		(Francisco et al., 2012)

Lactic Acid	Choline Chloride	10:1	60	13	<3	<5	(Lynam et
Lactic acid	Choline chloride	5:1	60	7.77	0		al., 2017) (Francisco
Lactic acid	Choline chloride	10:1	60	11.82	0.13		et al., 2012) (Francisco
Lactic acid	Glycine	9:1	60	8.77	0.00		et al., 2012) (Francisco
Lactic acid	Alanine	9:1	60	8.47	0.00		et al., 2012) (Francisco
Lactic Acid	Betaine	2:1	60	9	<1	<1	et al., 2012) (Lynam et
Lactic Acid	Betaine	2:1	60	12.03	0		al., 2017) (Francisco
Lactic acid	Glycine	9:1	60	11.88	0.13		et al., 2012) (Francisco
Formic Acid	Choline Chloride	2:1	60	14	<1	<1	et al., 2012) (Lynam et
Acetic Acid	Choline Chloride	2:1	60	12	<1	<1	al., 2017) (Lynam et al., 2017)
Malic acid	Proline	1:3	60	14.90	5.90		(Francisco et al., 2012)
Oxalic acid dihydrate	Choline chloride	1:1	60	3.62	2.5		(Francisco et al., 2012)
Urea	Choline chloride	2:1	110		< 0.2		(Zhang et al., 2012)
Zinc chloride	Choline chloride	2:1	110		< 0.2		(Zhang et al., 2012a)
Urea	Choline chloride	2:1	110		1.43		(Ren et al., 2016b)
Imidazole	Choline chloride	7:3	110		2.48		(Ren et al., 2016b)
Ammonium thiocyanate	Choline chloride	1:1	110		0.85		(Ren et al., 2016b)
Caprolactum	Choline chloride	1:1	110		0.16		(Ren et al., 2016b)
Acetamide	Choline chloride	2:1	110		0.22		(Ren et al., 2016b)
Oxalic acid	Allyl triethyl ammonium chloride	1:1	110		6.48		(Ren et al., 2016a)

5. Biomass pretreatment by DESs

5.1. Lignin removal

Pretreatment of biomass is essential for achieving high enzymatic saccharification yields from biomass. Lignin restricts enzymatic hydrolysis of biomass by acting as a physical barrier and restricting the enzyme access and by non-productive/non-specific enzyme binding (Bhagia et al., 2016; Dumitrache et al., 2017; Li et al., 2016). Organosolv, alkali, and ionic liquids are quite effective in lignin removal, but during high severity conditions it lead to hemicellulose degradation and inhibitor formation, moreover; ILs are quite expensive in nature (Tian et al., 2017). The solubility of lignin in DESs has provided a new alternative for biomass pretreatment under mild conditions. A schematic representation of hydrogen bonding between hydroxyl groups of lignin units and chloride anions of ChCl:urea is shown in Figure 4A. Recently, several studies varied the ratios of hydrogen bond donor and hydrogen bond acceptor of DESs for studying their effects on biomass delignification at different temperatures (Table 4). It suggested that acidic DESs have delignified with $\geq 90\%$ lignin removal of almost all types of lignocellulosic biomass (corncob, rice straw, wheat straw, poplar, douglas fir) (Tang et al., 2017) (Zhang et al., 2016). However, a recent study showed that pretreatment with DES (ChCl:glycerol) alone was not effective with date palm residues unless a hydrothermal pretreatment was carried out to reduce date palm recalcitrance prior to the DES pretreatment (Fang et al., 2017). Hence, the efficacy varied according to the type of biomass, its inherent recalcitrant nature and physiochemical properties. Such information from the recent state of the art is indispensable for selecting the right type of DESs and pretreatment conditions and ultimately the better yields.

In a recent study, by Kim et al., (2018) a new class of renewable DESs were developed with lignin-derived phenols as HBDs and ChCl as HBA like 4-hydroxybenzyl alcohol (ChCl:HBA), catechol (ChCl:CAT), vanillin (ChCl:VAN) and p-coumaric acid (ChCl:PCA) for

delignification of switchgrass. The highest delignification of 60.8% was observed with ChCl:PCA followed by ChCl:VAN (52.5%) and ChCl:CAT (49%). In yet another recent study by Procentese et al., (2018), different agro-industrial food wastes like apple residues, potato peels, coffee silverskin, and brewer's spent grains were pretreated with two different DESs, choline chloride :glycerol and choline chloride :ethylene glycol for fermentable sugar production by enzymatic hydrolysis. Maximum delignification of 62% was observed with apple residues and minimum of 33% in potato peels (Procentese et al., 2018). They also reported that concentrations of inhibitors like hydroxymethyl furfural and furfural was lower than 0.015 g L⁻¹ while, gallic acid, ferulic acid and coumaric acid were smaller than the minimum detectable value (0.1 g L⁻¹) which was lower than the typical inhibition thresholds for enzymatic hydrolysis and fermentation. Therefore, no detoxification strategy was required after DESs based biomass pretreatments (Procentese et al., 2018).

Thus, delignification and pretreatment efficiency of DESs is highly dependent upon the recalcitrant nature of biomass, selected DES and the pretreatment conditions. DESs offered a new approach of pretreating multiple feedstocks with high efficiency at mild temperatures without any significant inhibitors formation. Further, the renewable and biomass derived DESs offered another excellent opportunity to improve cost-efficiency through closed-loop biorefinery concept where, biomass derived DESs were employed for its own delignification (Kim et al., 2018).

Table 4. Biomass delignification with deep eutectic solvents

Biomass	Hydrogen bond donor	Hydrogen bond acceptor	Ratio	Temperature (°C)	Lignin removal (%)	Refere nce
Corncob	Imidazole	Choline chloride	2:1	115	70	(Proce ntese et

						al.,
						2015)
						(Proce
Corncob	Imidazole	Choline chloride	2:1	150	88	ntese et
come	11111442010		2.1	150	00	al.,
						2015)
						(Proce
Corncob	Urea	Choline chloride	2:1	115	24.8	ntese et al.,
						2015)
						(Proce
						ntese et
Corncob	Glycerol	Choline chloride	7:3	115	4.4	al.,
						2015)
						(Zhang
Corncob	Lactic acid	Choline chloride	2:1	90	64.7	et al.,
						2016)
						(Zhang
Corncob	Lactic acid	Choline chloride	5:1	90	77.9	et al.,
						2016)
						(Zhang
Corncob	Lactic acid	Choline chloride	10:1	90	86.1	et al.,
						2016)
C 1	T .: 11	Cl 1: 11 :1	15.1	0.0	02.1	(Zhang
Corncob	Lactic acid	Choline chloride	15:1	90	93.1	et al.,
						2016)
Corncob	Glycolic acid	Choline chloride	2:1	90	56.4	(Zhang et al.,
Corneou	Gryconc acid	Chomie chioride	2.1	90	30.4	2016)
						(Zhang
Corncob	Levulinic acid	Choline chloride	2:1	90	43.0	et al.,
0011100	ze, amire were			, ,		2016)
						(Zhang
Corncob	Malonic acid	Choline chloride	1:1	90	56.5	et al.,
						2016)
						(Zhang
Corncob	Glutaric acid	Choline chloride	1:1	90	34.3	et al.,
						2016)
						(Zhang
Corncob	Oxalic acid	Choline chloride	1:1	90	98.5	et al.,
						2016)
Comoole	Malia asid	Chalina ahlanida	1.1	00	22.4	(Zhang
Corncob	Malic acid	Choline chloride	1:1	90	22.4	et al.,
						2016)
Corncob	Ethylene glycol	Choline chloride	1:1	90	87.6	(Zhang et al.,
Comcoo	Emylene grycor	Chomic chioride	1.1	90	87.0	2016)
						(Zhang
Corncob	Glycerol	Choline chloride	1:1	90	71.3	et al.,
	01,00101			~ ~	, 1.5	2016)
Rice straw	Lactic acid	Choline chloride	2: 1	60	51.0	(Kuma

						r et al.,
						2016) (Kuma
Rice straw	Lactic acid	Choline chloride	5: 1	60	60.0	r et al.,
THE SHAW	Edotio dola	Chomic Chronice	J. 1	00	00.0	2016)
						(Kuma
Rice straw	Lactic acid	Choline chloride	9: 1	60	59.0	r et al.,
						2016)
						(Jablon
Wheat straw	Lactic acid	Choline chloride	9: 1	60	14.6	ský et
						al., 2015)
						(Jablon
XXII	T (* 11	Cl. 1: 11 :1	10 1	60	20.1	ský et
Wheat straw	Lactic acid	Choline chloride	10: 1	60	29.1	al.,
						2015)
						(Jablon
Wheat straw	Oxalic acid.2 H ₂ O	Choline chloride	1:1	60	57.9	ský et
	-					al.,
						2015) (Jablon
						ský et
Wheat straw	Malic acid	Choline chloride	1:1	80	21.6	al.,
						2015)
						(Jablon
Wheat straw	Malonic acid	Choline chloride	1:1		3.8	ský et
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Transfer word				2.0	al.,
						2015) (Jablon
						ský et
Wheat straw	Lactic acid	Choline chloride	10: 1	60	87.9	al.,
						2015)
						(Xu et
Corn stover	Formic acid	Choline chloride	-	130	23.8	al.,
						2016b)
Dowlon	Lactic acid	Betaine	2.5.1	120	52.4	(Tian
Poplar	Lactic acid	Betaine	2.5:1	130	32.4	et al., 2017)
						(Alvar
						ez-
Poplar	Lactic acid	Choline chloride	-	145	78	Vasco
•						et al.,
						2016)
						(Alvar
Douglas fir	Lastic soid	Choline chloride		1.45	50	ez-
Douglas fir	Lactic acid	Choline chloride	-	145	58	Vasco et al.,
						2016)
D / D !			2.1			(Fang
Date Palm Residues	Glycerol	Choline chloride	2:1 – 6:1	70	Not significant	et al.,
Nesidues	-		0.1		-	2017)

Switchgrass	4-hydroxybenzyl alcohol	Choline chloride	1:1	100	6.5	(Kim et al., 2018)
Switchgrass	Catechol	Choline chloride	1:1	100	49	(Kim et al., 2018)
Switchgrass	Vanillin	Choline chloride	2:1	100	52.5	(Kim et al., 2018)
Switchgrass	p-coumaric acid	Choline chloride	1:1	100	60.8	(Kim et al., 2018)
Apple residues	Glycerol	Choline chloride	32:1	150	62	(Proce ntese et al., 2018)
Potato peels	Glycerol	Choline chloride	32:1	150	33	(Proce ntese et al., 2018)

5.2. Hemicellulose removal

Lignin-carbohydrate complexes (LCCs), are chiefly responsible for biomass recalcitrance arising from the cross linking of lignin with carbohydrates (especially hemicellulose) via strong covalent and hydrogen bonding network with benzyl ester, benzyl ether, and phenyl glycoside functional groups (Yongzhuang et al., 2017). Thus, most of the pretreatment approaches are based upon LCCs disintegration to remove hemicellulose for enhanced enzyme accessibility and hydrolysis yields. DESs hydrolyze the LCC linkages by disrupting the existing hydrogen bonding interactions between carbohydrates and lignin and developing new and competing hydrogen bonds between the chloride ions of the DESs and hydroxyl groups present in the carbohydrates and lignin (Figure 4B). But the extent of hemicellulose removal depends upon the DESs and the physicochemical conditions, as discussed in the section below.

In contrast to dilute sulfuric acid pretreatment where, most of the hemicellulose (~ 80%) got hydrolyzed into soluble monomeric sugars (i.e. xylose, arabinose mannose, galactose) at temperatures above 120 °C and acidic pH (~1.5 to 2) in less than 30 min (Agrawal et al., 2015b),

but no hemicellulose hydrolysis was observed even after prolonged DESs pretreatment (ChCl:lactic acid and betaine:lactic acid having pH ~2) at 60 °C for 12 h (Kumar et al., 2016) and only ~20% reported at 120 °C for 12 h with weekly basic DES i.e. ChCl:urea (Hou et al., 2017b). However, 95.8% of the hemicellulose got hydrolyzed within 4 h at 120 °C with strongly acidic DES (ChCl:oxalic acid) (Hou et al., 2017b). Hence, elevated temperature ≥120 °C for a longer duration (≥4 h) is required to remove hemicellulose in strongly acidic DESs while, marginal hemicellulose removal observed in mildly acidic DESs. Thus, depending upon the pretreatment conditions and the type of DESs, appropriate enzyme preparation also needs to be employed. For example, hemicellulase rich enzyme preparations shall be required for xylan rich pretreatment residues and vice versa for low lignin containing residues after pretreatment.

5.3. Biomass crystallinity after DES pretreatment

Crystallinity is amongst the most discussed and widely measured parameters during pretreatment which is believed to play a critical role in bioconversion of the lignocellulosic biomass(Karimi and Taherzadeh 2016). Biomass crystallinity is a function of cellulose content as hemicellulose and lignin are amorphous in nature and their removal during pretreatment could result in increasing the apparent crystallinity of the biomass sample if the crystallinity of cellulose is not lowered appreciably by the pretreatment conditions or solvent. Thus, the focus of this section is to investigate the role of DESs pretreatment in affecting the substrate or biomass crystallinity (**Table 5**).

The decrease in crystallinity index (CrI) has been frequently linked earlier with improved biomass conversion yields due to enhanced availability of substrate binding sites (Loow et al., 2018; Procentese et al., 2018). Some ionic liquids have been reported to efficiently decrystallize cellulose and reduce biomass crystallinity significantly, and cause complete solvation of the

whole biomass (Li et al., 2018). However, this was not always found to be true and sometimes either no relation or inverse correlation has also been observed between biomass crystallinity and conversion yields (such as dilute acid and hydrothermal pretreatments) (Agrawal et al., 2015b; Hashmi et al., 2017).

In a study by Zhang et al., (2012a), the impact of choline derived solvents for pure cellulose (Avicel) decrystallization at 110 °C for 12 h but no significant reduction in cellulose crystallinity was observed after ChCl:urea and ChCl:ZnCl₂ pretreatment. Procentese et al., (2015) reported that corn cobs pretreated in three different DESs (ChCl: glycerol, ChCl: urea and ChCl: imidazole) at different temperatures (80, 115, and 150 °C) efficiently removed lignin and some hemicelluloses resulting in enhanced overall crystallinity of the pretreated biomass while the crystallinity of the cellulose fraction was reduced. The crystallinity of the pretreated corn cob rose with increasing temperature from 80 °C to 150 °C. Interestingly, Nor et al., (2016) found that low crystallinity occurs at high-temperature pretreatment of oil palm with ChCl:urea (2:1 molar ratio, 110 °C for 1 h) as compared to native oil palm while high crystallinity is evident at a relatively lower temperature (80 °C for 1 h). This was attributed to the hydrolysis of paracrystalline cellulose whereas using a relatively low pretreatment temperature only amorphous hemicellulose and lignin were removed while crystalline cellulose remained intact (Nor et al., 2016). Thus, the overall crystallinity of the biomass generally increased after DESs pretreatment due to the removal of amorphous hemicellulose as well as lignin.

Table 5. Crystallinity index (CrI) of lignocellulosic biomass after DES pretreatment

Biomass	Pretreatment	CrI	Reference
Corn cob	Untreated	30.07	(Procentese
			et al., 2015)
Corn cob	ChCl glycerol, 150 °C	44.81	(Procentese
			et al., 2015)

Corn cob	ChCl urea, 115 °C	36.54	(Procentese
G 1		40.00	et al., 2015)
Corn cob	ChCl imidazole, 115 °C	40.08	(Procentese
G 1	Cl Cl : :1 1 1500C	40.00	et al., 2015)
Corn cob	ChCl imidazole, 150 °C	49.22	(Procentese
G 1	***	24.6	et al., 2015)
Corn cob	Untreated	31.6	(Zhang et
			al., 2016)
Corn cob	ChCl lactic acid, 90 °C	38.6	(Zhang et
a .		200	al., 2016)
Corn cob	ChCl Glycolic acid, 90 °C	30.8	(Zhang et
G 1		2.0	al., 2016)
Corn cob	ChCl Levulinic acid, 90 °C	32	(Zhang et
G 1		20.5	al., 2016)
Corn cob	ChCl Malonic acid, 90 °C	29.5	(Zhang et
Q 1		20.0	al., 2016)
Corn cob	ChCl Glutaric acid, 90 °C	30.8	(Zhang et
C 1		21.6	al., 2016)
Corn cob	ChCl Oxalic acid, 90 °C	31.6	(Zhang et
C 1	CLCLM 1: :1.00.0C	21.7	al., 2016)
Corn cob	ChCl Malic acid, 90 °C	31.7	(Zhang et
C 4	TT 4 1	21.1	al., 2016)
Corn stover	Untreated	31.1	(Xu et al.,
O	Cl-Cl-f	57.0	2016b)
Corn stover	ChCl formic acid, 130 °C	57.2	(Xu et al.,
Dia a atmoss	Lintmostad	27.0	2016b)
Rice straw	Untreated	37.9	(Hou et al.,
Dia a atmoss	Chalinium kyaina 00.9C	62.8	2012)
Rice straw	Cholinium lysine, 90 °C	62.8	(Hou et al.,
Rice straw	Cholinium glycine, 90 °C	65.4	2012) (Hou et al.,
Rice suaw	Chommun grycine, 90°C	03.4	(Hou et al., 2012)
Rice straw	Cholinium serine, 90 °C	68.9	,
Rice suaw	Chommum Sernie, 90°C	06.9	(Hou et al., 2012)
Oil palm empty	Untreated	38.27	(Nor et al.,
fruit bunch	Ontreated	36.27	2016)
Oil palm empty	ChCl urea, 110 °C	34.99	(Nor et al.,
fruit bunch	Cheruica, 110 C	34.33	2016)
Oil palm empty	ChCl urea, 80 °C	39.23	(Nor et al.,
fruit bunch	Chef diea, 80°C	39.43	2016)
Date palm residues	Untreated	27.44	(Fang et al
Date paini residues	Ontreated	$(1.01)^{a}$	(1 ang ct an., 2017)
Date palm residues	ChCl glycerol, 70 °C	31.89	(Fang et al.,
Date paint restudes	Cher grycoron, 70°C	(0.91) a	(Failg et al., 2017)
Date palm residues	Hydrothermal pretreatment followed by ChCl	33.57	(Fang et al.,
Date paint residues	glycerol, 70 °C	(0.76) a	(rang et al., 2017)

^a Crystallinity considering glucan content(Fang et al., 2017)

5.4. Enzymatic hydrolysis and DES pretreatment

The sections above have provided thorough insights of the physicochemical nature of DESs, mechanism of biomass pretreatment, and how it affects the biomass composition, biopolymers solubility (i.e. lignin, hemicellulose and cellulose) and crystallinity. The primary objectives of any lignocellulosic biomass pretreatment approach is to reduce its recalcitrance with subsequent increase in the fermentable sugar yields via enzymatic hydrolysis. Here, current status of bioconversion of different biomass via DESs pretreatment and enzymatic hydrolysis discussed (Table 6). It showed that enzymatic hydrolysis yields varied significantly depending upon the type of biomass/substrate and DES, pretreatment temperature, molar ratio of hydrogen bond donor and acceptor. A few examples depicting the role of each one of them is discussed below in brief for more clarity.

5.4.1. Type of biomass and DES

In a systematic study, Jablonský et al., (2015) suggested that the increase in hydrolysis yields after DESs pretreatments was primarily due to the disruption of crystalline cellulose and delignification. A recent study compared the enzymatic hydrolysis yields of kraft dissolving eucalyptus pulp, cellulose, wheat straw and spruce saw dust before and after pretreatment with three DESs ChCl:boric acid (5:2), ChCl:glycerol (1:1) and betaine:glycerol (1:1) (Wahlstrom et al., 2016). It showed that prior to pretreatment maximum hydrolysis yields obtained with kraft dissolving eucalyptus pulp (62%) followed by cellulose (MCC) (49%), native wheat straw (18%) and spruce saw dust (8%) (**Table 6**). Although, DES pretreatment improved the enzymatic hydrolysis yields of all the substrates but still the trends remained the same, obtaining the

maximum hydrolysis yields with dissolving pulp ($\sim 100\%$) followed by cellulose ($\sim 65\%$), wheat straw (33%) and only marginal increase with saw dust (**Table 6**). This study showed that mild DESs pretreatment were effective with agricultural residues (i.e. wheat straw, corn cob, switchgrass etc.) and other low recalcitrant substrates (i.e. amorphous cellulose, kraft pulp etc.) but more research is still needed to develop and demonstrate the utility of DESs for other highly recalcitrant woody biomass such as spruce saw dust, date palm etc. Another finding of this study was better efficiency of acidic DES (ChCl:boric acid (5:2)) in comparison of glycerol based DESs (i.e. ChCl:glycerol (1:1) and betaine glycerol (1:1)). In another critical study, different ChCl:acid based DESs (listed here in the order of decreasing acidity; formic acid (high acidic strength with pKa 3.75) > lactic acid (pKa 3.86) > acetic acid (least acidic strength pKa 4.75)) were compared on a single feedstock (pine residues) for delignification and enzymatic hydrolysis yields (Lynam et al., 2017). This study revealed that highest lignin solubility (14% w/w) and hydrolysis yields (70%) were obtained with ChCl:formic acid in comparison to others. Similarly, 57.9% delignification of wheat straw achieved by highly acidic ChCl:oxalic (pKa 1.2) as compared to ChCl:lactic acid (Jablonský et al., 2015). Hence, DESs with strong acidity were found to be more effective for lignin solubilization and enzymatic hydrolysis yields.

5.4.2. Effect of temperature

The effect of temperature on pretreatment and enzymatic hydrolysis was evaluated by Procentese et al., (2015), they reported that hydrolysis yields of corncob enhanced from 39.9% to 91.5% with an increase in pretreatment temperature from 80 °C to 150 °C by using ChCl:glycerol as a DES. Similarly, hydrolysis yields improved from 51% to 58.6% with an increase in pretreatment temperature with ChCl:urea, however, no significant increase with temperature was observed with ChCl:imidazole as it worked equally well (92.3%) even at lower

temperature of 80 °C (**Table 6**). In a similar study, Zhang et al., (2016) also reported that high delignification and enzymatic hydrolysis yields were observed with the increase in pretreatment temperature from 70 °C to 110 °C but this increase in hydrolysis yields (77.8–79.7%) was marginal after reaching 90 °C. Thus, generally enzymatic digestibility improved with an increase in temperature from 80 °C to 150 °C.

5.4.3. Molar ratio of HBA/HBD

Many of the reports cited here showed that acidity of DESs play a critical role in biomass pretreatment and delignification efficiency and generally the yields improve with increasing acidity. For example, the lignin solubility improved with the increase in the acid content of ChCl:lactic acid from a molar ratio of 1:1 to 1:9 when a synthetic blend of cellulose and lignin was used as a substrate (Francisco et al., 2012), similarly higher lignin solubilization i.e. 51% to 60% was observed with increased acid ratio from 1:2 to 1:5, respectively using rice straw as a substrate (Kumar et al., 2016). In another recent study, increasing the molar ratio of ChCl:lactic acid from 2:1 to 15:1 improved the lignin extraction (64.7–93.1%) of corncob but no significant increase in enzymatic hydrolysis yield takes place (79.1–83.5%). Moreover, 70% lignin removal from corn cob was sufficient for achieving the optimum hydrolysis yield (Zhang et al., 2016). This value of 70% for lignin removal is in accordance with the recent finding that about 65-70% of lignin in biomass is easier to remove if lignin re-deposition is prevented (Bhagia et al., 2016). Moreover, previous reports indicated that complete removal of lignin is not necessary to achieve better enzymatic hydrolysis (Fu et al., 2010; Hou et al., 2013). Fang et al., (2017) found that liquid hot water pretreatment followed by ChCl:glycerol pretreatment (70 °C for 6 h) of date palm residues had 1.7 times higher enzymatic digestibility as compared to liquid hot water pretreatment only. There was no significant increase in hydrolysis with ChCl:glycerol

pretreatment of date palm residues. It was suggested that removal of lignin and xylan by DES were responsible for the enhancement of enzymatic digestibility rather than lowering the cellulose crystallinity (Fang et al., 2017).

Recently, an important study by Kim et al., (2018) demonstrated that novel DESs developed from biomass derived lignin phenolics were as effective as other DESs produced by using acids (oxalic acid, levulinic acid, malonic acid, etc.), alcohols (glycerol, ethylene glycol, etc.), and amines (urea) in improving the enzymatic hydrolysis of switchgrass. As shown in **Table 6**, the maximum glucose yields of 85.7 % and 79.8% were observed with ChCl:p-coumaric acid and ChCl:vanillin, respectively while; the lowest efficiency (32%) was observed with ChCl:4-hydroxybenzyl alcohol as no substantial delignification was observed after pretreatment with it thus, enzyme accessibility was significantly reduced.

Table 6. Enzymatic hydrolysis efficiency after DES pretreatment

Substrate/Biomass	DES	Pretreatment conditions	Enzymatic hydrolysis efficiency	Reference
Rice husk	Nil	50 °C, 0.5 h	0.2 mM	(Gunny et al., 2015)
Rice husk	ChCl ethylene glycol	115 °C, 3 h	0.7 mM	(Gunny et al., 2015)
Corncob	Untreated		32.8%	(Procentese et al., 2015)
Corncob	ChCl glycerol	80 °C, 15 h	39.9%	(Procentese et al., 2015)
Corncob	ChCl glycerol	115 °C, 15 h	79.1%	(Procentese et al., 2015)
Corncob	ChCl glycerol	150 °C, 15 h	91.5%	(Procentese et al., 2015)
Corncob	ChCl urea	80 °C, 15 h	51%	(Procentese et al., 2015)
Corncob	ChCl urea	115 °C, 15 h	58.6%	(Procentese et al., 2015)
Corncob	ChCl imidazole	80 °C, 15 h	92.3%	(Procentese et al., 2015)
Corncob	ChCl imidazole	115 °C, 15 h	94%	(Procentese et al., 2015)

Corncob	ChCl imidazole	150 °C, 15 h	94.6	(Procentese et al., 2015)
Corncob	Untreated		22.1	(Zhang et al., 2016)
Corncob	ChCl lactic acid	90 °C,24 h	83.5%	(Zhang et al., 2016)
Corncob	ChCl glycolic acid	90 °C,24 h	67.3%	(Zhang et al., 2016)
Corncob	ChCl levulinic acid	90 °C,24 h	62%	(Zhang et
Corncob	ChCl malonic acid	90 °C,24 h	61.5%	al., 2016) (Zhang et
Corncob	ChCl glutaric acid	90 °C,24 h	40.7%	al., 2016) (Zhang et
Corncob	ChCl oxalic acid	90 °C,24 h	45.2%	al., 2016) (Zhang et
Corncob	ChCl malic acid	90 °C,24 h	37.4%	al., 2016) (Zhang et
Corncob	ChCl ethylene	90 °C, 24 h	85.3%	al., 2016) (Zhang et
Corncob	glycol ChCl glycerol	90 °C, 24 h	96.4%	al., 2016) (Zhang et
Corn stover	ChCl formic acid	130 °C, 3 h	99%	al., 2016) (Zhang et
Rice straw	ChCl lactic acid	60 °C, 12 h	36%	al., 2016) (Kumar et
Oil palm trunk	Nil		25%	al., 2016) (Zulkefli et
Oil palm trunk	Ethylammonium chloride ethylene glycol	100 °C, 48 h	74%	al., 2017) (Zulkefli et al., 2017)
Pine	Untreated		10%	(Lynam et al., 2017)
Pine	ChCl formic acid	155 °C, 2 h	70%	(Lynam et al., 2017)
Microcrystalline cellulose	Untreated		49%	(Wahlstrom et al., 2016)
Microcrystalline cellulose	ChCl betaine	80 °C, 24 h	49%	(Wahlstrom et al., 2016)
Microcrystalline cellulose	ChCl glycerol	80 °C, 24 h	~65%	(Wahlstrom et al., 2016)
Microcrystalline cellulose	Betaine glycerol	80 °C, 24 h	~65%	(Wahlstrom et al., 2016)
Eucalyptus dissolving pulp	Untreated		62%	(Wahlstrom et al., 2016)
Eucalyptus	ChCl glycerol	80 °C, 24 h	~100%	(Wahlstrom

dissolving pulp Eucalyptus dissolving pulp Eucalyptus dissolving pulp Wheat straw	ChCl betaine Betaine glycerol Untreated	80 °C, 24 h 80 °C, 24 h	~100% ~100% 18%	et al., 2016) (Wahlstrom et al., 2016) (Wahlstrom et al., 2016) (Wahlstrom
Wheat straw	ChCl betaine	80 °C, 24 h	33%	et al., 2016) (Wahlstrom
Wheat straw	ChCl glycerol	80 °C, 24 h	<20%	et al., 2016) (Wahlstrom et al., 2016)
Wheat straw	Betaine glycerol	80 °C, 24 h	<20%	(Wahlstrom
Spruce saw dust	Untreated		8%	et al., 2016) (Wahlstrom et al., 2016)
Spruce saw dust	ChCl glycerol	80 °C, 24 h	<20%	(Wahlstrom
Spruce saw dust	ChCl betaine	80 °C, 24 h	<20%	et al., 2016) (Wahlstrom et al., 2016)
Spruce saw dust	Betaine glycerol	80 °C, 24 h	<20%	(Wahlstrom
Switchgrass	ChCl 4- hydroxybenzyl alcohol	160°C, 3h	32%	et al., 2016) (Kim et al., 2018)
Switchgrass	ChCl catechol	160°C, 3h	77%	(Kim et al., 2018)
Switchgrass	ChCl vanillin	160°C, 3h	79.8%	(Kim et al., 2018)
Switchgrass	ChCl p-coumaric acid	160°C, 3h	85.7%	(Kim et al., 2018)

6. Compatibility of DES with enzymes and microorganisms

The two most popular process designs for biomass to ethanol production are pretreatment followed by separate hydrolysis and fermentation (SHF), or simultaneous saccharification (hydrolysis) and fermentation (SSF). If the pretreatment solvent is toxic to enzymes and microbes, it will need to be removed from pretreated solids by extensive washing or by other methods for achieving high yields by SHF or SSF. On the other hand, some studies that used ionic liquid pretreatment performed a one-pot process in which the three stages are carried out in

the same vessel. Thus, biocompatibility is critical concern for one-pot processes where pretreatment slurry undergoes hydrolysis and fermentation. Since many ionic liquids can cause high enzyme inhibition and cytotoxicity, recent works developed IL systems to address these issues (Liszka et al., 2016). A single-pot process design containing pretreatment, enzymatic hydrolysis and fermentation was made possible through use of aqueous choline-based ILs that allowed near 75% ethanol yield and over 40 g/L ethanol titer from fed batch process at high 30-34% solids loading of corn stover but at high enzyme loading of 20 mg/g glucan (Xu et al., 2016a). It is known that constituents of DES, like choline chloride and urea, have the ability to inactivate proteins (Gorke et al., 2008). Remarkably, when combined to form a DES, inactivation can be reduced several-fold. This was observed in the case of lipase-catalyzed transesterification where conversions with certain DESs like, choline chloride:(glycerol or urea), were comparable to that in toluene indicating excellent stability of certain lipases in DES (Gorke et al., 2008).

Some recent studies have evaluated the impact of DES on cellulase activity. Gunny et al., (2015) incubated cellulase from *Aspergillus sp.* with choline chloride based DES having glycerol or ethylene glycol or malonic acid as the hydrogen bond donors (HBD) in 1:2 ratio for 48 h. Results showed 10% reduction in filter paper activity after 48 h in control (i.e. without any DESs) whereas, 60% loss of relative filter paper activity was observed within 24 h in the presence of DES containing malonic acid (**Figure 5**). In contrast, only marginal reduction in cellulase activity was observed with glycerol or ethylene glycol containing DES. Hydrolysis of Avicel with cellulase resulted in only minor decrease of ~1 mM in the glucose concentration with 10% v/v choline chloride:(glycerol or ethylene glycol). This study proved that malonic acid is highly inhibitory to cellulase as compared to the other two HBDs (glycerol or ethylene glycol).

Wahlstrom et al., (2016) recently studied the effect of high concentrations of DESs on enzyme activity and hydrolysis yields for feasibility of a single-pot biomass deconstruction process. For enzyme activity, they purified and tested cellobiohydrolase Cel7A, endoglucanases Cel5A and Cel7B, and xylanase Xyn11 from *T. reesei* individually in three DES at 85% concentration at pH 5.0 in citrate buffer and at 50 °C with choline chloride:boric acid (5:2), choline chloride:glycerol (1:1), and betaine:glycerol (1:1). The popular cellulose solubilizing ionic liquid 1-ethyl-3-methylimidazolium acetate ([EMIM]Ac) was also included in this study. This ionic liquid was highly inhibitory as the activity of all enzymes dropped to nearly zero in about 4 h whereas, choline chloride:glycerol (1: 1) was mild inhibitory to enzymes which might be expected because glycerol is considered an enzyme stabilizer (Agrawal et al., 2017b). The betaine:glycerol (1:1) appeared to stabilize the enzymes after an initial (24 h to 72 h) decline in activity. In fact, residual enzyme activity of the two endoglucanases was significantly higher after 144 h in betaine: glycerol than in buffered solution without any DES. However, choline chloride:boric acid (5: 2) was highly inhibitory amongst all of the DESs evaluated here, with complete loss of enzymatic activity occurred within 48 h. This study showed that, not only the glycerol component but also the hydrogen bond acceptor played a significant role in affecting the enzyme stability and betaine acted as more enzyme-compatible than choline chloride (Wahlstrom et al., 2016). On the other hand, enzymes can be engineered to increase tolerance of such unconventional solvents. Lehmann et al. (2012) developed a high-throughput assay based on a fluorescent cellobiose substrate for directed evolution of DES tolerant endoglucanase (CelA2). They discovered cellulase variants that had 23-fold higher cellulolytic activity in high ionic strength mediums such as DES, ionic liquid or NaCl due to activation of a salt bridge (Lehmann et al., 2014).

There are few studies on compatibility of DESs with microbes. Hayyan et al., (2013c) performed filter paper diffusion assay for 24 h on four common bacteria: Bacillus subtilis, Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa, for toxicity caused by choline chloride based DES having HBDs as glycerol, ethylene glycol, triethylene glycol, and urea, as well as the pure components that formed these DES. Their work showed that none of the bacteria were inhibited by the four DES or their pure components. In their other study (Hayyan et al., 2013b), phosphonium-based DES (methyltriphenylphosphonium bromide) with glycerol, ethylene glycol, and triethylene glycol were studied for inhibition using the same assay in similar conditions on the same four bacteria. In this case, DES with ethylene glycol and triethylene glycol HBDs inhibited all four bacteria. DES with glycerol HBD showed a zone of inhibition only with *Pseudomonas aeuriginosa*. In one study, baker's yeast was used as a whole cell biocatalyst in different mixtures of water with DES (choline chloride: glycerol) (Maugeri and Domínguez de María 2014). By replacing 100% water with 20% water in choline chloride: glycerol (1:2) led to 95% excess of (R) enantiomer than 95% excess of (S) enantiomer of ethyl 3hydroxybutyrate catalyzed by baker's yeast possibly due to inhibition of S-enantioselective oxidoreductases. Yeast was active in 50% of this DES at long reaction times (more than 200 h)(Maugeri and Domínguez de María 2014).

These early studies on this topic suggest that certain DESs are biocompatible with enzymes, bacteria and yeast. However, there are reports where high concentration of DESs are toxic to them and for a single-pot processes it might be desirable to dilute the pretreatment slurry to a level at which the DES does not greatly affect sugar yields. Further work is essential in this area of research for better understanding and biotechnological innovations.

7. Recycling of DESs

Recycling and reuse of DESs are one of the major advantages for its application in low cost-high volume industrial applications like biomass processing (van Osch et al., 2017). DESs are considered to be recycled more readily than ILs because their synthesis/regeneration does not involve any chemical reactions and only it involves formation or rupturing the hydrogen bonding network that binds these components (HBD and HBA) (Xu et al., 2017).

The recycling of DESs in pretreatments studies has been rarely investigated but broadly acknowledged as a pressing research need for the commercial viability of the biomass based biorefinery. Recently, Kim et al., (2018) have evaluated the recovery, reuse and efficacy of the DESs during pretreatment of switchgrass. They have used an easy approach to recycle DESs by separation of residual lignin through pressurized ultrafiltration of liquid obtained after pretreatment of switchgrass and DES recovery by using a rotary evaporator to recycle ethanol and water used during the process and the recovered DES was reused for the next biomass pretreatment (Figure 6A & 6B). The mass balance analysis showed that ~95% of DES was recovered during each recycle without losing its efficiency for 3 successive cycles (Kim et al., 2018). We can certainly take guidance from other academic and industry studies that have utilized DESs and recycled them in differing fields, for example Jeong et al., (2015) utilized a ternary DES composed of glycerol, 1-proline, and sucrose in 9:4:1 molar ratio to extract ginseng saponins from white ginseng. A solid phase extraction strategy based on HLB cartridges was used to recover the ginsenosides from the DES extracts. After extraction, lyophilization was carried out to recover and reuse the regenerated solvent up to three times. The regenerated DES was stable and only a slight reduction in the extraction efficiency was observed (the recycled DES had efficiency of 91.9%, 85.4% and 82.6% after first, second and third reuses, respectively). Lobo et al., (2012b) synthesized N-aryl phthalimide derivatives from phthalic

anhydride and primary aromatic amines by using two DESs (ChCl:urea and ChCl:malonic acid). After filtration of the reaction mixture solid product (N-aryl phthalimide) was separated and ChCl:urea was recovered and reused simply by evaporating the water. In case of the other reaction mixtures where DES (ChCl:malonic acid) was added as a catalyst in methanol, the filtrate obtained after separation of the solid product was subjected to removal of methanol by vacuum distillation and DES was recovered. Both of the recovered DESs had no significant decrease in their catalytic activity even after five times recycling. Recycling and reuse of DES was studied for 5-HMF synthesis by fructose dehydration in a biphasic system consisting of DES and organic phase (Zuo et al., 2017). Here both 5-HMF and ChCl were first extracted in situ by acetonitrile and later ChCl was crystallized by cooling to room temperature. The recycled ChCl was reused for 5 successive reactions without any loss of catalytic activity. Similarly, tetrabutyl ammonium chloride:polyethylene glycol was recycled four times by washing with organic solvent (diethyl ether) without losing its activity and stability after fuel desulfurization (Li et al., 2013a). Although there is scant information on DESs recycled and reused after biomass processing applications, there are a few recycling reports available in fuel and chemical processing industries. Different strategies published recently for DESs recycling are summarized in **Table 7**. It shows how DESs recycling is dependent upon their physicochemical properties, reaction conditions, and product characteristics.

Table 7. DESs application and strategies for their recycling and reuse.

S.No.	DES	Application	Method of Recycling	Recycling/ Recovery and reuse	Reference
1	Choline chloride 4- hydroxybenzyl alcohol, Choline	Switchgrass pretreatment for improved enzymatic saccharification	Ultrafiltration followed by evaporation	Three times recycling without any substantial loss in efficiency	(Kim et al., 2018)

	chloride				
	catechol, Choline				
	chloride vanillin,				
	Choline chloride p-				
	coumaric acid				
2	Ethaline 200	electrodeposition of metals	Nanofiltration	Five-fold concentration	(Haerens et al., 2010)
3	Choline chloride:urea	N-alkylation of aromatic primary amines	Biphasic extraction with immiscible organic ethyl acetate followed by drying in vacuum	Five times recycling with a slight decrease in the catalytic activity of DES	(Singh et al., 2011)
4		Nucleophilic substitution chemistry	DES was recovered from the aqueous layer of extraction at the end of the reaction, with care taken to remove the HCN generated in these reactions	Four times recycling, yield decreased from 89% to 73% after 4 cycles	(Sanap and Shankarlin g 2014)
5		Synthesis of dithiocarbamates	Water extraction	DES recycled several times with modest decrease in activity	(Azizi and Gholibegl o 2012)
6		Epoxide reaction (fixation of carbon dioxide with propylene oxide)	Simple filtration of the catalyst	DES retained the same levels of activity after 5 times recycling	(Zhu et al., 2007)
7		Halogenation (bromination of 1- aminoanthra-9,10- quinone)	Extraction with water followed by evaporation at 80°C under Vacuum	5 times recycling with no loss in activity	(Phadtare and Shankarlin g 2010)

8	Single-pot synthesis of coumarin styryl dyes	Separation of the DES with water, followed by concentration in vacuum	NR	(Phadtare et al., 2013)
9	Knoevenagel condensation (salicyl aldehydes with Meldrum's acid and other active methylenes)	Water extraction/concentration method	NR	(N. et al., 2011)
10	Synthesis of cinnamic acid via base-catalyzed reaction	Water extraction/concentration method	Four times recycling with little loss in activity	(Pawar et al., 2011)
11	Paal-Knorr synthesis of pyrroles and furans (synthesis of heteroaromatics via carbonyl condensation reactions)	Extraction of the products with ether and then brief drying in vacuum	Several times with little loss in activity	(Handy and Lavender 2013)
12	Pictet-Spengler reaction (synthesis of a wide range of β-carbolines)	Extracted using ether and brief drying in vacuum	Several times with minimal loss of activity	(Handy and Wright 2014)
13	Conversion of aldehydes to bis(indolyl)metha nes	Extracted using ether and brief drying vacuum	Five times recycling with little loss in activity	(Handy and Westbrook 2014)

14		Synthesis of oxazoles and thiazoles	Products were extracted with methylene chloride	Five times recycling with no significant decrease in reaction yield	(Singh et al., 2013)
15		Thiazole synthesis	Via separation with water and concentration of the aqueous layer	DES could be recycled several times with minimal loss in activity	(Lobo et al., 2012c)
16		Multicomponent reactions for synthesizing spirocyclic products	Extraction with water followed by concentration in vacuum	NR	(Azizi et al., 2014)
17		Rapid preparation of α-aminoacyl amide derivatives via Ugi reaction (multicomponent reaction)	Extraction with water followed by concentration in vacuum	Three times recycling with slight drop in product yield	(Azizi et al., 2013)
18		Diels-Alder reactions	Decantation of the non- polar or less polar product layer to recover the DES	NR	(Yin et al., 2005)
19		Nucleophilic substitution (ring opening of epoxides with a wide range of nucleophiles, including thiols, anilines, methanol)	Extraction by diethyl ether	Three times recycling with only a modest loss in activity	(Azizi and Batebi 2012)
20	Choline chloride: ZnCl ₂	Nucleophilic substitution with nucleophiles including anilines, amines, sulfonamides and	Extraction with water and then dried in vacuum	Four times recycling with no loss in activity	(Zhu et al., 2011)

1,3-dicarbonyl
compounds

		compounds			
21	Choline chloride: ZnCl ₂	Ketalization of carbonyls using 2,2-dimethyl-1,3-propanediol	DES could be readily recycled following separation of the product via extraction	NR	(Duan et al., 2006)
			with ether.		
22	Choline chloride: SnCl ₂	Preparation of either N-formylanilines or N-N'-diarylamidines starting from anilines	Simple extraction with ethyl acetate	NR	(Azizi et al., 2012)
23	Choline chloride: ZnCl ₂	Kabachnik-Fields reaction of aldehydes, anilines, and phosphites carbonyl condensation reactions	Extraction using MTBE (Methyl Tertiary Butyl Ether) and drying in vacuum to recycle DES	Five times recycling with slight loss in activity, i.e., from 98% to 86%	(Disale et al., 2012)
24	Choline chloride: SnCl ₂ and Choline chloride: ZnCl ₂	Synthesis of bis(indolyl)metha nes (bim)	Extraction with ether or ethyl acetate	NR	(Azizi and Manocheri 2012)
25	Choline chloride: ZnCl ₂	Fisher indole synthesis	Sublimation	Three times recycling with reduction in activity from 91% to 72% and 34%	(Calderon Morales et al., 2004)
26	Choline chloride: tosic acid	Elimination of alcohols to afford alkenes and the transesterification of esters	Decantation of the alkene	Four times recycling with no loss in activity	(Handy 2015)
27	Choline chloride: tosic acid	Transesterifications of various vegetable oils (corn, soy, and canola)	NR	Four times recycling with a drop in efficiency from 85% to 50%	(Handy 2015)

28	Choline chloride: oxalic acid	dehydration of the carbohydrate inulin to form 5- hydromethylfurfu ral (HMF)	simple phase separation	Multiple times recycling	(Hu et al., 2009)
29	Combination of various ammonium salts and tosic acid	Fischer esterification of carboxylic acids.	DES could be readily restored by simple dehydration in vacuum and then reused	Eight times recycling with only a modest loss in activity	(De Santi et al., 2012)
30	Choline chloride: oxalic acid	Formation of bis(indolyl)metha nes (bim) from aldehydes and indoles (carbonyl condensation type reactions)	Evaporation of the aqueous layer	Several times with little loss of activity	(Yadav and Shankarlin g 2014)
31	Tartaric acid: dimethylurea	Fischer indole synthesis	DES recovered from the aqueous layer via concentration in vacuum	Recycled three times with minimal loss of activity	(Gore et al., 2012)
32	Citric acid: dimethylurea	Synthesis of 1,8-dioxo-dodecahydroxanth enes.	DES recovered from the aqueous layer via concentration in vacuum	Six times recycling with little loss of activity	(Li et al., 2013b)
33	Choline chloride: malonic acid	Synthesis of 2,3-dihydroquinazolin -4(1H)-one derivatives	By recovery from the aqueous layer	Recycled several times with little loss of activity	(Lobo et al., 2012a)
34	Carbohydrate- derived DES	Rh-catalyzed hydrogenations and Pd-catalyzed Suzuki reactions (Cross-coupling)	NR	Two times recycling with considerable loss in reaction yields (94% to 66%)	(Imperato et al., 2005; Imperato et al., 2006)
35	Choline chloride:glycer	Synthesis of organolithium and	NR	NR	(Vidal et

	ol	Grignard chemistry (Organometallics)			al., 2014)
36	GPS-5 (composed of glycerol, l- proline, and sucrose at 9:4:1)	Extraction of polar ginseng saponins from white ginseng	Lyophilization of the aqueous solution of DES produced during the recovery of extracted compounds	Three times with extraction efficiencies of the DESs being 91.9%, 85.4%, and 82.6%, respectively	(Jeong et al., 2015)
37	Choline chloride: tetramethyl ammonium chloride (TMAC), tetrabutyl ammonium chloride (TBAC) were chosen as typical hydrogen bond acceptor (HBA), and malonic acid (MA), glycerol (Gl), tetraethylene glycerol (TEG), ethylene glycol (EG), polyethylene glycol (PEG), propionate (Pr), as hydrogen bond donor (HBD)	Fuels desulfurization	Washing with organic solvents, such as diethyl ether	Five times recycling with 99.48% extraction efficiency	(Li et al., 2013a)
38	Choline chloride: urea & Choline chloride: malonic acid	Synthesis of N- aryl phthalimide derivatives from phthalic anhydride and primary aromatic	DES ChCl: urea was recovered by simply evaporating water from the reaction mass after filtration of the solid product while for ChCl:	Five-time recycling with no loss in activity	(Lobo et al., 2012a)

amines	malonic acid, the filtrate
	obtained after separation
	of solid product was
	subjected to removal of
	methanol by distillation

under vacuum

NR: Not Reported

8. Comparison of DESs and ionic liquids

Both ionic liquids and deep eutectic solvents are considered as innovative solvents having the potential to transform the lignocellulosic biorefining to a green and sustainable industry (Lores et al., 2017; Tang et al., 2017). Both of these solvents offer several advantages over conventional solvents because of their versatility and industrially relevant physio-chemical properties which could be customized by rationally selecting its constituents (van Osch et al., 2017). ILs are salts composed of an organic cation and an organic/inorganic anion, with melting temperatures below 100°C and are often liquid at room temperature (Raj et al., 2016; Singh et al., 2015; Yoo et al., 2017). In comparison to ILs, DESs are novel solvents and research for their application in biomass processing is still in its nascent stages. Although, DESs and ILs share common characteristics but it is often claimed that DESs might offer several advantages over ILs. A comparison of both ILs and DESs at different parameters is summarized in **Table 8**.

Table 8. A Comparison of deep eutectic solvents and ionic liquids (Agrawal et al., 2017a; Loow et al., 2017; Lynam et al., 2017; Tang et al., 2017; van Osch et al., 2017; Yoo et al., 2017)

S.No.	Parameter	Ionic liquids (ILs)	Deep Eutectic Solvents (DESs)
1	Synthesis	Tedious synthesis with multi-step reactions and purification	Easy in preparation without any chemical reaction and purification step
2	Thermal stability	High stability and decomposition above 300°C to 430°C temperature depending upon the anion	Less stable than ILs with decomposition temperature about 200°C or below

3	Density	Low densities of most of the ILs (0.8-1.6 g cm ⁻³)	High density (>1 g cm ⁻³). Hydrophobic DESs denser than hydrophilic
4	Viscosity	Low viscosity (10 mPa s to 726 mPa s)	High viscosity (>100 mPa s) and in some cases reach up to 10,000 mPa s
5	Toxicity	Recalcitrant, poor biodegradability and toxicity increases with the increase in cation alkyl chain	Nontoxic, biodegradable and considered as 'green'solvents
6	Solubility	Solubilize cellulose and hemicellulose (up to 25 wt%) and lignin (up to 80 wt%) efficiently	DESs can solubilize lignin (up to 25 wt%) efficiently but cellulose and hemicellulose is sparingly soluble (<2 wt%)
7	Recycling	Difficult to recycle	Easy to recycle and reuse as compared to ILs
8	Cost	Expensive in nature	Less expensive than ILs

9. Challenges and Opportunities

Research in synthesis of DESs and their industrial applications is still in its infancy, with the first paper on the subject only published in 2001 (Smith et al., 2014). However, a significant surge in the number of research articles on this subject has been seen during the last decade with more than 1000 articles published in 2016-2017 (based on Sci-Finder data). DESs are considered as 'green' solvents that offer many advantages like ease of synthesis without any need of solvent and purification, low cost, biodegradability, and non-toxicity. They may solubilize high amounts of lignin from biomass but little cellulose and hemicellulose. Thus, DESs might play a critical role in selective solubilization and removal of lignin from biomass while keeping cellulose and hemicellulose intact for further processing with minimal losses of sugars. Biomass pretreatment with selected DESs (ChCl:oxalic acid) has been shown to remove more than 90% of lignin under

mild temperature and pressure with high saccharification yields (Procentese et al., 2015; Zhang et al., 2016). One disadvantage of DESs can be their higher viscosity, however, there is lack of understanding on this issue relevant to lignocellulosic biomass (van Osch et al., 2017). Future research in this area shall provide deeper insights for developing tailored DESs with low viscosity and high thermal stability suitable for wide industrial applications. Preliminary evidence suggests that they are relatively easy to recycle and maintain their catalytic activity. Life cycle analysis and techno-economical analysis needs to be carried out for DES pretreatment of lignocellulosic biomass. DESs need to be manufactured at an industrial scale for availability as low-cost green solvents. These recent findings suggest that deep eutectic solvents are promising alternatives to conventional solvents for upgrading lignocellulosic biomass.

Acknowledgements

Dr. Alok Satlewal would like to thank Indian Oil R&D Centre, Sector 13, Faridabad, India for all administrative and financial support. The first Bioenergy Award for Cutting Edge Research (BACER) conferred to Dr. Alok Satlewal from Department of Biotechnology (DBT), Government of India and Indo-US Science and the Technology Forum (IUSSTF) is duly acknowledged.

Funding

This work was supported, in part, by Department of Biotechnology, Government of India and Indo-US Science and the Technology Forum (IUSSTF). In addition, funding was provided by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy, Genomic Science Program, Office of Biological and Environmental Research, U.S. Department of Energy, under contract FWP ERKP752; and National Science Foundation,

Division of Materials Research Polymers Program through grant DMR-1508394. The publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in according with the DOE Public Access Plan (https://www.energy.gov/downloads/doe-public-accessplan). The views and opinions of the authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights.

Author Contributions

AS and AJR conceived this study. AS and RA prepared the framework and wrote the first draft of all sections except biocompatibility. SB wrote the section on biocompatibility. JS participated in the critical analysis of the data and conclusions. AJR provided mentorship, planning and execution. All authors critically reviewed this manuscript. All authors read and approved the final article.

Competing Interests

Authors declare they have no competing interests.

Figure Captions

Figure 1. Phase characteristics of Lidocaine-Decanoic acid mixtures illustrating the formation of deep eutectic mixtures.

Figure 2. Analysis of recent literature available on DESs via SciFinder. A) Number of publications per year; B) distribution of number of publications under different sections.

Figure 3. Typical structures of hydrogen bond donors (HBDs) and bond acceptors (HBAs) for DES synthesis (Adapted with permission from (Xu et al., 2017)).

Figure 4. Schematic representation of reaction between DES (ChCl:Urea) and lignin (A) and; lignin carbohydrate complexes (B) (Adapted with permission from (Yongzhuang et al., 2017).

Figure 5. Cellulase activity in the presence of DESs with HBA as choline chloride and HBD as ethylene glycol (EG), glycerol (GLY) or malonic acid (MA) at various concentrations after (A) 24 h and (B) 48 h incubation times (Adapted with permission from (Gunny et al., 2015)).

Figure 6. DES pretreatment and recycling. A) Schematic process flow diagram for DES based biorefinery and B) Pictorial representation of i) DES components before reagent preparation; ii) DES after preparation; iii) rice straw pretreatment with DES; iv) lignin precipitate; v) recovered DES (Adapted with permission from (Kim et al., 2018; Mohd et al., 2017)).

References:

Abbott, A.P., Boothby, D., Capper, G., Davies, D.L., Rasheed, R.K., 2004. Deep eutectic solvents formed between choline chloride and carboxylic acids: versatile alternatives to ionic liquids. J Am Chem Soc 126(29), 9142-9147.

Abo-Hamad, A., Hayyan, M., AlSaadi, M.A., Hashim, M.A., 2015. Potential applications of deep eutectic solvents in nanotechnology. Chem. Eng. J. 273, 551-567.

Agrawal, R., Gaur, R., Mathur, A., Kumar, R., Gupta, R.P., Tuli, D.K., Satlewal, A., 2015a. Improved saccharification of pilot-scale acid pretreated wheat straw by exploiting the synergistic behavior of lignocellulose degrading enzymes. RSC Adv 5(87), 71462-71471.

Agrawal, R., Satlewal, A., Gaur, R., Mathur, A., Kumar, R., Gupta, R.P., Tuli, D.K., 2015b. Pilot scale pretreatment of wheat straw and comparative evaluation of commercial enzyme preparations for biomass saccharification and fermentation. Biochem. Eng. J. 102, 54-61.

Agrawal, R., Satlewal, A., Kapoor, M., Mondal, S., Basu, B., 2017a. Investigating the enzyme-lignin binding with surfactants for improved saccharification of pilot scale pretreated wheat straw. Bioresource Technology 224, 411-418.

Agrawal, R., Satlewal, A., Sharma, B., Mathur, A., Gupta, R., Tuli, D., Adsul, M., 2017b. Induction of cellulases by disaccharides or their derivatives in Penicillium janthinellum EMS-UV-8 mutant. Biofuels 8(5), 615-622.

Agrawal, R., Verma, A.K., Satlewal, A., 2016. Application of nanoparticle-immobilized thermostable β-glucosidase for improving the sugarcane juice properties. Innov Food Sci Emerg Technol. 33, 472-482. Akinosho, H., Rydzak, T., Borole, A., Ragauskas, A., Close, D., 2015. Toxicological challenges to microbial bioethanol production and strategies for improved tolerance. Ecotoxicology 24(10), 2156-2174.

AlOmar, M.K., Hayyan, M., Alsaadi, M.A., Akib, S., Hayyan, A., Hashim, M.A., 2016. Glycerol-based deep eutectic solvents: Physical properties. J. Mol. Liq. 215, 98-103.

Alvarez-Vasco, C., Ma, R., Quintero, M., Guo, M., Geleynse, S., Ramasamy, K.K., Wolcott, M., Zhang, X., 2016. Unique low-molecular-weight lignin with high purity extracted from wood by deep eutectic solvents (DES): a source of lignin for valorization. Green Chem. 18(19), 5133-5141.

Azizi, N., Batebi, E., 2012. Highly efficient deep eutectic solvent catalyzed ring opening of epoxides. Catal. Sci. Technol. 2(12), 2445-2448.

Azizi, N., Dezfooli, S., Hashemi, M.M., 2013. A sustainable approach to the Ugi reaction in deep eutectic solvent. Comptes Rendus Chimie 16(12), 1098-1102.

Azizi, N., Dezfooli, S., Mahmoudi Hashemi, M., 2014. Greener synthesis of spirooxindole in deep eutectic solvent. J. Mol. Liq. 194(Supplement C), 62-67.

Azizi, N., Gholibeglo, E., 2012. A highly efficient synthesis of dithiocarbamates in green reaction media. RSC Adv 2(19), 7413-7416.

Azizi, N., Gholibeglo, E., Babapour, M., Ghafuri, H., Bolourtchian, S.M., 2012. Deep eutectic solvent promoted highly efficient synthesis of N, N'-diarylamidines and formamides. Comptes Rendus Chimie 15(9), 768-773.

Azizi, N., Manocheri, Z., 2012. Eutectic salts promote green synthesis of bis(indolyl) methanes. Res. Chem. Intermed. 38(7), 1495-1500.

Bhagia, S., Li, H., Gao, X., Kumar, R., Wyman, C.E., 2016. Flowthrough pretreatment with very dilute acid provides insights into high lignin contribution to biomass recalcitrance. Biotechnol Biofuels 9(1), 245. Calderon Morales, R., Tambyrajah, V., Jenkins, P.R., Davies, D.L., Abbott, A.P., 2004. The regiospecific Fischer indole reaction in choline chloride.2ZnCl2 with product isolation by direct sublimation from the ionic liquid. Chem Commun (Camb)(2), 158-159.

Capolupo, L., Faraco, V., 2016. Green methods of lignocellulose pretreatment for biorefinery development. Applied Microbiology and Biotechnology 100(22), 9451-9467.

Chen, Z., Greaves, T.L., Warr, G.G., Atkin, R., 2017. Mixing cations with different alkyl chain lengths markedly depresses the melting point in deep eutectic solvents formed from alkylammonium bromide salts and urea. Chem. Commun. 53(15), 2375-2377.

De Santi, V., Cardellini, F., Brinchi, L., Germani, R., 2012. Novel Brønsted acidic deep eutectic solvent as reaction media for esterification of carboxylic acid with alcohols. Tetrahedron Lett. 53(38), 5151-5155. Den, W., Sharma, V.K., Lee, M., Nadadur, G., Varma, R.S., 2018. Lignocellulosic Biomass Transformations via Greener Oxidative Pretreatment Processes: Access to Energy and Value-Added Chemicals. Frontiers in Chemistry 6(141).

Disale, S.T., Kale, S.R., Kahandal, S.S., Srinivasan, T.G., Jayaram, R.V., 2012. Choline chloride·2ZnCl₂ ionic liquid: an efficient and reusable catalyst for the solvent free Kabachnik–Fields reaction. Tetrahedron Lett. 53(18), 2277-2279.

Domínguez de María, P., 2014. Recent trends in (ligno)cellulose dissolution using neoteric solvents: switchable, distillable and bio-based ionic liquids. J. Chem. Technol. Biotechnol. 89(1), 11-18.

Duan, Z., Gu, Y., Deng, Y., 2006. Green and moisture-stable Lewis acidic ionic liquids (choline chloride·xZnCl₂) catalyzed protection of carbonyls at room temperature under solvent-free conditions. Catal. Commun. 7(9), 651-656.

Dumitrache, A., Tolbert, A., Natzke, J., Brown, S.D., Davison, B.H., Ragauskas, A.J., 2017. Cellulose and lignin colocalization at the plant cell wall surface limits microbial hydrolysis of Populus biomass. Green Chem. 19(9), 2275-2285.

Dutta, T., Papa, G., Wang, E., Sun, J., Isern, N.G., Cort, J.R., Simmons, B.A., Singh, S., 2018.

Characterization of Lignin Streams during Bionic Liquid-Based Pretreatment from Grass, Hardwood, and Softwood. ACS Sustain Chem Eng 6(3), 3079-3090.

Espino, M., de los Ángeles Fernández, M., Gomez, F.J.V., Silva, M.F., 2016. Natural designer solvents for greening analytical chemistry. TrAC, Trends Anal. Chem. 76, 126-136.

Fang, C., Thomsen, M.H., Frankær, C.G., Brudecki, G.P., Schmidt, J.E., AlNashef, I.M., 2017. Reviving Pretreatment Effectiveness of Deep Eutectic Solvents on Lignocellulosic Date Palm Residues by Prior Recalcitrance Reduction. Ind. Eng. Chem. Res. 56(12), 3167-3174.

Francisco, M., van den Bruinhorst, A., Kroon, M.C., 2012. New natural and renewable low transition temperature mixtures (LTTMs): screening as solvents for lignocellulosic biomass processing. Green Chem. 14(8), 2153-2157.

Fu, D., Mazza, G., Tamaki, Y., 2010. Lignin extraction from straw by ionic liquids and enzymatic hydrolysis of the cellulosic residues. J Agric Food Chem 58.

García, G., Aparicio, S., Ullah, R., Atilhan, M., 2015. Deep Eutectic Solvents: Physicochemical Properties and Gas Separation Applications. Energy Fuels 29(4), 2616-2644.

Gore, S., Baskaran, S., König, B., 2012. Fischer Indole Synthesis in Low Melting Mixtures. Org. Lett. 14(17), 4568-4571.

Gorke, J.T., Srienc, F., Kazlauskas, R.J., 2008. Hydrolase-catalyzed biotransformations in deep eutectic solvents. Chem. Commun. 10.

Gorke, J.T., Srienc, F., Kazlauskas, R.J., 2010. Deep Eutectic Solvents for *Candida antarctica* Lipase B-Catalyzed Reactions, Ionic Liquid Applications: Pharmaceuticals, Therapeutics, and Biotechnology. American Chemical Society, pp. 169-180.

Griffin, P.J., Cosby, T., Holt, A.P., Benson, R.S., Sangoro, J.R., 2014. Charge Transport and Structural Dynamics in Carboxylic-Acid-Based Deep Eutectic Mixtures. J. Phys. Chem. B 118(31), 9378-9385. Gunny, A.A.N., Arbain, D., Nashef, E.M., Jamal, P., 2015. Applicability evaluation of Deep Eutectic Solvents—Cellulase system for lignocellulose hydrolysis. Bioresour Technol 181, 297-302.

Haerens, K., Van Deuren, S., Matthijs, E., Van der Bruggen, B., 2010. Challenges for recycling ionic liquids by using pressure driven membrane processes. Green Chem. 12(12), 2182-2188.

Handy, S., 2015. Deep Eutectic Solvents in Organic Synthesis, Ionic Liquids - Current State of the Art, in: Handy, S. (Ed.). InTech.

Handy, S., Lavender, K., 2013. Organic synthesis in deep eutectic solvents: Paal–Knorr reactions. Tetrahedron Lett. 54(33), 4377-4379.

Handy, S., Westbrook, N.M., 2014. A mild synthesis of bis(indolyl)methanes using a deep eutectic solvent. Tetrahedron Lett. 55(35), 4969-4971.

Handy, S., Wright, M., 2014. An acid-free Pictet–Spengler reaction using deep eutectic solvents (DES). Tetrahedron Lett. 55(23), 3440-3442.

Hashmi, M., Sun, Q., Tao, J., Wells, T., Shah, A.A., Labbé, N., Ragauskas, A.J., 2017. Comparison of autohydrolysis and ionic liquid 1-butyl-3-methylimidazolium acetate pretreatment to enhance enzymatic hydrolysis of sugarcane bagasse. Bioresource Technology 224, 714-720.

Hayyan, A., Mjalli, F.S., AlNashef, I.M., Al-Wahaibi, Y.M., Al-Wahaibi, T., Hashim, M.A., 2013a. Glucose-based deep eutectic solvents: Physical properties. J. Mol. Liq. 178, 137-141.

Hayyan, M., Hashim, M.A., Al-Saadi, M.A., Hayyan, A., AlNashef, I.M., Mirghani, M.E.S., 2013b. Assessment of cytotoxicity and toxicity for phosphonium-based deep eutectic solvents. Chemosphere 93(2), 455-459.

Hayyan, M., Hashim, M.A., Hayyan, A., Al-Saadi, M.A., AlNashef, I.M., Mirghani, M.E.S., Saheed, O.K., 2013c. Are deep eutectic solvents benign or toxic? Chemosphere 90(7), 2193-2195.

Hou, X.-D., Feng, G.-J., Ye, M., Huang, C.-M., Zhang, Y., 2017a. Significantly enhanced enzymatic hydrolysis of rice straw via a high-performance two-stage deep eutectic solvents synergistic pretreatment. Bioresour Technol 238, 139-146.

Hou, X.-D., Li, N., Zong, M.-H., 2013. Facile and Simple Pretreatment of Sugar Cane Bagasse without Size Reduction Using Renewable Ionic Liquids—Water Mixtures. ACS Sustain Chem Eng 1(5), 519-526.

Hou, X.-D., Smith, T.J., Li, N., Zong, M.-H., 2012. Novel renewable ionic liquids as highly effective solvents for pretreatment of rice straw biomass by selective removal of lignin. Biotechnol. Bioeng. 109(10), 2484-2493.

Hou, X.D., Feng, G.J., Ye, M., Huang, C.M., Zhang, Y., 2017b. Significantly enhanced enzymatic hydrolysis of rice straw via a high-performance two-stage deep eutectic solvents synergistic pretreatment. Bioresour Technol 238, 139-146.

Hu, S., Zhang, Z., Zhou, Y., Song, J., Fan, H., Han, B., 2009. Direct conversion of inulin to 5-hydroxymethylfurfural in biorenewable ionic liquids. Green Chem. 11(6), 873-877.

Imperato, G., Eibler, E., Niedermaier, J., Konig, B., 2005. Low-melting sugar-urea-salt mixtures as solvents for Diels-Alder reactions. Chem. Commun.(9), 1170-1172.

Imperato, G., Hoger, S., Lenoir, D., Konig, B., 2006. Low melting sugar-urea-salt mixtures as solvents for organic reactions-estimation of polarity and use in catalysis. Green Chem. 8(12), 1051-1055.

Jablonský, M., Škulcová, A., Kamenská, L., Vrška, M., Šíma, J., 2015. Deep Eutectic Solvents: Fractionation of Wheat Straw.

Jeong, K.M., Lee, M.S., Nam, M.W., Zhao, J., Jin, Y., Lee, D.-K., Kwon, S.W., Jeong, J.H., Lee, J., 2015. Tailoring and recycling of deep eutectic solvents as sustainable and efficient extraction media. J. Chromatogr. A 1424, 10-17.

Karimi, K., Taherzadeh, M.J., 2016. A critical review of analytical methods in pretreatment of lignocelluloses: Composition, imaging, and crystallinity. Bioresource Technology 200, 1008-1018. Kim, K.H., Dutta, T., Sun, J., Simmons, B., Singh, S., 2018. Biomass pretreatment using deep eutectic solvents from lignin derived phenols. Green Chem.

- Kumar, A.K., Parikh, B.S., Pravakar, M., 2016. Natural deep eutectic solvent mediated pretreatment of rice straw: bioanalytical characterization of lignin extract and enzymatic hydrolysis of pretreated biomass residue. Environmental Science and Pollution Research 23(10), 9265-9275.
- Lehmann, C., Bocola, M., Streit, W.R., Martinez, R., Schwaneberg, U., 2014. Ionic liquid and deep eutectic solvent-activated CelA2 variants generated by directed evolution. Applied microbiology and biotechnology 98(12), 5775-5785.
- Lehmann, C., Sibilla, F., Maugeri, Z., Streit, W.R., Dominguez de Maria, P., Martinez, R., Schwaneberg, U., 2012. Reengineering CelA2 cellulase for hydrolysis in aqueous solutions of deep eutectic solvents and concentrated seawater. Green Chem. 14(10), 2719-2726.
- Li, C., Li, D., Zou, S., Li, Z., Yin, J., Wang, A., Cui, Y., Yao, Z., Zhao, Q., 2013a. Extraction desulfurization process of fuels with ammonium-based deep eutectic solvents. Green Chemistry 15(10), 2793-2799. Li, H.-Y., Chen, X., Li, Y.-J., Cao, X.-F., Sun, S.-N., Sun, R.-C., 2018. The effect of ionic liquids pretreatment on the distribution and structure of alkali-soluble hemicelluloses from Eucalyptus. Sep. Purif. Technol. 191, 364-369.
- Li, M., Pu, Y., Ragauskas, A.J., 2016. Current Understanding of the Correlation of Lignin Structure with Biomass Recalcitrance. Front. Chem. 4, 45.
- Li, P., Ma, F., Wang, P., Zhang, Z., 2013b. Highly Efficient Low Melting Mixture Catalyzed Synthesis of 1,8-Dioxo-dodecahydroxanthene Derivatives. Chin. J. Chem. 31(6), 757-763.
- Liszka, M.J., Kang, A., Konda, N.V.S.N.M., Tran, K., Gladden, J.M., Singh, S., Keasling, J.D., Scown, C.D., Lee, T.S., Simmons, B.A., Sale, K.L., 2016. Switchable ionic liquids based on di-carboxylic acids for one-pot conversion of biomass to an advanced biofuel. Green Chem. 18(14), 4012-4021.
- Lobo, H.R., Singh, B.S., Shankarling, G.S., 2012a. Bio-compatible eutectic mixture for multi-component synthesis: A valuable acidic catalyst for synthesis of novel 2,3-dihydroquinazolin-4(1H)-one derivatives. Catal. Commun. 27(Supplement C), 179-183.
- Lobo, H.R., Singh, B.S., Shankarling, G.S., 2012b. Deep eutectic solvents and glycerol: a simple, environmentally benign and efficient catalyst/reaction media for synthesis of N-aryl phthalimide derivatives. Green. Chem. Lett. Rev. 5(4), 487-533.
- Lobo, H.R., Singh, B.S., Shankarling, G.S., 2012c. Lipase and Deep Eutectic Mixture Catalyzed Efficient Synthesis of Thiazoles in Water at Room Temperature. Catal. Lett. 142(11), 1369-1375.
- Loow, Y.-L., New, E.K., Yang, G.H., Ang, L.Y., Foo, L.Y.W., Wu, T.Y., 2017. Potential use of deep eutectic solvents to facilitate lignocellulosic biomass utilization and conversion. Cellulose 24(9), 3591-3618.
- Loow, Y.-L., Wu, T.Y., Yang, G.H., Ang, L.Y., New, E.K., Siow, L.F., Md. Jahim, J., Mohammad, A.W., Teoh, W.H., 2018. Deep eutectic solvent and inorganic salt pretreatment of lignocellulosic biomass for improving xylose recovery. Bioresource Technology 249, 818-825.
- Lores, H., Romero, V., Costas, I., Bendicho, C., Lavilla, I., 2017. Natural deep eutectic solvents in combination with ultrasonic energy as a green approach for solubilisation of proteins: application to gluten determination by immunoassay. Talanta 162, 453-459.
- Lynam, J.G., Kumar, N., Wong, M.J., 2017. Deep eutectic solvents' ability to solubilize lignin, cellulose, and hemicellulose; thermal stability; and density. Bioresour Technol 238, 684-689.
- Lynd, L.R., 2017. The grand challenge of cellulosic biofuels. Nat. Biotechnol. 35, 912.
- Maugeri, Z., Domínguez de María, P., 2014. Whole-Cell Biocatalysis in Deep-Eutectic-Solvents/Aqueous Mixtures. ChemCatChem 6(6), 1535-1537.
- Mbous, Y.P., Hayyan, M., Hayyan, A., Wong, W.F., Hashim, M.A., Looi, C.Y., 2017. Applications of deep eutectic solvents in biotechnology and bioengineering—Promises and challenges. Biotechnol. Adv. 35(2), 105-134.
- Mohd, N., Draman, S.F.S., Salleh, M.S.N., Yusof, N.B., 2017. Dissolution of cellulose in ionic liquid: A review. AIP Conference Proceedings 1809(1), 020035.

N., H.H., M., M.K., C., K.K.H., D., S.N., 2011. A facile, choline chloride/urea catalyzed solid phase synthesis of coumarins via Knoevenagel condensation. Org. Commun. 4(2), 26-32.

Nor, N.A.M., Mustapha, W.A.W., Hassan, O., 2016. Deep Eutectic Solvent (DES) as a Pretreatment for Oil Palm Empty Fruit Bunch (OPEFB) in Sugar Production. Procedia Chem 18, 147-154.

Oliveira, V.K.D., Gregory, C., François, J., 2015. Contribution of Deep Eutectic Solvents for Biomass Processing: Opportunities, Challenges, and Limitations. ChemCatChem 7(8), 1250-1260.

Pandey, A., Bhawna, Dhingra, D., Pandey, S., 2017. Hydrogen Bond Donor/Acceptor Cosolvent-Modified Choline Chloride-Based Deep Eutectic Solvents. J. Phys. Chem. B 121(16), 4202-4212.

Pawar, P.M., Jarag, K.J., Shankarling, G.S., 2011. Environmentally benign and energy efficient methodology for condensation: an interesting facet to the classical Perkin reaction. Green Chem. 13(8), 2130-2134.

Phadtare, S.B., Jarag, K.J., Shankarling, G.S., 2013. Greener protocol for one pot synthesis of coumarin styryl dyes. Dyes and Pigments 97(1), 105-112.

Phadtare, S.B., Shankarling, G.S., 2010. Halogenation reactions in biodegradable solvent: Efficient bromination of substituted 1-aminoanthra-9,10-quinone in deep eutectic solvent (choline chloride: urea). Green Chem. 12(3), 458-462.

Procentese, A., Johnson, E., Orr, V., Garruto Campanile, A., Wood, J.A., Marzocchella, A., Rehmann, L., 2015. Deep eutectic solvent pretreatment and subsequent saccharification of corncob. Bioresour Technol 192, 31-36.

Procentese, A., Raganati, F., Olivieri, G., Russo, M.E., Rehmann, L., Marzocchella, A., 2018. Deep Eutectic Solvents pretreatment of agro-industrial food waste. Biotechnology for Biofuels 11(1), 37.

Raj, T., Gaur, R., Dixit, P., Gupta, R.P., Kagdiyal, V., Kumar, R., Tuli, D.K., 2016. Ionic liquid pretreatment of biomass for sugars production: Driving factors with a plausible mechanism for higher enzymatic digestibility. Carbohydr. Polym. 149, 369-381.

Ren, H., Chen, C., Guo, S., Zhao, D., Wang, Q., 2016a. Synthesis of a novel allyl-functionalized deep eutectic solvent to promote dissolution of cellulose. BioResources 11(4), 8457-8469.

Ren, H., Chen, C., Wang, Q., Zhao, D., Guo, S., 2016b. The properties of choline chloride-based deep eutectic solvents and their performance in the dissolution of cellulose. BioResources 11(2), 5435-5451.

Sanap, A.K., Shankarling, G.S., 2014. Eco-friendly and recyclable media for rapid synthesis of tricyanovinylated aromatics using biocatalyst and deep eutectic solvent. Catal. Commun. 49(Supplement C), 58-62.

Sarmad, S., Xie, Y., Mikkola, J.-P., Ji, X., 2017. Screening of deep eutectic solvents (DESs) as green CO2 sorbents: from solubility to viscosity. New Journal of Chemistry 41(1), 290-301.

Satlewal, A., Agrawal, R., Bhagia, S., Das, P., Ragauskas, A.J., 2018. Rice straw as a feedstock for biofuels: Availability, recalcitrance, and chemical properties. Biofuels, Bioprod. Biorefin. 12(1), 83-107.

Satlewal, A., Saini, J.K., Agrawal, R., Mathur, A., Tuli, D.K., Adsul, M., 2017. Indian Biofuel Progress, GHG Emission and GHG Savings by Biofuels: Comparative Assessment with World, in: Chandel, A.K.,

Sukumaran, R.K. (Eds.), Sustainable Biofuels Development in India. Springer International Publishing, Cham, pp. 541-557.

Seidl, P.R., Goulart, A.K., 2016. Pretreatment processes for lignocellulosic biomass conversion to biofuels and bioproducts. Current Opinion in Green and Sustainable Chemistry 2, 48-53.

Shahbaz, K., Mjalli, F.S., Hashim, M.A., AlNashef, I.M., 2011. Prediction of deep eutectic solvents densities at different temperatures. Thermochim. Acta 515(1), 67-72.

Singh, B., Lobo, H., Shankarling, G., 2011. Selective N-Alkylation of Aromatic Primary Amines Catalyzed by Bio-catalyst or Deep Eutectic Solvent. Catal. Lett. 141(1), 178-182.

Singh, B.S., Lobo, H.R., Pinjari, D.V., Jarag, K.J., Pandit, A.B., Shankarling, G.S., 2013. Ultrasound and deep eutectic solvent (DES): a novel blend of techniques for rapid and energy efficient synthesis of oxazoles. Ultrason Sonochem 20(1), 287-293.

- Singh, S., Cheng, G., Sathitsuksanoh, N., Wu, D., Varanasi, P., George, A., Balan, V., Gao, X., Kumar, R., Dale, B.E., Wyman, C.E., Simmons, B.A., 2015. Comparison of Different Biomass Pretreatment Techniques and Their Impact on Chemistry and Structure. Front. Energy. Res. 2(62).
- Smith, E.L., Abbott, A.P., Ryder, K.S., 2014. Deep Eutectic Solvents (DESs) and Their Applications. Chem. Rev. 114(21), 11060-11082.
- Tang, B., Row, K.H., 2013. Recent developments in deep eutectic solvents in chemical sciences. Monatshefte für Chemie Chemical Monthly 144(10), 1427-1454.
- Tang, X., Zuo, M., Li, Z., Liu, H., Xiong, C., Zeng, X., Sun, Y., Hu, L., Liu, S., Lei, T., Lin, L., 2017. Green Processing of Lignocellulosic Biomass and Its Derivatives in Deep Eutectic Solvents. ChemSusChem 10(13), 2696-2706.
- Tian, D., Chandra, R.P., Lee, J.-S., Lu, C., Saddler, J.N., 2017. A comparison of various lignin-extraction methods to enhance the accessibility and ease of enzymatic hydrolysis of the cellulosic component of steam-pretreated poplar. Biotechnol Biofuels 10(1), 157.
- van Osch, D.J.G.P., Kollau, L.J.B.M., van den Bruinhorst, A., Asikainen, S., Rocha, M.A.A., Kroon, M.C., 2017. Ionic liquids and deep eutectic solvents for lignocellulosic biomass fractionation. PCCP 19(4), 2636-2665.
- Vidal, C., García-Álvarez, J., Hernán-Gómez, A., Kennedy, A.R., Hevia, E., 2014. Introducing Deep Eutectic Solvents to Polar Organometallic Chemistry: Chemoselective Addition of Organolithium and Grignard Reagents to Ketones in Air. Angew. Chem. Int. Ed. 53(23), 5969-5973.
- Vigier, K.D.O., Chatel, G., Jérôme, F., 2015. Contribution of Deep Eutectic Solvents for Biomass Processing: Opportunities, Challenges, and Limitations. ChemCatChem 7, 1250-1260.
- Wahlstrom, R., Hiltunen, J., Pitaluga de Souza Nascente Sirkka, M., Vuoti, S., Kruus, K., 2016. Comparison of three deep eutectic solvents and 1-ethyl-3-methylimidazolium acetate in the pretreatment of lignocellulose: effect on enzyme stability, lignocellulose digestibility and one-pot hydrolysis. RSC Adv 6(72), 68100-68110.
- Wang, Y., Fan, C., Hu, H., Li, Y., Sun, D., Wang, Y., Peng, L., 2016. Genetic modification of plant cell walls to enhance biomass yield and biofuel production in bioenergy crops. Biotechnol. Adv. 34(5), 997-1017. Xing, T., Miao, Z., Zheng, L., Huai, L., Caixia, X., Xianhai, Z., Yong, S., Lei, H., Shijie, L., Tingzhou, L., Lu, L., 2017. Green Processing of Lignocellulosic Biomass and Its Derivatives in Deep Eutectic Solvents. ChemSusChem 10(13), 2696-2706.
- Xu, F., Sun, J., Konda, N.V.S.N.M., Shi, J., Dutta, T., Scown, C.D., Simmons, B.A., Singh, S., 2016a. Transforming biomass conversion with ionic liquids: process intensification and the development of a high-gravity, one-pot process for the production of cellulosic ethanol. Energy Environ Sci 9(3), 1042-1049.
- Xu, G.-C., Ding, J.-C., Han, R.-Z., Dong, J.-J., Ni, Y., 2016b. Enhancing cellulose accessibility of corn stover by deep eutectic solvent pretreatment for butanol fermentation. Bioresource technology 203, 364-369. Xu, P., Zheng, G.-W., Zong, M.-H., Li, N., Lou, W.-Y., 2017. Recent progress on deep eutectic solvents in biocatalysis. Bioresour. Bioprocess. 4(1), 34.
- Yadav, U.N., Shankarling, G.S., 2014. Room temperature ionic liquid choline chloride—oxalic acid: A versatile catalyst for acid-catalyzed transformation in organic reactions. J. Mol. Liq. 191, 137-141.
- Yin, D., Li, C., Li, B., Tao, L., Yin, D., 2005. High Regioselective Diels—Alder Reaction of Myrcene with Acrolein Catalyzed by Zinc-Containing Ionic Liquids. Adv. Synth. Catal. 347(1), 137-142.
- Yongzhuang, L., Wenshuai, C., Qinqin, X., Bingtuo, G., Qingwen, W., Shouxin, L., Yixing, L., Jian, L., Haipeng, Y., 2017. Efficient Cleavage of Lignin—Carbohydrate Complexes and Ultrafast Extraction of Lignin Oligomers from Wood Biomass by Microwave-Assisted Treatment with Deep Eutectic Solvent. ChemSusChem 10(8), 1692-1700.
- Yoo, C.G., Pu, Y., Ragauskas, A.J., 2017. Ionic liquids: Promising green solvents for lignocellulosic biomass utilization. Curr. Opin. Green. Sustain. Chem. 5, 5-11.

Zahn, S., 2017. Deep eutectic solvents: similia similibus solvuntur? PCCP 19(5), 4041-4047.

Zhang, C.-W., Xia, S.-Q., Ma, P.-S., 2016. Facile pretreatment of lignocellulosic biomass using deep eutectic solvents. Bioresour Technol 219, 1-5.

Zhang, Q., Benoit, M., De Oliveira Vigier, K., Barrault, J., Jérôme, F., 2012a. Green and Inexpensive Choline-Derived Solvents for Cellulose Decrystallization. Chem. Eur. J 18(4), 1043-1046.

Zhang, Q., De Oliveira Vigier, K., Royer, S., Jerome, F., 2012b. Deep eutectic solvents: syntheses, properties and applications. Chem. Soc. Rev. 41(21), 7108-7146.

Zhu, A., Jiang, T., Han, B., Zhang, J., Xie, Y., Ma, X., 2007. Supported choline chloride/urea as a heterogeneous catalyst for chemical fixation of carbon dioxide to cyclic carbonates. Green Chem. 9(2), 169-172.

Zhu, A., Li, L., Wang, J., Zhuo, K., 2011. Direct nucleophilic substitution reaction of alcohols mediated by a zinc-based ionic liquid. Green Chem. 13(5), 1244-1250.

Zulkefli, S., Abdulmalek, E., Abdul Rahman, M.B., 2017. Pretreatment of oil palm trunk in deep eutectic solvent and optimization of enzymatic hydrolysis of pretreated oil palm trunk. Renew Energ 107, 36-41. Zuo, M., Le, K., Li, Z., Jiang, Y., Zeng, X., Tang, X., Sun, Y., Lin, L., 2017. Green process for production of 5-hydroxymethylfurfural from carbohydrates with high purity in deep eutectic solvents. Ind. Crops Prod. 99, 1-6.

Fig. 1A

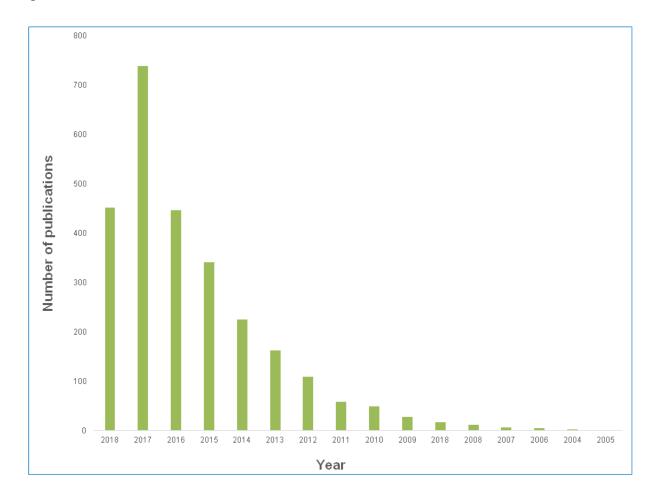


Fig. 1B

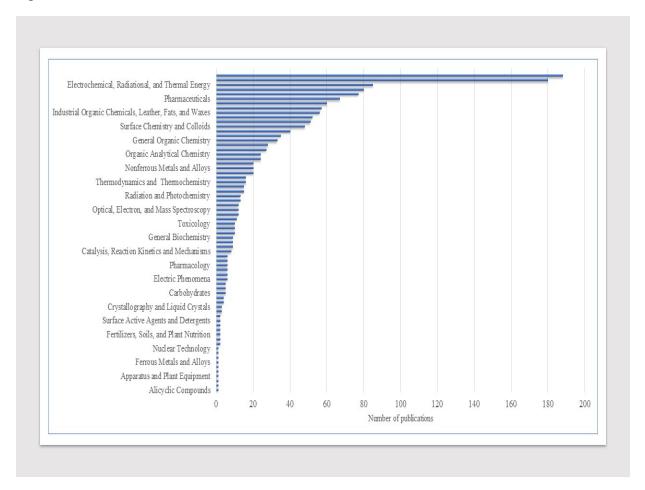


Fig. 2.

Fig. 3

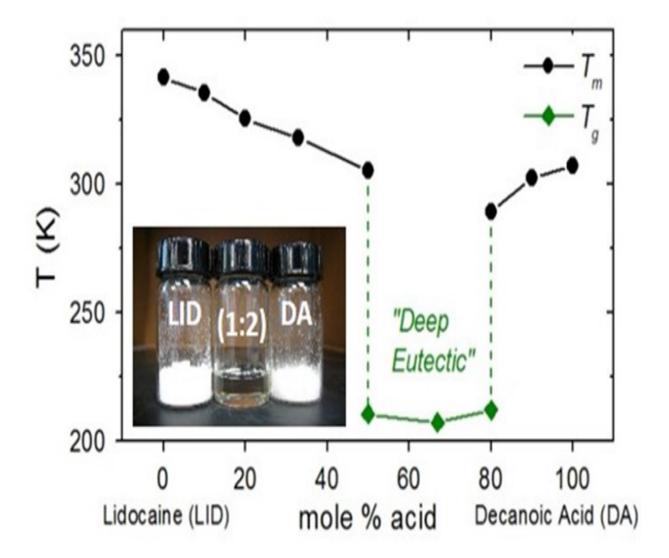
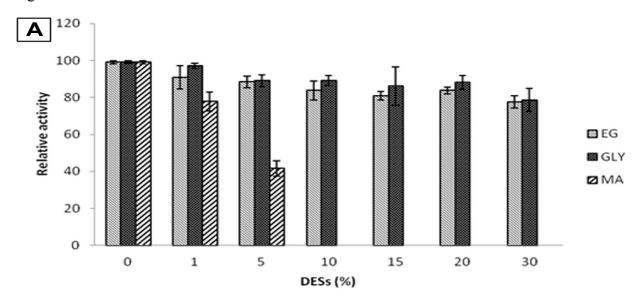



Fig. 4A

Fig. 4B

Fig. 5

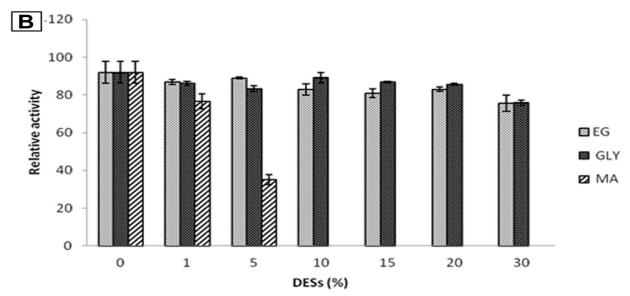


Fig 6A

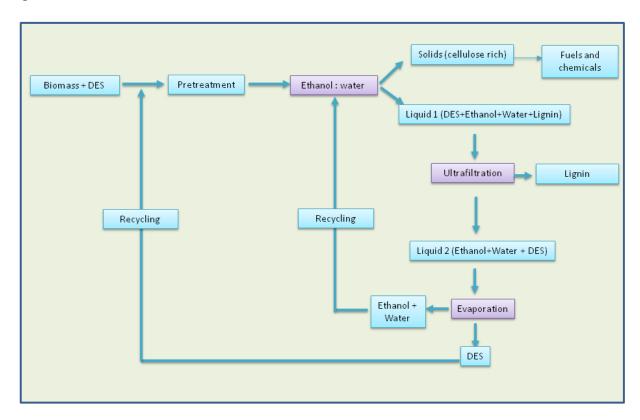


Fig 6B