
sage Passing Interface,,.g%:,

SANDIA- REPORT
SAND99-2959
UnlimitedRelease

., ~~~nted December 1999
.......,,=,::.... ;.‘,:.....~.- ..,

‘.‘.

-.:.<~~-$~$~$~~co 87185 and Livermor&&&z@a 94550,,.:.’... ,,.;.,,,.:..-..-.,:*.>=. .-;:..’:..,,.,~......*............... . ..
:$?f@<?w:&:@:-m&$fc

.’ ”:’

.,,,.::>
..,:.’.’..,..,

Approved for publ;&!&&.:,:.’:,.......;::,,’.,.’:-,.-‘.
x?%:<..... :;‘,:..>-,,,+’

...<..,..?..,’..,...:..,

m

‘.:‘.-..,>.’,. .,’:‘.....”. ...

,:a~a ,

-..-’,.:..”~,’:,.’
.... - -.: ,., .,.,~.,,.

..”
-“~“

.’.,:...“ ...~..:-...,:.,.. ..
,’......

. .:..,

.,.

National laboratories

Issued by Sandia National Laboratories, operated for the United States Department of
Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States Government,
nor any agency thereof, nor any of their employees, nor any of their contractors,
subcontractors, or their employees, make any warranty, express or implied, or
assume any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or
represent that ita use would not infringe privately owned rights. Reference herein to
any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States Government, any
agency thereof, or any of their contractors or subcontractors. The views and
opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly
from the best available copy.

Available to DOE and DOE contractors from
Office of Scientific and Technical Information
P.O. BOX 62
Oak Ridge, TN 37831

Prices available from (703) 605-6000
Web site: http: //www.ntis.gov/ordering.htm

Available to the public from
National Technical Information Service
U.S. Department of Commerce
5285 port ROYd Rd
Springfield, VA 22161

NTIS price codes
Printed copy A03
Microfiche copy Ao1

DISCLAIMER

Portions of this document may be Negib)e
in electronic image
produced from the
document.

products. Images are
best available original

SAND99-2959

Unlimited Release

Printed December 1999

The Portals 3.0 Message Passing Interface
Revision 1.0

Ron Brightwell, Tramm Hudson, and Rolf Rlesen
Computational Sciences, Computer Sciences, and Mathematics Center

Sandia National Laboratories
P.O. BOX 5800

Albuquerque, NM 87185-1110

Arthur B. Maccabe
Department of Computer Science

The University of New Mexico
Albuquerque, NM 87131

Abstract

This report presents a specification for the Portals 3.0 message passing interface. Portals 3.0 is
intended to allow scalable, high-performance network communication between nodes of a parallel
computing system. Specifically, it is designed to support a parallel computing platform composed

of clusters of commodity workstations connected by a commodlt y system area network fabric.
In addition, Portals 3.0 is well suited to massively parallel processing and embedded systems.

Portals 3.0 represents an adaption of the data movement layer developed for massively parallel
processing platforms, such as the 4500-node Intel TeraFLOPS machine.

Acknowledgment

Several people have contributed to the philosophy, design, and implementation of the Portals
message passing architecture as it has evolved. We acknowledge the following people for their
contributions: Al Audette, Lee Ann Fisk, David Greenberg, Gabi Istrail, Chu Jong, Mike Lev-

enhagen, Jim Otto, Mark Sears, Lance Shuler, Mack Stallcup, Jeff VanD yke, Dave van Dresser,
Lee Ward, and Stephen Wheat.

4

Contents

1 Introduction
l.l Overview .

l.2 Purpose .
1.3 Background .

1.4 Scalability .
1.5 Communication Model.. .
1.6 Zero Copy, OS Bypass and Application Bypass .

2 An Overview ofthe Portals API

2.1 Data Movement .
2.2 Portal Addressing .
2.3 Access Control .

3 The Portals API

3.1
3.2

3.3

3.4

3.5

3.6

3.7

3.8

Naming Conventions .
Base Types .

3.2.1 Sizes .
3.2.2 Handles .
3.2.31ndexes .
3.2.4 Match Bits .
3.2.5 Network Interfaces .
3.2.61dentifiers .
3.2.7 Status Registers .
Initialization and Cleanup. .
3.3.1 PtlInit .
3.3.2 PtlFini .
Process Identification .

3.4.1 TheProcessId Type .
3.4.2 PtlGetId .
3.4.3 PtlTransId .
Network Interfaces .
3.5.1 PtlNIInit .
3.5.2 PtlNIFini .
3.5.3 PtlNIBarrier .
3.5.4 PtlNIStatus .
3.5.5 PtlNIDist .
3.5.6 PtlNIHandle .
MatchEntriesandMatchLists .

3.6.1 PtlMEAttach .
3.6.2 PtlMEInsert .
3.6.3 PtlMEUnlink .
Memory Descriptors .

3.7.1 TheMemoryDescriptorType. .
3.7.2 PtlMDAttach .
3.7.3 PtlMDInsert .

3.7.4 PtlMDBind .
3.7.5 PtlMDUnlink .

3.7.6 PtlMDUpdate .
Events andEventQueues. .

3.8.1 KindsofEvents .
3.8.2 TheEventType .
3.8.3 PtlEQAlloc .

8
8
8

9
9

9
10

10
10
11
12

13
13
13
13
13
14
14
14
14
14
14
14
15
15
15
15
16
16
16
17
17
18
18
19
19
19
20
21
21
21
23
24

24
25

25

26
26
27
27

5

4

5

3.9

3.10

3.11

3.8.4 PtlEQFree .

3.8.5 PtlEQCount .
3.8.6 PtlEQGet .

3.8.7 PtlEQWait .
TheAccess Controllable .
3.9.1 PtlACEntry .
Data Movement Operations.. .

3.10.1 PtlPut .
3.10.2 PtlGet .
Summary .

The Semantics ofMessage Transmission
4.1 Sending Messages .
4.2 Receiving Messages .

Examples
5.1 Parallel Fileservers.. .
5.2 Dealing withDropped Requests .
5.3 MessageTransmissionin MPI .

Figures

1 PortalPut (Send) .
2 Portal Get .

3 Portal Addressing Structures
4 Portals Address Translation

5 Parallel Fileserver .
6 MessageReceptioninMPI.

.

.

.

.

.

.

Tables

1 Object Type Codes .
2 TypesDefinedbythePortals3.0API .
3 Functions Defined bythe Portals3.O.4PI .
4 Function Return Codes forthePortals 3.OAPI .

5 Other Constants Defined bythe Portals 3.OAPI .
6 Information PassedinaPut Request .
7 Information Passedin an Acknowledgement .
8 InformationPassedin aGetRequest .
9 Information PassedinaReply .

28
28
28

29
29
29

30
30

31
31

33

33
36

37

37
38
39

11
11
12
12

38
41

13

32
33
34

35
35
35
36

36

6

Glossary

Process

Rank

Target

API Application Programming Interface, A definition of the functions and semantics provided
by library of functions.

Group The collection of processes loaded as a parallel job.

Initiator A process that initiates a message operation.

Message An application-defined unit of data that is exchanged between processes.

Message Operation Either a put operation, which writes data, or a get. operation, which reads data.

Network A network provides point-to-point communication between nodes. Internally, a network
may provide multiple routes between endpoints (to improve fault tolerance or to improve
performance characteristics); however, multiple paths will not be exposed outside of the
network.

Node A node is an endpoint in a network. Nodes provide processing capabilities and memory. A
node may provide multiple processors (an SMP node) or it may act as a gateway between
networks.

The instantiation of an executing program on a node.

Each process in a group is assigned a unique integer in the range O to n, where n is the
number of processes in the group.

A process that is acted upon by a message operation.

7

The Portals 3.0 Message Passing System
Revision 1.0

1 Introduction

1.1 Overview

This document describes an application programming interface for message passing between nodes in a
system area network. The goal of this interface is to improve the scalability and performance of network
communication by defining the functions and semantics of message passing required for scaling a parallel

computing system to ten thousand nodes. This goal is achieved by providing an interface that will allow a
quality implementation to take advantage of the inherently scalable design of Portals.

This document is divided into several sections:

Section l—Introduction
This section describes the purpose and scope of the Portals API.

Section 2—An Overview of the Portals 3.0 API
This section gives a brief overview of the Portals API. The goal is to introduce the key
concepts and terminology used in the description of the API.

Section 3—The Portals 3.0 API
This section describes the functions and semantics of the Portals application programming
interface.

Section 4–The Semantics of Message Transmission
This section describes the semantics of message transmission. In particular, the informa-
tion transmitted in each type of message and the processing of incoming messages.

Section 5—Examples
This section presents several examples intended to illustrates the use of the Portals API.

1.2 Purpose

Existing message passing technologies available for commodity cluster networking hardware do not meet
the scalability goals required by the Cplant [1] project at San&la National Laboratories. The goal of the

Cplant project is to construct a commodity cluster that can scale to the order of ten thousand nodes. This
number greatly exceeds the capacity for which existing message passing technologies have been designed and
implemented.

In addition to the scalability requirements of the network, these technologies must also be able to support
a scalable implementation of the Message Passing Interface (MPI) [7] standard, which has become the de
jacto standard for parallel scientific computing. While MPI does not impose any scalability limitations,
existing message passing technologies do not provide the functionality needed to allow implementations of

MPI to meet the scalability requirements of Cplant.
The following are properties of a network architecture that do not impose any inherent scalability limi-

tations:

. Connectionless - Many connection-oriented architectures, such as VIA [3] and TCP/IP sockets, have
limitations on the number of peer connections that can be established.

● Network independence - Many communication systems depend on the host processor to perform oper-

ations in order for messages in the network to be consumed. Message consumption from the network
should not be dependent on host processor activity, such as the operating system scheduler or user-level
thread scheduler.

8

●

●

User-level flow control - Many communication systems manage flow control internally to avoid deplet-
ing resources, which can significantly impact performance as the number of communicating processes
increases.

OS Bypass - High performance network communication should not involve memory copies into or out
of a kernel-managed protocol stack.

The following are properties of a network architecture that do not impose scalability Imitations for an
I implementation of MPI:

1.3

Receiver-managed - Sender-managed message passing implementations require a persistent block of
memory to be available for every process, requiring memory resources to increase with job size and
requiring user-level flow control mechanisms to manage these resources.

User-level Bypass - While OS Bypass is necessary for high-performance, it alone is not sufficient to
support the Progress Rule of MPI asynchronous operations.

Unexpected messages - Few communication systems have support for receiving messages for which
there is no prior notification. Support for these types of messages is necessary to avoid flow control

and protocol overhead.

Background

Portals were originally designed for and implemented on the nCube machine as part of the SUNMOS (San-
dla/UNM OS) [6] and Puma [11] lightweight kernel development projects. Portals went through two design
phases, the latter of which is used on the 4500-node InteI TeraFLOPS machine [10]. Portals have been very

successful in meeting the needs of such a large machine, not only as a layer for a high-performance MPI im-
plementation [2], but also for implementing the scalable run-time environment and parallel 1/0 capabilities
of the machine.

The second generation Portals implementation was designed to take full advantage of the hardware

architecture of large MPP machines. However, efforts to implement this same design on commodity cluster
technology identified several limitations, due to the differences in network hardware as well as to shortcomings
in the design of Portals.

1.4 Scalability y

The primary goal in the design of Portals is scalability. Portals are designed specifically for an implementation
capable .of supporting a parallel job running on ten thousand nodes. Performance is critical ordy in terms
of scalability. That is, the level of message passing performance is characterized by how far it allows an
application to scale and not by how it performs in a two-node ping-pong benchmark.

Portals are designed to allow for scalability, not to guarantee it. Portals cannot overcome the shortcomings
of a poorly designed application program. Applications that have inherent scalability limitations, either
through design or implementation, will not be transformed by Portals into scalable applications. Scalability
must be addressed at all levels. Portals do not inhibit scalability, but do not guarantee it either.

To support scalability, the Portals interface maintains a minimal amount of state. Portals provide reliable,

ordered delivery of messages between pairs of processes. They are connectionless: a process is not required
to explicitly establish a point-to-point connection with another process in order to communicate. Moreover,
all buffers used in the transmission of messages are maintained in user space. The target process determines
how to respond to incoming messages, and messages for which there are no buffers are discarded.

1.5 Communication Model

Portals combine the characteristics of both oneside and two-sided communication. They define a “matching
put” operation and a “matching get” operation. The destination of a put (or send) is not an explicit
address; instead, each message contains a set of match bits that allow the receiver to determine where

9

incoming messages should be placed. This flexibility allows Portals to support both traditional one-sided

operations and two-sided send/receive operations.
Portals allows the target to determine whether incoming messages are acceptable. A target process can

choose to accept message operations from any specific process or can choose to ignore message operations

from any specific process.

1.6 Zero Copy, OS Bypass and Application Bypass

In traditional system architectures, network packets arrive at the network interface card (NIC), are passed

through one or more protocol layers in the operating system, and eventually copied into the address space of
the application. As network bandwidth began to approach memory copy rates, reduction of memory copies

became a critical concern. This concern lead to the development of zero-copy message passing protocols in
which message copies are eliminated or pipelined to avoid the loss of bandwidth.

A typical zero-copy protocol has the NIC generate an interrupt for the CPU when a message arrives from

the network. The interrupt handler then controls the transfer of the incoming message into the address space
of the appropriate application. The interrupt latency, the time from the initiation of an interrupt until the
interrupt handler is running, is fairIy significant. To avoid this cost, some modern NICS have processors that
can be programmed to implement part of a message passing protocol. Given a properly designed protocol,
it is possible to program the NIC to control the transfer of incoming messages, without needing to interrupt

the CPU. Because thk strategy does not need to involve the OS on every message transfer, it is frequently
called “OS Bypass.” ST [12], VIA [3], FM [5], GM [9], and Portals are examples of OS Bypass protocols.

Many protocols that support OS Bypass still require that the application actively participate in the
protocol to ensure progress. As an example, the long message protocol of PM requires that the application

receive and reply to a request to put or get a long message. Thk complicates the runtime environment,
requiring a thread to process incoming requests, and significantly increases the latency required to initiate

a long message protocol. The Portals message passing protocol does not require activity on the part of the
application to ensure progress. We use the term “Application Bypass” to refer to this aspect of the Portals
protocol.

2 An Overview of the Portals API

In this section, we give a conceptual overview of the Portals API. The goal is to provide a context for
understanding the detailed description of the API presented in the next section.

2.1 Data Movement

A portal represents an opening in the address space of a process. Other processes can use a portal to read
(get) or write (put) the memory associated with the portal. Every data movement operation involves two
processes, the initiator and the target. The initiator is the process that initiates the data movement

operation. The target is the process that responds to the operation by either accepting the data for a put

operation, or replying with the data for a get operation.
In this discussion, activities attributed to a process may refer to activities that are actually performed by

the process or on behalf of the process. The inclusiveness of our terminology is important in the context of
application bypass. In particular, when we note that the target sends a reply in the case of a get operation,
it is possible that reply will be generated by another component in the system, bypassing the application.

Figures 1 and 2 present graphical interpretations of the Portal data movement operations: put and get.
In the case of a put operation, the initiator sends a put request message containing the data to the target.

The target translates the portal addressing information in the request using its local portal structures. When
the request has been processed, the target optionally sends an acknowledgement message.

In the case of a get operation, the initiator sends a get request to the target. As with the put operation,
the target translates the portal addressing information in the request using its local portal structures. Once
it has translated the portal addressing information, the target sends a reply that includes the requested data.

10

Initiator Target

Data
Transmission

.1

Portal
Translation

___ --
<-- ------- Optional

Acknowledgement

Figure 1: Portal Put (Send)

Initiator Target
~ ~

Request

J

Portal
Translation

Transmission

I I

Figure2: Portal Get

We should note that portal address translations are only performed on nodes that respond to opera-
tions initiated by other nodes. Acknowledgements and replies to get operations bypass the portals address
translation structures.

2.2 Portal Addressing

One-sided data movement models (e.g., shmem [4], ST [12], MPI-2 [8]) typically use a triple to address
memory on a remote node. This triple consists of a process id, memory buffer id, and offset. The process id
identifies the target process, the memory buffer id specifies the region of memory to be used for the operation,
and the offset specifies an offset within the memory buffer.

In addition to the standard address components (process id, memory buffer id, and offset), a portal address
includes a set of match bits. This addressing model is appropriate for supporting one-sided operations as
well as traditional two-sided message passing operations. Specifically, the Portals API provides the flexibility
needed for an efficient implementation of MPI-1, which defines two-sided operations with one-sided semantics.

Figure 3 presents a graphical representation of the structures used by a target in the interpretation of a

portal address. The process id is used to route the message to the appropriate node and is not reflected in
this diagram. The memory buffer id, called the portal id, is used as an index into the portal table. Each
element of the portals table identifies a match list. Each element of the match list specifies two bit patterns:
a set of “don’t care” bits, and a set of “must match” bits. In addition to the two sets of match bits, each
match list element has a list of memory descriptors. Each memory descriptor identifies a memory region

and an optional event queue. The memory region specifies the memory to be used in the operation and the

event queue is used to record information about these operations.
Figure 4 illustrates the steps involved in translating a portal address, starting from the first element in a

match list. If the match criteria specified in the match list entry are met and the first entry in the memory
descriptor list accepts the operation 1, the operation (put or get) is performed using the memory region

1Memory descriptors can reject operations because the threshold has been exceeded or due to insufficient space in the
memory region, see Section 3.7

11

Portal Table Memory EventQueue 1

rl Match List ‘s:s
I

! Application Space

Figure 3: Portal Addressing Structures

specified in the memory descriptor. (Note, while the match list is searched for a matching entry, only the
first element in the memory descriptor list is considered for the operation.) If the memory descriptor specifies
that it is to be unlinked after a successful operation, it is unlinked from the list of memory descriptors. Next,
if the memory descriptor is unlinked and this empties the memory descriptor list, the match entry will also be
unlinked if its unlink flag has been set. Finally, if there is an event queue specified in the memory descriptor,
the operation is logged in the event queue.

Memory Desc

Perform
Oueration

K-’--7v.... Ir——l Ioyes

Unlink
Match Enuy H

Record
Event

yes

Event no

Oueue?
LExit

\ 1 x.’’”

Figure 4: Portals Address Translation

If the match criteria specified in the match list entry are not met or the memory descriptor associated
with the match list entry rejects the operation, the address translation continues with the next match list
entry. If the end of the match list has been reached, the address translation is aborted and the incoming
requested is discarded.

2.3 Access Control

A process can control access to its portals using an access control list. Each entry in the access control list
specifies a process id and a portal table index. The access control list is actually an array of entries. Each
incoming request includes an index into the access control list (i.e., a “cookie” or hint). If the id of the
process issuing the request doesn’t match the id specified in the access control list entry or the portal table
index specified in the request doesn’t match the portal table index specified in the access control list entry,
the request is rejected.

?.2

Process identifiers and portal table indexes may include wildcard values to increase the flexibility of this

mechanism. When the access control list is initialized, the entry with index zero enables access to all portals
for all processes in the same application and the entry with index one enables access to all portals for all

system processes. The remaining entries are set to disable all other access.
Two aspects of this design merit further discussion. First, the model assumes that the information in a

message header, the sender’s id in particular, is trustworthy. In most contexts, we assume that the entity
that constructs the header is trustworthy; however, using cryptographic techniques, we could easily devise a
protocol that would ensure the authenticity of the sender.

Second, because the access check is performed by the receiver, it is possible that a malicious process will

generate thousands of messages that wiIl be denied by the receiver. This could saturate the network and/or
the receiver, resulting in a denial of service attack. Moving the check to the sender using capabilities, would
remove the potential for this form of attack. However, the solution introduces the complexities of capability

management (exchange of capabilities, revocation, protections, etc).

3 The Portals API

3.1 Naming Conventions

The Portals API defines two types of entities: functions and types. Function always start with Ptl and use
mixed upper and lower case. When used in the body of this report, function names appear in italic face, e.g.,
PtlInit. The functions associated with an object type will have names that start with Ptl, followed by the
two letter object type code shown in Table 1. As an example, the function PtlEQAlloc allocates resources
for an event queue.

Table 1: Object Type Codes

xx Name Section
EQ Event Queue 3.8
MD Memory Descriptor 3.7
ME Match Entry 3.6
NI Network Interface 3.5

Type names use lower case with underscores to separate words. Each type name starts with ptl. and ends
with _t. When used in the body of this report, type names appear in a fixed font, e.g., ptl_match_bits_t.

Names for constants use upper case with underscores to separate words. Each constant name starts with
PTL_. When used in the body of thk report, type names appear in a fixed font, e.g., PTL_OK.

3.2 Base Types

The Portals API defines a variety of base types. These types represent a simple renaming of the base types
provided by the C programming language. In most cases these new type names have been introduced to
improve type safety and to avoid issues arising from differences in representation sizes (e.g., 16-bit or 32-bit
integers).

3.2.1 Sizes

The type pt l_size_t is an unsigned integral type used for representing sizes.

3.2.2 Handles

Objects maintained by the API are accessed through handIes. HandIe types have names of the form
pt l_lmndle_zz-t, where xx is one of the two letter object type codes shown in Table 1. For example,
the type ptl_handle_ni _t is used for network interface handles.

13

Each type of object is given a unique handle type to enhance type checking. The type, ptl_he.ndle_any_t,

can be used when a generic handle is needed. Every handle value can be converted into a value of type
ptl_handle_any_t without loss of information.

Handles are not simple values. Every portals object is associated with a specific network interface and

an identifier for this interface (along with an object identifier) is part of the handle for the object.

3.2.3 Indexes

The types pt l_pt _index_t and pt l.ac_index_t are integral types used for representing portal table indexes
and access control tables indexes, respectively.

3.2.4 Match Bits

The type ptl_mat ch_bit s_t is capable of holding unsigned 64 bit integer values.

3.2.5 Network Interfaces

The type ptl_interf ace_t is an integral type used for identifying different network interfaces. Users will

need to consult the local documentation to determine appropriate values for the interfaces available. The
special value PTL_ IFACE_DEFAULTidentifies the default interface.

3.2.6 Identifiers

The type pt l_id_t is an integral type used for representing group ids, node ids, process ids, and rank ids.

3.2.7 Status Registers

Each network interface maintains an array of status registers that can be accessed using the PtlNIStatus
function (see Section 3.5.4). The type pt l_sr_index_t defines the types of indexes that can be used to
access the status registers. The only index defined for all implementations is PTL_SR_DROP_COUNTwhich
identifies the status register that counts the dropped requests for the interface. Other indexes (and registers)
may be defined by the implementation.

The type ptl_sr_value_t defines the types of values held in status registers. This is a signed integer
type. The size is implementation dependent, but must be at least 32 bits.

3.3 Initialization and Cleanup

The Portals API includes a function, PtlInit, to initialize the library and a function, PtlFinz, to cleanup after
the application is done using the library.

3.3.1 PtlInit

int PtlInit (void

The Ptllnit function

);

initiahzes the Portals library. This function should be called by all processes. in an

application before calling any of the functions defined by the Portal API. This function should be called once
and only once during initialization by each process in a parallel job.

Return Codes

PTL_OK Indicates success.

PTL_FAIL Indicates an error during initialization.

Implementation Notes

Thk operation may be implemented as a collective operation involving all of the processes in a group.

14

3.3.2 PtlFini

void PtlFini(void);

The PtlFini function cleansup after the Portals library is nolonger needed by aprocess. After thk function
is called, calls toanyofthe functions defmedby the Portal APIoruse of the structures set up by the Portals
API will result in undefined behavior. Thk function should be called once and only once during termination

by each process in a parallel job. Typically, this function will be called in the exit sequence of each process.

3.4 Process Identification

Processes that use the Portals API, can be identified using a node id and process id. Every node in the

computing system has a unique node identifier and every process running on a node has a unique process
identifier. As such, any process in the computing system can be identified by its node id and process id.
Processes can also be identified using a group id and rank id. When a portals job is loaded, it is given a

unique group identifier. In addition, each process in the job is assigned a unique rank id starting at zero.
The Portals API defines a type, ptl_process_id_t for representing process ids using either or both of

the schemes, a function, PtlGetId, which can be used to obtain the id of the current process, and a function,
PtlTransId, to translate addresses between the two schemes.

3.4.1 The Process Id Type

typedef enum { PTL_ADDR_NID, PTL_ADDR_GID, PTL.ADDR_BOTH } ptl_addr_kind_t;

typedef struct {
ptl_addr_kind_t addr_kind; /* kind of address pair */
ptl_id-t nid, pid; /* node id, process id */

ptl_id_t gid, rid; /* group id, rank id */
} ptl_process-id_t;

The ptl_process_id-t type uses a tag and up to four identifiers to represent a process id. Whenever a
process id is filled in by the interface (e.g., by PtlGetId or when an event is recorded), the addr_kind member
is set to PTL_ADDR_BOTH, and all four of the four remaining members will be set to the appropriate values.

When a process id is passed to an operation in the PortaIs API (e.g., PtlGetId or PtlGet), the addr_kind
member must be PTL_ADDR_NID or PTL_ADDR-GID and the nid and pid or gid and rid members must be
filled in, respectively.

3.4.2 PtlGetId

int PtlGet Id(ptl_process_id_t* id, ptl_id_t* gsize) ;

Return Codes

PTL_OK Indicates success.

PTL_NOINIT Irdcates that the Portals API has not been successfully initialized.

PTL_SEGV Indicates that id or gsize is not a legal address.

Arguments

id output On successful return, this location will hold the id for the calling process.
gsize output On successful return, this location will hold the number of processes in the

process group for thk process.

Implementation Notes

Notice that process identifiers are independent of the network interface(s) used by the process.

15

3.4.3 PtlTransId

int PtlTrans Id(ptl_process_id_t* id);

Return Codes

PTL_OK Indicates success.

PTL.IYOIIYIT Indicates that the Portals API has not been successfully initialized.

PTL_SEGV Indicates that id is not a legal address.

PTL_ADDR_UNKNOWNIndicates that the address could not be translated.

Arguments

id input A pointer to the process address to be translated. Thk address should be

expressed using nid, pid or gid, rid addressing, i.e., addr_kind should be
PTL_ADDR_NID or PTL_ADDR_GID.

id output On successful return, this location will hold a process address with all four
address members filled in, i.e., addr_kind will be PTL_ADDR_BOTH.

Implementation Notes

This operation should be implemented as a local operation. That is, the API should not query other nodes
to determine the translation for a process address. As a minimum, the API should be able to translate any

addresses for processes in the same group as the calling process. Other translations can be provided at the
discretion of the implementor. For example, an implementation may maintain a cache of recent addresses
that it has seen. (Every incoming message includes all four addresses for the sending process.)

3.5 Network Interfaces

The Portals API supports the use of multiple network interfaces. However, each interface is treated as
an independent entity. Combining interfaces (e.g., “bonding” to create a higher bandwidth connection)
must be implemented by the application or embedded in the underlying network. Interfaces are treated as
independent entities to make it easier to cache information on individual network interface cards.

Once initialized, each interface provides a portal table, an access control table, and a collection of status
registers. See Section 3.6 for a discussion of updating portal table entries using the PtlMEAttach function.
See Section 3.9 for a discussion of the initialization and updating of entries in the access control table. See

Section 3.5.4 for a discussion of the PtlNIStatus function which can be used to determine the value of a
status register.

Every other type of Portal object (e.g., memory descriptor, event queue, or match entry) is associated
with a specific network interface. The association to a network interface is established when the object is

created and is encoded in the handle for the object.
Each network interface is initialized and shutdown independently. The initialization routine, PtlNIInit,

returns a handle for an interface object which is used in all subsequent portal operations. The PtlNIFini

function is used to shutdown an interface and release any resources that are associated with the interface.
The Portals API also defines the PtlNIStatus function to query the status registers for a network interface,

the PtlNIDist function to determine the “distance” to another process, and the PtlNIHandle function to
determine the network interface that an object is associated with.

3.5.1 PtlNIInit

int PtlNIIn~t (ptl_interf ace_t interface,
ptl.pt_index_t ptl-size,
ptl_ac_index_t acl. size,

ptl-handle_ni_t* handle) ;

16

The PttNIInit function is used to initialized the Portals API for a network interface. This function must be

called before any other operations that apply to the interface. It is an error to initialize a network interface
more than once in the same process.

Return Codes

PTL.OK

PTL_NOINIT

PTL_INIT_DUP

PTL_INIT_INV

PTL_NOSPACE

PTL_INV_PSIZE

PTL_INV_ASIZE

PTL_SEGV

Indicates success.

Indicates that the Portals API has not been successfully initialized.

Indicates a duplicate initializationof interface.

Indicates that interf aceisnotavahd network interface.

Indicates that there is insufficient memory to initialize the interface.

Indicates that ptl_size is invalid.

Indicates that acl_size is invalid.

Indicates that handle is not a legal address.

Arguments

interface input Identifies thenetwork inter face to reinitialized. (See section 3.2.5 fora

discussion of values used to identify network inter faces.)
ptl_size input Specifies the number of entries in the portal table for this interface.
acl_size input Specifies thesize of theaccess control hstforthls intefiace. (See section 3.9

for more information about access control lists.)
handle output On successful return, this location will hold a handle for the interface.

Implementation Notes

The initialization routine is a local operation and should not involve communication with any other nodes.

3.5.2 PtlNIFini

int PtlNIFini(ptl_handle_ni_t interface);

The PtlNIFini function isusedto release theresources allocated foranetwork interface. Oncethe PtlNIFini
operation has been started, the results of pending API operations (e.g., operations initiated by another
thread) for this interface are undefined. Similarly, the effects of incoming operations (puts and gets) or
return values (acknowledgements and replies) for this interface are undefined.

Return Codes

PTL.OK Lndlcates success.

PTL_NOINIT Indicates that the Portals API has not been successfully initialized.

PTL_INV_NI Indicates that inter face is not avalidnetwork interface handle.

Arguments

interface input A handle fortheinterface to shutdown.

3.5.3 PtlNIBarrier

int PtlNIStatus(ptl_handle_ni_t interface);

17

The PtlNIBawier function blocks the calling process until allprocesses in the process group have invoked

the PtlNIBarrier function forthe specified interface.

Return Codes

PTL_OK Indicates success.

PTL.NIJINIT Indicates that the Portals API has not been successfully initialized.

PTL_INV_NI Indicates that interface is not a valid network interface handle.

Arguments

interface input A handle for the interface to use.

3.5.4 PtlNIStatus

int PtlNIStatus(ptl_handle_ni_t interface,
ptl.sr_index_t register,

ptl_sr_value_t* status);

The PtlNIStatus function returns thevdue ofastatus register forthe specified interface. (See section 3.2.7
for more information on status register indexes and status register values.)

Return Codes

PTL_OK Indicates success.

PTL_NOINIT Indicates that the Portals API has not been successfully initialized.

“PTL_INV_IiI Indicates that interf aceisnot avalid network interface handle.

PTL_INV_SR-INDX Indicates that regist erisnot avalid status register.

PTL_SEGV Indicates that status is not a legal address.

Arguments

interface input
register input
status output

Implementation Notes

Ahandle for the interface touse.
Anindex for the status registerto read.

On successful return, this location will hold the current value of the status
register.

The only status register that must be defined is a drop count register (PTL_SR_DROP_COUNT).Implementations
may define additional status registers. Identifiers for the indexes associated with these registers should start
with the prefix PTL_SR_.

3.5.5 PtlPJIDist

int PtlNIDist (ptl_hendle_ni_t interface,

ptl_process_id_t process,
double* distance);

The PtlNIDist function returns the distance to another process using the specified interface. Distances are

ordy defined relative to an interface. Distance comparisons between different interfaces on the same node
may be meaningless.

Return Codes

PTL_OK Indicates success.

PTL_NOINIT Indicates that

PTL_INV_NI Indicates that

PTL_INV_PROC Indicates that

PTL_SEGV Indicates that

the Portals API has not been successfully initialized.

interface is not a valid network interface handle.

process is not a valid process identifier.

dist ante is not a legal address.

18

Arguments

interface input A handle for the interface to use.

process input An identifier for the process whose distance is being requested.
distance output On successful return, this location will hold the distance to the remote process.

Implementation Notes

This function should return a static measure of distance. Examples include minimum latency, the inverse of

available bandwidth, or the number of switches between the two endpoints.

3.5.6 PtlNIHandle

int PtlNIHandle (pt l.handle.any.t handle,
ptl_handle_ni_t* interface) ;

The PtlIWRandle function returns a handle for the network interface that the object identified by handle
is associated with. If the object identified by handle is a network interface, this function returns the same
value it is passed.

Return Codes

PTL_OK Indicates success.

PTL_NOINIT Indicates that the Portals API has not been successfully initialized.

PTL_INV_HANDLE Indicates that handle is not a valid handle.

PTL_SEGV Indicates that interface is not a legal address.

Arguments

handle input A handle for the object.
int erf ace output On successful return, thk

associated with handle.

location will hold a handle for the network interface

Implementation Notes

Every handle should encode the network interface and the object id relative to this handle. Both are
presumably encoded using integer values.

3.6 Match Entries and Match Lists

A match list is a chain of match entries. Each match entry includes a list of memory descriptors and a set of
match criteria. The match criteria can be used to reject incoming requests based on process id and/or the
match bits provided in the request. A match list is created using the PtlMEAttach function which creates
a match list consisting of a single match entry, attaches the match list to the specified portal index, and
returns a handle for the match entry. Match entries can be dynamically inserted and removed from a match
list using the PtLWEInsert and PthW.EUnlink functions.

3.6.1 PtlMEAttach

typedef enum { PTL_RETAIN, PTL_UNLINK } ptl_unlink_t;

int PtlMEAttach (ptl_handle_ni_t interf ace,

pt l_pt_index_t index,
pt l_process_id_t mat chid,
ptl_match_bits_t match_bits,
ptl_match_bits_t ignorebits,

19

ptl.unlink.t unlink,

ptl_handle_me_t* handle);

Values of the type pt l_unlink_t are used to control whether an item is unlinked from a list. The value
PTL_UNLINKenables unlinking. The value PTL_RETAIN disables unlinking.

The PtlMEAttach function creates a match list consisting of a single entry and attaches thk list to the
portal table for interface. If the portal table already has a match list attached to the specified index, the

existing list (including any attached memory descriptor lists) is destroyed and the newly created list is used
in its place.

Return Codes

PTL_DK Indicates success.

PTL.NOINIT Indicates that the Portals API has not been successfully initialized.

PTL_INV_PTINDEX Indicates that index is not a valid portal table index.

PTL_INV_PROC Indicates that mat chid is not a valid process identifier.

PTL_NOSPACE Indicates that there is insufficient memory to allocate the match entry.

PTL.SEGV Indicates that handle is not a legal address.

Arguments

interface input A handle for the interface to use.

index input The portal table index where the match list should be attached.

mat chid input Specifies the match criteria for the process id of the requestor. The constant
PTL_ID_ANY can be used to wildcard any of the ids in the ptl_process_id_t
structure.

znatch_bits, input Specify the match criteria to apply to the match bits in the incoming request.
ignorebits The ignorebits are used to mask out insignificant bits in the incoming

match bits. The resulting bits are then compared to the match entry’s match

bits to determine if the incoming request meets the match criteria.
unlink input Indicates the match list entry should be unlinked when the last memory

descriptor associated with this match entry is unlinked. (Note, the check for
unlinking a match entry only occurs when a memory descriptor is unlinked
and this leaves the memory descriptor list empty.)

handle output On successful return, this location will hold a handle for the newly created
match entry.

3.6.2 PtlMEInsert

typedef enum { PTL_INS_BEFORE, PTL_INS_AFTER } ptl_ins_pos_t;

int PtlMEInsert (ptl_process_id_t mat chid,
ptl_match-bits_t match_bits,

ptl_match_bits_t ignorebits,
ptl.unlink_t unlink,
ptl_ins-pos_t position,

ptl_handle_me_t current,
ptl-handle_me_t* handle);

Values of the type ptl_ins_pos_t are used to control where a new item is inserted in a list. The value
PTL_INS_BEFORE is used to insert the new item before the current item. The value PTL_INS_AFTER is used
to insert the new item after the current item.

The PtlMEInaert function creates a new match entry and inserts this entry into the match list containing
current.

20

Return Codes

PTL_OK

PTL_NOINIT

PTL_INV_PROC

PTL_INV_ME

PTL_ML_TOOLONG

PTL_NOSPACE

PTL_SEGV

Indicates success.

Indicates that the Portals APIhas not been successfully initialized.

Indicates that mat chid isnot avalid process identifier.

Indicates that current isnotavaIid match entry handle.

Indicates that theresulting match list is too long. Themaximum length for a match
list is definedby the interface.

Indicates that there is insufficient memory to allocate the match entry.

Indicates that handle is not a legal address.

Arguments

mat chid, input See the discussion for PtlMEAttach.
match_bits,

ignorebits,
unlink
position input Indicates whether the new match entry should be inserted before or after the

current entry.
current input Ahandle fora match entry. Thenewmatch entry will reinserted

immediately before or immediately after this match entry.
handle input See the discussion for PtlMEAttach.

3.6.3 PtlMEUnlink

fint PtlMEUnlink(ptl_handle_me-t entry);

The PtlMEUnlink function can be used to unlink a match entry from a match list. This operation also
releases any resources associated with the match entry (including the list of associated memory descriptors).
It is an error to use the match entry handle after calling PtlM13Unknk.

Return Codes

PTL.OK Indicates success.

PTLJJOINIT Indicates that the Portals API has not been successfully initialized.

PTL_INV_ME Indicates that entry is not a vahd match entry handle.

Arguments

entry input A handle for the match entry to be unlinked.

3.7 Memory Descriptors

A memory descriptor contains information about a region of an application process’ memory and an event

queue where information about the operations performed on the memory descriptor are recorded. The Portals
API provides three operations to create memory descriptors: PtlMDAttach, PtUIEInsert, and PtlMEBind;

an operation to update a memory descriptor, PtlMD Update; and an operation to unlink and release the
resources associated with a memory descriptor, PtlMDUnlink.

3.7.1 The Memory Descriptor Type

21

typedef struct {
void* start ;
ptl_size_t length;
int threshold;

unsigned int options;

void* user_ptr;

ptl_hsndle_eq_t eventq;
} ptl_md_t;

The ptl.md_t type defines the application view of a memory descriptor. Values of this type are usedto
initialize and update the memory descriptors.

Members

start, length Specifythe memory region associated with the memory descriptor. The start member
specifies the starting address for the memory region and the length member speci-
fies the length of the region. The startmember can be NULL provided that the
length member is zero. (Zero length buffers are useful to record events.) There are

no alignment restrictions on the starting address or the length of the region; although,
unaligned messages may be slower (i.e., lower bandwidth and/or longer latency) on

some implement ations.

threshold Specifies the maximum number of remote put and get operations that can be performed
on the memory descriptor. In the usual case, the threshold value is decremented for
each put or get operation on the memory descriptor. When the threshold value is zero,
the memory descriptor is inactive, and does not respond to operations. A memory de-
scriptor can have an initial threshold value of zero to allow for manipulation of an inac-
tive memory descriptor by the local process. A threshold value of PTL_MD_THRESH_INF
indicates that there is no bound on the number of operations that may be applied to
a memory descriptor. Note that local operations (e.g., PtlMD Update) and reply oper-
ations not applied to the threshold count.

Specifies the behavior of the memory descriptor. There are five options that can be
selected: enable put operations (yes or no), enable get operations (yes or no), offset
management (local or remote), message truncation (yes or no), and acknowledgement

opt ions

Specifies that the memory descriptor will respond to
put operations. By default, memory descriptors reject
put operations.

Specifies that the memory descriptor will respond to
get operations. By default, memory descriptors reject
get operations.

(yes jr no). Values for this argume~t can be constructed using a bitwise or-of the
following values:

PTL_MD_OP_PUT

PTL_MD.OP_GET

PTL_MD.MANAGE_REMDTESpecifies that the offset used in accessing the mem-

ory region is provided by the incoming request. By
default, the offset is maintained locally. When the off-
set is maintained locally, the offset is incremented by
the length of the request so that the next operation
will access the next part of the memory region.

PTL_MD_TRUNCATE Specifies that the length provided in the incoming re-
quest can be reduced to match the memory available
in the region. (The memory available in a memory re-
gion is determined by subtracting the offset from the
length of the memory region.) By default, if the length

in the incoming operation is greater than the amount
of memory available, the operation is rejected.

PTL_MD_ACK-DISABLE Specifies that an acknowledgement should not be sent
for incoming put operations, even if requested. By

default, acknowledgements are sent for put operations
that request an acknowledgement. Acknowledgements

22

user.ptr

eventq

are never sent for get operations. The value sent in
thereply serves as an implicit acknowledgement.

Note: It is not considered an error to have a memory descriptor that does not respond

to either put or get operations: Every memory descriptor responds to reply operations.
Nor is it considered an error to have a memory descriptor that responds to both put

and get operations.

A user-specified value that is associated with the memory descriptor. The value does

not need to be a pointer, but must fit in the space used by a pointer. This value (along
with other values) is recorded in events associated with operations on thk memory

descriptor.2

A handle for the event queue used to log the operations performed on the memo-

ry region. If this argument is PT1.EQ.NONE, operations performed on this memory

descriptor are not logged.

3.7.2 PtlMDAttach

int Pt lMDAtt ach (pt l_handle_me.t
ptl_md_t
ptl.unlink.t
pt l_handle_md-t*

mat ch,
mem-des c,
unlink,
handle) ;

The PtlMDAttach operation is used to create a memory descriptor list consisting of a single memory de-

scriptor and attach this list to a match entry. If this match entry already has a list of memory descriptors,
the existing list is destroyed and the newly created list is used in its place.

Return Codes

PTL_OK Indicates success.

PTL_NOINIT Indicates that the Portals API has not been successfully initialized.

PTL_INV_ME Indicates that mat ch is not a valid match entry handle.

PTL_ILL_MD Indicates that mem_desc is not a legal memory descriptor. This may happen because
the memory region defined in mem_desc is invalid or because the network interface
associated with the eventq in mem_desc is not the same as the network interface

associated with mat ch.

PTL_NOSPACE Indicates that there is insufficient memory to allocate the memory descriptor.

PTL_SEGV Indicates that handle is not a legal address.

2TYin~ the memory descriptor t,o a user-definedvalue can be useful when multipie memory descriptor share the same event
queue or when the memory descriptor needs to be associated with a data structure maintained by the application. For example,
an MPI implementation can set the user-ptr argument to the value of an MPI Request. Thk direct association allows for
processing of memory descriptor’s by the MPI implementation without a table lookup or a search for the appropriate MPI
Request.

23

Arguments

mat ch

mem.desc

unlink

handle

input

input

input

output

A handle for the match entry that the memory descriptor will be associated
with.

Provides initial values for the application visible parts of a memory descriptor. “

Other than its use for initialization, there is no linkage between this structure
and the memory descriptor maintained by the API.
A flag to indicate whether the memory descriptor is unlinked when its

threshold drops to zero. (Note, the check for unlinking a memory descriptor
only occurs when the threshold transitions from one to zero when responding
to a remote get or put operation. If the threshold is set to zero during

initialization or using PtlMD Update, the memory descriptor is not unlinked.)

On successful return, this Iocation will hold a handle for the newly created
memory descriptor. The handle argument can be NULL, in which case the
handle will not be returned3.

3.7.3 PtlMDInsert

int PtlMDInsert (ptl_md_t mem_des c,

pt l_unlink.t unlink,
ptl_ins_pos_t position,

pt l_handle_md_t current,
pt l_handle_md_t* handle) ;

The PtlMDInsert creates a new memory descriptor and links it into the list containing current.

Return Codes

PTL_OK

PTL_NOINIT

PTL_INV_ME

PTL_ILL_MD

PTL_INV_MD

PTL_NOSPACE

PTL_SEGV
w.

Arguments

mem_desc,
unlink

position

current

handle

Indicates success.

Indicates that the Portals API has not been successfully initiahzed.

Indicates that mat ch is not a valid match entry handle.

Indicates that mem_desc is not a legal memory descriptor (e.g., the memory region

specified by the memory descriptor may be invahd).

hdicates that current is not a valid memory descriptor handle.

Indicates that there is insufficient memory to allocate the memory descriptor.

Indicates that handle is not a legal address.

input

input

input

output

See the discussion for PtlMDAttach.

Indicates whether the new memory descriptor should be inserted before or
after the current entry.

A handle for a memory descriptor. The new memory descriptor will be
inserted immediately before or immediately after this memory descriptor.

See the discussion for PtlMDAttach.

3.7.4 PtlMDBind

int PtlMDAttach(ptl_ handle ni t interface.
ptl_md_t mem.de sc,
ptl_handle_md_t * handle) ;

The Pt2MDBznd operation is used to create a “free floating” memory descriptor, i.e., a memory descriptor
that is not part of the memory descriptor list for a match entry.

24

Return Codes

PTL_OK

PTL.NOINIT

PTL_INV_NI

1 PTL_ILL_MD

PTL.NOSPACE

PTL_SEGV

Arguments

interface

mem_desc

handle

Indicates success.

Indicates that the Portals API has not been successfully initialized.

Indicates thatint erfaceisnot avalid match entry handle.

Indicates that mem_descis nota legal memory descriptor. This may happen because
the memory region defined in mem_desc is invalid or because the network interface
associated with the eventq in mem.desc is not the same as the network interface,
interface.

Indicates that there is insufficient memory to allocate the memory descriptor.

Indicates that handle is not a legal address.

input A handle for the network interface that the memory descriptor will be
associated with.

input Provides initial values for the application visible parts of a memory descriptor.

Other than its use for initialization, there is no linkage between this structure
and the memory descriptor maintained by the API.

output On successful return, this location will hold a handle for the newly created
memory descriptor. The handle argument must be a valid address and cannot
be NULL.

3.7.5 PtlMDUnlink

int Pt lMDUnlink (pt l_handle_md_t mem-desc) ;

The Ptlit4DUnlznk function unlinks the memory descriptor from any memory descriptor list it may be linked
to and releases the resources associated with a memory descriptor. (This function does not free the memory
region associated with the memory descriptor.)

Return Codes

PTL_OK Indicates success.

PTL_NOINIT Indicates that the Portals API has not been successfully initialized.

PTL_INV_MD Indicates that mem_desc is not a valid memory descriptor handle.

Arguments

mem_desc input A handle for the memory descriptor to be released.

3.7.6 PtlMDUpdate

int Pt lMDUpdat e (pt l_handle_md_t mem-desc,
pt l_md_t * old ,

ptl_md_t* new,
ptl_hendle_eq_t testq) ;

The PtlMDUpdate function provides a conditional, atomic update operation for memory descriptors. If old

is not NULL, the current value of the memory descriptor identified by mezn-desc is recorded in the location
identified by old. If new is not NULL the memory descriptor identified by handle will be updated to reflect
the values in the structure pointed to by new if test q has the vaIue PTL_EQ_NONE or if the event queue
identified by t estq is empty.

25

Return Codes

PTL.OK

PTL-NOINIT

PTL_NOUPDATE

PTL.INV_MD

PTL_ILL_MD

PTL_INV_EQ

PTL-SEGV

Arguments

mem_desc

old

new

testq

Indicates success.

Indicates that the Portals API has not been successfully initialized.

Indicates that the update was not performed because testq was not empty.

Indicates that mern_descisnot a valid memory descriptor handle.

Indicates that thevalue pointed to bynew is not alegal memory descriptor (e.g., the
memory region specified by the memory descriptor may be invalid).

Indicates that testq is not a valid event queue handle.

Indicates that new or old is not a legal address.

input A handle for the memory descriptor to update.
output If old is not the value NULL,the current value of the memory descriptor will

be stored in the location identified by old.
input If new is not the value NULL,thk argument provides the new values for the

memory descriptor, if the update is performed.
input A handle for an event queue used to predicate the update. If t estq is equal

to PTL_EC!_NONE,the update is performed unconditionally. Otherwise, the
update is performed if and only if t estq is empty. If the update is not
performed, the function returns the value PTL_NOUPDATE.(Note, the testq
argument does not need to be the same as the event queue associated with the
memory descriptor.)

The conditional update can be”used to-ens&e that the memory descriptor has not changed between the

time it was examined and the time it is updated. In particular, it is needed to support an MPI implementation
where the activity of searching an unexpected message queue and posting a receive must be atomic.

3.8 Events and Event Queues

Event queues are used to log operations performed on memory descriptors. They can also be used to hold

acknowledgements for completed put operations and to note when the data specified in a put operation has
been sent (i.e., when it is safe to reuse the buffer that holds this data). Multiple memory descriptors can
share a single event queue.

In addition to the ptl_&mdle_eq_t type, the Portals API defines two types associated with events: The
ptl-event_kind_t type defines the kinds of events that can be stored in an event queue. The ptl_event_t

type defines a structure that holds the information associated with an event.
The Portals API also provides five functions for dealing with event queues: The PtlEQAlloc function

is used to allocate the API resources needed for an event queue, the PtlEQFree function is used to release
these resources, the PtlEQCount function can be used to obtain the number of events in an event queue, the
PtlEQGet function can be used to get the next event from an event queue, and the PtlEQ Wait function can
be used to block a process (or thread) until an event queue has at least one event.

3.8.1 Kinds of Events

typedef enum {

PTL_EVENT_GET,
PTL_EVENT_PUT,

PTL_EVENT_REPLY,
PTL_EVENT_ACK,
PTL_EVENT_SENT

} ptl_event_kind_t;

The Portals API defines five types of events that can be logged in an event queue:

26

PTL.EVENT.GET

PTL_EVENT_PUT

PTL-EVENT_REPLY

PTL-EVENT_ACK

PTL_EVENT_SENT

3.8.2 The Event

typedef struct {

Aremote getoperation wasperformed onthe memory descriptor. Thisevent islogged

after the reply has been sent by the local node. As such, the process could free the

memory descriptor onceit sees this event.

Aremote putoperation w~performed onthe memory descriptor. Thisevent islogged
after the data (if any) is written into the memory descriptor and after the acknowl-

edgement (if any) has been sent.

A reply has been received forthe memory descriptor. This event islogged after the
data (if any) from the reply has been written into the memory descriptor.

An acknowledgement was received. This event is logged when the acknowledgement is

received

An outgoing buffer was sent (see Section 3.10.1). Thk event is logged after the entire

buffer has been sent and it is safe for the application to reuse the buffer.

Type

pt l_event _kind_t type;

ptl_process_id_t initiator;
ptl-pt_index_t portal;
ptl_match_bits_t match_bits;
ptl_size_t rlength;
ptl_size_t mlength;
ptl_size-t off set;
ptl_md_t mem_desc;

} ptl_event_t;

An event structure includes the following members:
type Indicates the type ofoperation that generated the event.

initiator The id of the initiator (group id, rank id).

port al The portal table index specified in the request.

match.bits Acopyof thematch bits specified in the request. Seesection 3.6 for more information

on match bits.

rlength The length (in bytes) specified in the request.

mlength The length (in bytes) of the data that was manipulated by the operation. Fortrun-
cated operations, the manipulated length will bethenumber of bytes specified by the
memory descriptor (possibly with an offset) operation. For all other operations, the
manipulated length will be the length of the requested operation.

offset Is the displacement (in bytes) into thememory region that the operation used. The

offset can be determined by the operation (see Section 3.10) for a remote managed
memory descriptor, or bythelocal memory descriptor (see Section 3.7).

mem-desc Is a copy of the memory descriptor immediately after the event has been processed.

3.8.3 PtlEQA1loc

int PtlEQAlloc(ptl_handle_ni_t interface,
ptl_size_t count,
ptl_handle_eq_t* handle);

The PtlEQAlloc function isusedto build an event queue.

Return Codes

PTL_OK Indicates success.

PTL_NOINIT Indicates that the Portals API has not been successfully initialized.

27

PTL..INV.NI

PTL_NOSPACE

PTL_SEGV

Arguments

interface
count

handle

Indicates that inter face is not avalidnetwork interface handle.

Indicates that there is insufficient memory to allocate the event queue.

Indicates that handle is not a legal address.

input A handle for the interface that the event queue will be associated with.
input The number of events that can be stored in the event queue.

output On successful return, this location will hold a handle for the newly created
event queue.

3.8.4 PtlEQPree

int PtlEQFree(ptl_handle_eq_t eventq) ;

The PtlEQFree function releases theresources associated with an event queue. This function does not free

the memory region associated with the event queue. It is up to the user to insure that no memory descriptors
are associated with the event queue once it is freed.

Return Codes

PTL_OK Indicates success.

PTL_NOINIT Indicates that the Portals API has not been successfully

PTL_INV_Eq Indicates that eventq is not a valid event queue handle.

Arguments

eventq input A handle for the event queue to be released.

3.8.5 PtlEQCount

int PltEQCount (ptl_handle_eq_t eventq,
ptl_size_t* count) ;

initialized.

The PTLEQCount

Return Codes

PTL.OK

PTL_NOINIT

PTL_INV_EQ

PTL.SEGV

Arguments

function can be used to discover the number events in an event queue.

Indicates success.

Indicates that the Portals API has not been successfully initialized.

Indicates that eventq is not a valid event queue handle.

Indicates that count is not a legal address.

event q input A handle for the event queue.

count output On successful return, this location will hold the number of events in the event
queue.

3.8.6 PtlEQGet

int PltEQGet (ptl_handle_eq_t eventq,
ptl_event_t * event) ;

The PTLEQGet function is a nonblocking function that can be used to get the next event in an event queue.
The event is removed from the queue.

28

Return Codes

PTL.OK Indicates success.

PTL_E&DROPPED Indicates success (i.e., an event is returned) and that at least one event between this

PTL_NOINIT

PTL.EQ.EMPTY

PTL_INV_EQ

PTL.SEGV

Arguments

eventq

event

event and the last event obtained (using PtlEQGet or PtlEQWait] from this event
queue has been dropped due to limited space in the event queue.

Indicates that the Portals API has not been successfully initialized.

Indicates that eventq is empty.

Indicates that eventq is not a valid event queue handle.

Indicates that event is not a legal address.

input A handle for the event queue.

output On successful return, this location will hold the values associated with the
next event in the event queue.

3.8.7 PtlEQWait

int PltEQWait (ptl-handle_eq_t eventq,
pt l_event_t * event) ;

The PTLEQ Wait function can be used to block the calling process (thread) until there is an event in an

event queue. This function also returns the next event in the event queue and removes this event from the
queue. This is the only blocking operation in the Portals 3.0 API.

Return Codes

PTL-OK Indicates success.

PTL_EQ_DROPPED Indicates success (i.e., an event is returned) and that at least one event between this
event and the last event obtained (using PtlEQGet or PtlEQ Wait) from this event
queue has been dropped due to limited space in the event queue.

PTL_NOINIT Indicates that the Portals API has not been successfully initiahzed.

PTL_INV_EQ Indicates that eventq is not a valid event queue handle.

PTL_SEGV Indicates that event is not a legal address. queue handle.

Arguments

event q input A handle for the event queue to wait on. The calling process (thread) will be

blocked until eventq is not empty.
event output On successful return, this location will hold the values associated with the

next event in the event queue.

3.9 The Access control Table

Processes can use the access control table to control which processes are allowed to perform operations on
portal table entries. Each communication interface has a portal table aud an access control table. The
access control table for the default interface contains an entry at index zero that allows all members of the

same group to communicate. Entries in the access control table can be manipulated using the PtlA CEntry
function.

3.9.1 PtlACEntry

int PtlACEntry (ptl_handle_ni_t i-nt erf ace,
pt l_ac-index_t index,

29

ptl.processid.t matchid,
ptl_pt_index_t portal);

The PtlACEntry function canbe used to updatean entry in the access control table for an interface.

Return Codes

PTL_OK Indicates success.

PTL_NOINIT Indicates that the Portals API has not been successfully initialized.

PTL_INV_NI Indicates that interface is not a vdld network interface handle.

PTL_AC_INV-INDEX Indicates that index is not avalidaccess control table index.

PTL_INV_PROC Indicates that mat chid isnot avalid process identifier.

PTL_PT_INV-INDEX Indicates that portal isnota vdldportal table index.

Arguments

interface input Identifies the interface to use.

index input The index of the entry in the access control table to update.

mat chid input Identifies the process(es) that areallowed to perform operations. The value
PTL_ID_ANY can be used to wildcard either or both components of the process
identifier.

portal input Identifies the portal index(es) that can be used. The value PTL_PT_INDEX_ANY
can be used to wildcard the portal index.

3.10 Data Movement Operations

The Portals .4PI provides two data movement operations: PtlPut and PtlGet.

3.10.1 PtlPut

typedef enum { PTL_ACK_REQ, PTL_NOACK_REQ } ptl_ack_req_t;

int PtlPut(ptl_handle_?nd_t mem_desc,
ptl_ack_req_t ack_req,
ptl-process_id_t target,
ptl_pt_index_t port al,
ptl_ac_index_t cookie,
ptl-match_bits_t match_bits,
ptl-size_t offset);

Values of the type ptl_ack_req_t are used to control whether an acknowledgement shouldbe sent when
the operation completes (i.e., when the data has been written to a memory descriptor of the target pro-
cess). The value PTL_ACK_REQ requests an acknowledgement, the value PTL_NOACK_REQrequests that no

acknowledgement should degenerated.
The PtlPutfunction initiates anasynchronous put operation. There aretwosignificant events associated

with a put operation: completion of the send by the local node (PTL_EVENT_SENT) and the receipt of

an acknowledgement (PTL_EVENT_ACK) indicating that the operation was accepted by the target. These
events will be logged in the event queue associated with the memory descriptor (mem_desc) used in the put
operation. Using a memory descriptor that does not have an associated event queue results in these events
being discarded. Inthiscase, the application must have another mechanism (e.g., ahigher level protocol)
for determining when it is safe to modify the memory region associated with the memory descriptor.

Return Codes

PTL_OK Indicates success.

30

PTL.NIJINIT Indicates that the Portals API has not been successfully initialized.

PTL_INV_MD

PTL_INV_PROC

Arguments

mem.desc

ack_req

target

portal
cookie

match-bits
offset

Indicates that mem_desc is not a valid memory descriptor.

Indicates that target is not a valid process id.

input

input

3.10.2 PtlGet

input

input
input
input

input

A handle for the memory descriptor that describes the memory to be sent. If

the memory descriptor has an event queue associated with it, it will be used

to record an event when the message has been sent (PTL_EVENT_SENT).

Controls whether an acknowledgement event is requested. Acknowledgements
are only sent when they are requested by the initiating process and the
memory descriptor has an event queue and the target memory descriptor

enables them.
A process id for the target process.

The index in the remote portal table.
The index into the access control table of the target process.

The match bits to use for message selection at the target process.
The offset into the target memory descriptor (only used when the target
memory descriptor has the PTL_MD_MANAGE_REMOTEoption set).

int PtlGet(ptl_handle_md_t
ptl_process_id_t
ptl_pt_index_t
ptl.ac_index_t
ptl_match_bits_t
ptl_size_t

mem_desc,
target,
portal,
cookie,
match_bits,
offset);

The PtlGet function initiates aremote read operation.

Return Codes

PTL_OK

PTL_NOINIT

PTL_INV_MD

PTL_INV.PROC

Arguments

mem_desc

target

portal
cookie

match_bits

offset

Indicates

Indicates

Indicates

Indicates

success.

that the Portals APIhas not been successfully initialized.

that mem_desc is notavahd memory descriptor.

that target isnot avalid processed.

input A handle for the memory descriptor that describes the memory into which the
requested data will be received. The memory descriptor can have an event

queue associated with it to record events, such as when the message has been
received (PTL_EVENT_REPLY).

input A process id for the target process.
input The index in the remote portal table.
input The index into the access control table of the target process.
input The match bits to use for message selection at the target process.
input The offset into the target memory descriptor (ignored unless the target

memory descriptor hasthe PTL_MD_MANAGE_REMOTEoption set).

3.11 Summary

Weconclude this section bysummarizing thenmes introduced bythe Portals 3.0 API. We start by sum-
marizing the names of the types introduced by the API. This is followed by a summary of the functions

31

introduced by the API. Which is followed by a summary of the function return codes. Finally, we conclude

with a summary of the other constant values introduced by the API.
Table 2 presents a summary of the types defined by the Portals API. The first column in this table gives

the type name, the second column gives a brief description of the type, the third column identifies the section

where the type is defined, and the fourth column lists the functions that have arguments of this type.

Table 2: Types Defined by the Portals 3.0 API

ptl.ac.index.t
ptl_ack_req_t
ptl_addr_kind_t
ptl_event_kind_t
ptl_event _t
ptl_handle_any_t
pt l_handle_eq_t

ptl_handle_md_t

ptl_handle_me_t

pt l_handle_ni_t

ptl_id_t
ptl_ins_pos_t
ptl_interface_t
ptl_mat ch_bits_t

ptl_md_t

ptl_process_id_t

ptl_pt_index-t
ptl_size_t

ptl_sr_index-t
ptl_sr_value-t
ptl_unlink-t

Name Meaning Section Functions
indexes for an access control table 3.2.3 PtlACEntry, PtlPut, PtlGet
acknowledgement request types 3.10.1
kinds ofprocess addresses (nid, pidorgid, rid) 3.4.1
kinds of events (get, put, reply, etc.) 3.8.1
information about events 3.8.2
handles for any object 3.2.2
handles for event queues 3.2.2

handles for memory descriptors 3.2.2

handles for match entries 3.2.2

handles for network interfaces 3.2.2

identifiers (nid, pid, gid, rid) 3.2.6
insertion position (before or after) 3.6.2
identifiers for network interfaces 3.2.5
match (and ignore) bits 3.2.4

memory descriptors 3.7.1

process identifiers 3.4.1

indexes for port al tables 3.2.3
sizes 3.2.1

indexes for status registers 3.2.7
values in status registers 3.2.7
unlink options 3.6.1

PtlPut

PtlGetId
PtlEQGet
PtlISIHandle
PtlEQAlloc, PtlEQFree,
PtlEQCount, PtlEQGet,
PtlEQWsit, PtlMDUpdate
PtlMDAlloc, PtlMDUnlink,
PtlMDUpdate, PtlMEAttach,
PtlMEInsert, PtlPut, PtlGet
PtlMEAttach, PtlMEInsert,
PtlMEUnlink
PtlNIInit, PtlNIFini, PtlNIStatus,
PtlNIDist, PtlEQAlloc,
PtlACEntry, PtlPut, PtlGet

PtlMeInsert, PtlMDInsert
PtlNIInit
PtlMEAttach, PtlMEInsert,
PtlPut, PtlGet
PtlMDAttach, PtlMDInsert,
PtlMDUpdate
PtlGetId, PtlNIDist,
PtlMEAttach, PtlACEntry,
PtlPut, PtlGet
PtlMEAttach, PtlACEntry
PtlEQAlloc, PtlEQCount, PtlPut,
PtlGet
PtlNIStatus
PtlNIStatus
PtlMEAttach, PtlMEInsert,
PtlMDAttach, PtlMD1nsert

Table 3 presents a summary of the functions defined by the Portals API. The first column in this table

gives the name for the function, the second column gives a brief description of the operation implemented
by the function, and the third column identifies the section where the function is defined.

Table 4 summarizes the return codes used by functions defined by the Portals API. All of these constants
are integer values. The first column of this table gives the symbolic name for the constant, the second column
gives a brief description of the value, and the third column identifies the functions that can return this value.

Table 5 summarizes the remaining constant values introduced by the Portals API. The first column in
this table presents the symbolic name for the constant, the second column gives a brief description of the
value, the third column identifies the type for the value, and the fourth column identifies the sections in

which the value is mentioned.

32

Table 3: Functions Defined by the Portals 3.0 API

Name Operation Section

PtlACEntry update an entry in an access control table 3.9 –
PtlEQAlloc
PtlEQCount
PtlEQGet
PtlEQFree
PtlEQWait
PtlFini
PtlGet
PtlGetId
PtlInit
PtlMDAttach
PtlMDInsert
PtlMDUnlink
PtlMDUpdate
PtlMEAttach
PtlMEInsert
PtlMEUnlink
PtlNIBarrier
PtlNIDist
PtlNIFini
PtlNIHandle
PtlNIInit
PtlNIStatus
PtlPut

create an event queue
get the number events in an event queue
get the next event from an event queue
release the resources for an event queue
wait for a new event in an event queue
shutdown the Portals API
perform a get operation
get the id for the current process
initialize the Portals API
create a memory descriptor and attach it to a match entry
create a memory descriptor and insert it in a list
remove a memory descriptor from a list and release its resources
update a memory descriptor
create a match entry and attach it to a portal table
create a match entry and insert it in a list
remove a match entry horn a list and release its resources
barrier synchronization for a process group
get the distance to another process
shut down a network interface
get the network interface handle for an object
initialize a network interface
read a network interface status register
perform a put operation

3.8
3.8
3.8
3.8
3.8
3.3
3.10
3.4
3.3
3.7
3.7
3.7
3.7
3.6
3.6
3.6
3.5
3.5
3.5
3.5
3.5
3.5
3.10

4 The Semantics of Message Transmission

The portals API uses four types of messages: put requests, acknowledgements, get requests, and replies. In
this section, we describe the information passed on the wire for each type of message. We also describe how
this information is used to process incoming messages.

4.1 Sending Messages

Table 6 summarizes the information that is transmitted for a put request. The first column provides a

descriptive name for the information, the second column provides the type for this information, the third
column identifies the source of the information, and the fourth column provides additional notes. Most
information that is transmitted is obtained directly from the PtlPut operation. Notice that the handle
for the memory descriptor used in the PtlPut operation is transmitted even though this value cannot be
interpreted by the target. A value of anything other than PTL.MD.NONE, is interpreted as a request for an

acknowledgement.
Table 7 summarizes the information transmitted in an acknowledgement. Most of the information is

simply echoed from the put request. Notice that the initiator and target are obtained directly from the put
request, but are swapped in generating the acknowledgement. The only new piece of information in the

acknowledgement is the manipulated length which is determined as the put request is satisfied.
Table 8 summarizes the information that is transmitted for a get request. Like the information trans-

mitted in a put request, most of the information transmitted in a get request is obtained directly from the
Pt/Get operation. Unlike put requests, get requests do not include the event queue handle. In this case, the
reply is generated whenever the operation succeeds and the memory descriptor must not be unlinked until

the reply is received. As such, there is no advantage to explicitly sending the event queue handle.
Table 9 summarizes the information transmitted in a reply. Like an acknowledgement, most of the

information is simply echoed from the get request. The initiator and target are obtained directly from

33

Table 4: Function Return Codes for the Portals 3.0 API

Name Meaning Rmctions
PTL_AC_INV_INDEX invalid access control table index PtlACEntry
PTL_ADDR_UNKNOWN
PTL_EQ_DROPPED
PTL_EQ_ENPTY
PTL_FAIL
PTL_ILL_!fD

PTL_INIT_DUP
PTL_INIT_INV
PTL_INV_ASIZE
PTL_INV_EQ

PTL.INVJ-IANDLE
PTL_INV_MD
PTL_INV_NE
PTL_INV_NI

PTL_INV_PROC

PTL_INV_PSIZE
PTL_INV_PTINDEX
PTL_INV_REG
PTL_INV_SR_INDX
PTL_ML_TOOLONG
PTL_NOINIT
PTL_NOSPACE

PTL_NOUPDATE
PTL_OK
PTL_SEGV

unknown process address
at least one event has been dropped
no events available in an event queue
error during initialization or cleanup
illegaI memory descriptor values

duplicate initialization of an interface
initialization of an invalid interface
invahd access control table size
invalid event queue handle

invalid handle
invalid memory descriptor handle
invalid match entry handle
invalid network interface handle

invalid process identifier

invalid portal table size
invahd portal table index
invalid status register
invalid status register index
match list too long
uninitialized API
insufficient memory

no update was performed
success
addressing violation

Ptllh.nsId
PtlEQGet, PtlWait
PltEQGet
PtlInit, PtlFini
PtlMDAttach, PtlMDInsert, PtlMDBind,
PtlMDUpdate
PtlNIInit
PtlNIInit
PtlNIInit
PtlMDUpdate, PtlEQFree, PtlEQCount,
PtlEQGet
PtlNIHandle
PtlMDInsert, PtlMDUnlink, PtlMDUpdate
PtlMDAttach, PtlMDInsert
PtlNIBarrier, PtliNIDist, PtlNIFini,
PtlMDBind, PtlEQAlloc
PtlNIDist, PtlMEAttach, PtlMEInsert,
PtlACEntry, PtlPut, PtlGet
PtlNIInit
PtlMEAttach
PtlNIStatus
PtlNIStatus
PtlMEInsert
all, except PtlInit
PtlNIInit, PtlMDAttach, PtlMDInsert,
PtlMDBind, PtlEQAlloc, PtlMEAttach,
PtlMEInsert
PtlMDUpdate
all
PtlGetId, PtlTransId, PtlNIInit,
PtlNIStatus, PtlNIDist, PtlNIHandle,
PtlMEAttach, PtlMEInsert, PtlMDAttach,
PtlMDInsert, PtlMDBind, PtlMDUpdate,
PtlEQAlloc, PtlEQCount, PtlEQGet,
PtlEQWait

34

Table 5: Other Constants Defined by the Portals 3.0 API

Name
PTL_ACK_REQ
PTL_ADDR_BOTH
PTL.ADDR.GID
PTL_ADDR_NID
PTL.EQ_NONE
PTL_EVENT_GET
PTL_EVENT_PUT
PTL_EVENT_REPLY
PTL.EVENT_ACK
PTL_EVENT_SENT
PTL_ID_ANY
PTL_IFACE_DEFAULT
PTL_INS_AFTER
PTL_INS_BEFORE
PTL_MD_ACK_DISABLE
PTL_MD_MANAGE_REl=lOTE
PTL_MD_OP_GET
PTL_MD_OP_PUT
PTL_MD_THRESH_INF
PTL_MD_TRUNCATE
PTL_NOACK_REQ
PTL_PT_INDEX_ANY
PTL_RETAIN
PTL_SR_DROP_COUNT
PTL_UNLINK

Meanin~
request an acknowledgement
nid, pid and gid, rid process address
gid, rid process address
nid, pid process address
a NULL event queue handle
get event
put event
reply event
acknowledgement event
sent event
wildcard for process id fields
default interface
insert after
insert before
a flag to disable acknowledgements
a flag to enable the use of remote offsets
a flag to enable get operations
aflagto enable put operations
infinite threshold for a memory descriptor
aflag to enable truncation ofa request
request no acknowledgement
wildcard for portal indexes
disable unlinking
index for the dropped count register
enable unlinking

Base type
ptl_ack_req_t
ptl_addr_kind_t
ptl_addr_kind_t
ptl_addr.kind-t
ptl_handle_eq_t
ptl_event_kind_t
ptl_event_kind.t
ptl_event-kind_t
ptl_event_kind_t
ptl_event_kind_t
ptl_id_t
ptl-interface_t
ptl_ins_pos_t
ptl_ins-pos_t
int
int
int
int
int
int
ptl_ack_req_t
ptl_pt_index-t
ptl_unlink_t
ptl-sr_index_t
ptl_unlink_t

Section——
3.10.1
3.4.1
3.4.1
3.4.1
3.7.6
3.8.1
3.8.1
3.8.1
3.8.1
3.8.1
3.6.1
3.2.5
3.6.2
3.6.2
3.7.1
3.7.1
3.7.1
3.7.1
3.7.1
3.7.1
3.10.1
3.9.1
3.6.1
3.2.7
3.6.1

Information Type. PtlPut argument Notes
operation int indicates a put request
initiator ptl-process-id_t local information
target ptl-process_id_t target
portal index ptl-pt_index_t portal
cookie ptl-ac-index-t cookie
match bits ptl_match_bits_t match_bits
offset ptl_size_t offset
memory desc ptl-handle_md_t mem_desc no ackif PTL_MD_NONE
length ptl-size_t mem_desc length member
data bytes mem_desc start and length members

Table6: Information Passed in a Put Request

Information bDe Put Information Notes. .
operation int indicates an acknowledgement
initiator ptl-process_id_t target
target ptl_process_id_t initiator
portal index ptl_pt_index_t portaJ index echo
match bits ptl_match_bits_t match bits echo
offset ptl_size_t offset echo
memory desc ptl_handle_md_t memory desc echo
requested length ptl_size_t length echo
manipulated length ptl_size_t obtained from the operation

Table7: Information Passed in an Acknowledgement

35

Information Type PtlGet argument Notes
operation
initiator
target
portal index
cookie
match bits
offset
memory desc
length

int
ptl_process_id_t
ptl_process_id_t
ptl_pt_index.t
ptl_ac_index_t
ptl_match_bit s_t
ptl_size_t
ptl_handle_md_t
ptl_size_t

indicates a get operation
local information

target
portal
cookie
match_bits
offset
mem_desc
mem_desc length member

Table8: Information Passed in a Get Request

the get request, but are swapped in generating the acknowledgement. The only new information in the
acknowledgement are the manipulated length and the data which are determined as the get request is
satisfied.

Information TvDe Put Information Notes. .
operation int indicates an acknowledgement
initiator ptl_process_id_t target
target ptl_process_id_t initiator
portal index ptl_pt_index_t portal index echo
match bits ptl_match.bits_t match bits echo
offset ptl_size_t offset echo
memory desc ptl_handle_md_t memory desc echo
requested length ptl_size_t length echo
manipulated length ptl_size_t obtained ftom the operation
data bytes obtained from the operation

Table9: Information Passed in a Reply

4.2 Receiving Messages

When an incoming message arrives on a network interface, the runtime system first checks that the target
process identified in the request is avalid process that has initialized the network interface (i.e., that the
target process has a valid portal table). If this test fails, the runtime system discards the message and
increments the dropped message count for the interface. The remainder of the processing depends on the

type of the incoming message. Put and get messages are subjectto access control checks and translation
(searching a match list), while acknowledgement and reply messages bypass the access control checks and
the translation step.

Acknowledgement messages include ahandlefor the event queue where the event should rerecorded.
Upon receipt of an acknowledgement, theruntime system only needs to confirm that the event queue still
exists and that there is space for another event. Should the event queue no longer exist or if there is not
sufficient space in the event queue, the message is simply discarded and the dropped message count for
the interface is incremented. Otherwise, the runtime system builds an acknowledgement event from the
information in the acknowledgement message and adds it to the event queue.

Reception of reply messages is also relatively straightforward. Each reply message includes a handle for
a memory descriptor. If this descriptor exists, it is used to receive the message. A reply message will be
dropped if the memory descriptor identified in the request doesn’t exist or if the event queue in the memory
descriptor has no space and is not PTL_EQ_NONE.In either of these cases, the dropped message count for the
interface is incremented. These are the only reasons for dropping reply messages. Every memory descriptor
accepts and truncates incoming reply messages, eliminating the other potential reasons for rejecting a reply
message.

36

The critical step in processing an incoming put or get request involves mapping the request to a memory
descriptor. This step starts by using the portal index in the incoming request to identify a list of match
entries. This list of match entries is searched in order until a match entry is found whose match criteria

matches the match bits in the incoming request and whose first memory descriptor accepts the request.
Because acknowledge and reply messages are generated in response to requests made by the process

receiving these messages, the checks performed by the runt ime system for acknowledgements and replies are
minimal. In contrast, put and get messages are generated by remote processes and the checks performed for

these messages are more extensive. Incoming put or get messages may be rejected because:

● the portal index supplied in the request is not valid;

● the cookie supplied in the request is not a valid access control entry;

● the access control entry identified by the cookie does not match the identifier of the requesting process;

. the access control entry identified by the access control entry does not match the portal index supplied
in the request; or

● the match bits supplied in the request do not match any of the match entries with a memory descriptor
that accepts the request.

In all cases, if the message is rejected, the incoming message is discarded and the dropped message count
for the interface is incremented.

A

●

●

●

5

memory descriptor may reject an incoming request for any of the following reasons:

the PTL_MD_PUT or PTL_MD_GET option has not been enabled and the operation is put or get, respec-
tively;

the length specified in the request is too long for the memory descriptor and the PTL-MIl_TRUNCATE
option has not been enabled;

the event queue is not PTL_EQ_NONEand there is no space for a new event.

Examples

In this section we present several example to illustrate expected usage patterns for the Portals 3.0 API. The
first example describes how to implement parallel servers using the features of the Portals 3.0 API. This
example covers the access control list and the use of remote managed offsets. The second example presents
an approach to dealing with dropped requests. This example covers aspects of match lists and memory
descriptors. The final example covers message reception in MPI. This example illustrates more sophisticated

uses of matching and a procedure to update a memory descriptor.

5.1 Parallel File Servers

Figure 5 illustrates the logical structure of a parallel file server. In thk case, the parallel server consists of

four servers that stripe application data across four disks. We would like to present applications with the
illusion that the file server is a single entity. We will assume that all of the processes that constitute the
parallel server are in a single group and that this group is unique to the parallel server.

When an application establishes a connection to the parallel file server, it will allocate a portal and access
control list entry for communicating with the server. The access control list entry will include the portal

and match my process in the parallel file server’s group, so all of the file server processes will have access to
the portal. The portal information and access control entry will be sent to the file server at this time. If the
application and server need to have multiple, concurrent 1/0 operations, they can use additional portals or
match entries to keep the operations from interfering with one another.

When an application initiates an 1/0 operation, it first builds a memory descriptor that describes the
memory region involved in the operation. This memory descriptor will enable the appropriate operation (put
for read operations and get for write operations) and enable the use of remote offsets (this lets the servers

37

Parallel File Server

Application Buffer

G

Figure5: Parallel Fileserver

decide where their data should be placed in the memory region). After creating the memory descriptor and
linking it into the appropriate portal entry, the application sends a read or write request (using PtlPut)

to one of the file server processes. The file server processes can then use put or get operations with the
appropriate offsets to fill or retrieve the contents of the application’s buffer. To know when the operation
has completed, the application can add an event queue to the memory descriptor and add up the lengths of
the remote operations until the sum is the size of the requested 1/0 operation.

5.2 Dealing with Dropped Requests

If a process does not anticipate unexpected requests, they will be discarded. Applications using the Portals
API can query the dropped count for the interface to determine the number of requests that have been
dropped (see Section 3.5.4). While this approach minimizes resource consumption, it does not provide
information that might be critical in debugging the implementation of a higher level protocol.

To keep track of more information about dropped requests, we use a memory descriptor that truncates
each incoming request to zero bytes and logs the “dropped” operations in an event queue. Note that the

operations are not dropped in the Portals sense, because the operation succeeds.
The following code fragment illustrates an implementation of this approach. In this case, we assume that

a thread is launched to execute the function wat ch_drop. This code starts by buildlng an event queue to
log truncated operations and a memory descriptor to truncate the incoming requests. Thk example only
captures “dropped” requests for a single portal. In a more realistic situation, the memory descriptor would
be appended to the match list for every portal. We also assume that the thread is capable of keeping up with
the “dropped” requests. If this is not the case, we could use a finite threshold on the memory descriptor to
capture the first few dropped requests.

#include <stdio.h>
#include <stdlib.h>
#include <portals.h>

#define DROP-SIZE 32 /. number of dropped requests to track ./

int watch.drop(ptl-handleni-t ni, ptl-ptindex_t index) {
ptl~andle-eq-t drop-events;
ptl_event_t event;
ptl-handlemd_t drop-em;
ptlmd-t drop-desc;
ptl-processid_t any-proc;
ptl-handleme-t match-any;

/* create the event queue*/
if(PtlEQAlloc(ni, DROP-SIZE, &drop.events) # PTL-OK) {

38

fprintf(stderr, “Couldn’t create the event queue\n”);
exit{ 1);

}

/* build a match entry*/
any-proc.pid-nid = PTLADDR-GID;
any-proc.gid = PTL-IIIANY;
any_proc.rid = PTLJDANY;
PtlMEAttach(index, any-proc, O, =(ptlmatch.bits_t)O, PTLRETAIN,

&match-any);

/* create the memory descriptor*/
drop_desc.start = NULL;
drop.desc.length = O;
drop-desc.threshold = PTL-MD-THRESH.-INF;
drop.desc.options = PTL-MD-OP-PUT [PTL_MD_OP-GET
drop_desc.user.ptr = NULL;
drop.-desc.eventq = drop-events;

PTL_MD_TRUNCATE;

if(PtlMDAttach(match.any, drop-desc, &drop_em) # PTL-OK) {
fPrintf(Stderr, !!COUMII’ t create the memory des crlptor\n”);

exit(1);

}

/* watch for “dropped” requests*/
while(1) {

if(PtlEQWait (drop _events, &event) # PTL.-OK) break;
fprintf(stderr, “Dropped request from gid = Xd, rid = Zd\n”,

event .initiator.gid, event .initiator.rid);

}
}

5.3 Message Transmission in MPI

We conclude this section with a fairly extensive example that describes an approach to implementing message
transmission for MPI. Like many MPI implementations, we distinguish two message transmission protocols:
a short message protocol and a long message protocol. We use the constant MPI_LONG_LENGTHto determine
the size of a long message.

For small messages, the sender simply sends the message and presumes that the message will be received
(i.e., the receiver has allocated a memory region to receive the message body). For large messages, the sender

also sends the message, but does not presume that the message body will be saved. Instead, the sender builds
a memory descriptor for the message and enables get operations on this descriptor. If the target does not
save the body of the message, it will record an event for the put operation. When the process later issues a
matching MPI receive, it will perform a get operation to retrieve the body of the message.

The following code presents a function that implements the send side of the protocol. The global variable
EndGet is the last match entry attached to the portal index used for posting long messages. Thk entry does
not match any incoming requests (i.e., the memory descriptor rejects all get operations) and is built during
initialization of the MPI library. The other global variable,MPI-NI, is a handle for the network interface used

by the MPI implementation.

extern ptl-handle_me.t EndGet;
extern ptlkandleai_t MPI_NI;

void MPIsend(void *buf, ptl~ize-t len, void *data, ptl-handle-eq.-t eventq,
ptl-processid target, ptl-rnatch-bits-t match)

{
ptl-handlemd-t send-handle;
ptlmd-t mem-desc;

39

ptlLack~eq-t want.ack = PTLJNOACK-REQ;

mem.desc .start = buf;
mem-desc.length = len;
mem_desc.threshold = 1;
mem_desc.options = PTL-MD-GET-OP;
mem-desc.user-ptr = data;
mem_desc.eventq = eventq

if(Ien z MPI-LONGLENGTH) {
ptl-handleme_t me~andle;

/* add a match entry to the end of the get Jist */
PtlMEInsert (target, match, O, PTL_UNLINK, PTLlNSJ3EFORE, EndGet, &meAandle);
PtlMDAttach(me-handle, mem_desc, PTL_UNLINK, NULL);

j. we want an ack for long messages #
want -ack = PTLACKREQ;

}

/. create a memory descriptor and send it */
PtlMDBind(MPI_NI, mem-.desc, &send-handle);
PtlPut (send-handle, want-ack, target, MPISEND-PINDEX, MPIAINDEX, match, O);

}

The h4PISend function returns as soon as the message has been scheduled for transmission. The event
queue argument, eventq, can be used to determine the disposition of the message. Assuming that eventq is
not PTL.EQ.NONE, a PTL_EVENT_SENT event will be recorded for each message as the message is transmitted.
For small messages, this is the only event that will be recorded in eventq. In contrast, long messages
include an explicit request for an acknowledgement. If the t srget process has posted a matching receive,
the acknowledgement will be sent as the message is received. If a matching receive has not been posted,
the message will be discarded and no acknowledgement will be sent. When the target process later issues
a matching receive, the receive will be translated into a get operation and a PTL_EVENT_GET event will be
recorded in event q.

Figure 6 illustrates the organization of a match list for receiving MPI messages. The match list starts
with entries that match the preposted MPI receives (these entries are not shown in Figure 6); followed by a

match entry that rejects all incoming requests, called the RcuMark; followed by two match entries that match
all incoming requests. The last two match entries are used for unexpected messages, i.e., messages that do
not match any of the receives that have been posted by the local MPI process. The first of these handles
short messages by saving the body of the message, while the second handles long messages by discarding
the message body. All of the memory descriptors associated with these match entries share a common event
queue to ensure that unexpected messages are processed in arrival order.

When the local MPI process posts an MPI receive, a new match entry is inserted before the RcvMark
entry and, as such, after all of the previously posted receives. This ensures that preposted receives are
matched in the order that they were posted (a requirement. of MPI). Inserting an entry for a preposted
receive is not a matter of simply inserting a match entry before the Rc@fark. YOU must first check to see
if a matching message has arrived before adding the new entry to match list. The trick is to avoid the race

condition that results from the possibility that a matching message arrives after you have searched the match
list, but before you have inserted the preposted receive. The function presented in

The following code presents a function that avoids this race condition. The code starts by creating a
memory descriptor and a match entry which is inserted before the RcvMark. Because the memory descriptor’s
threshold is initially set to zero, the memory descriptor will not respond to any incoming operations. After
inserting the new match entry, the code searches for a matching message that has already been received. If
a match is found, the memory descriptor and match entry are released and the function returns. Otherwise,
the code conditionally updates the threshold member of the memory descriptor. The update is predicated

by the condition that no unexpected messages have arrived since the start of the search.

40

Match Entries Memory Descriptors Event Queues Memory Regions
Preposted
Receives I

--—- -—-— --- +--

--------=:---------------------------

RcvMark

Unexpected Match Any Short Message
I J

Messages Unlink Buffer
\

‘J
Short Message

Unlink Buffer

4

I
ShortMessage

Unlink Buffer
I

Length=O
~ > Truncate
~ ! NoAck !

Figure6: Message Reception inMPI

extern ptllmndle.eq-t UnexpQueue;
externptllmndle-rne.t RcvMark;
externptllmndleme.t ShortMatch;

typedef structevent-list.tag {
ptl_event-t event;
struct event-list-tag *next;

} eventlist;

extern eventJist Rcvd;

void AppendRcvd(ptl-event-t event)

{
je append an event onto the Rcvd list */

}

int SearchRcvd(void *buf, ptl_size-t len, ptl-processid-t sender, ptlmatch-bits-t match,
ptlmatch-bits-t ignore, ptl-event-t *event)

{
/* Search the Rcvd event queue, looking for a message that matches the requested message.
* lfone is found, remove the event from the Rcvd list and return it. */

}

typedef enum { RECEIVED, POSTED } receivestate;

receivestate CopyMsg(void *buf, ptlsize-t length, ptl_event _t event, ptlmd_t md-buf)

{
ptlmd_t md-buf;

41

ptl-handle-me.t me-handle;

if(event .rlength ~ MPILONG-LENGTH) {
PtiMDBind(MPI_NI, md.buf, &md_handle);
PtlGet (event.initiator, MPI-GET-PINDEX, O, event.match-bits, MPIAINDEX, md~andle);
return POSTED;

} else{
/* copy the message and recycle the buffer*/
memcpy(buf, event .md-desc.start, len);
event .md_desc.threshold = 1;
PtlMDAttach(ShortMatch, event.md_desc, PTL.UNLINK, NULL);
return RECEIVED;

}
}

receivestate MPIreceive(void *buf, ptl-size_t len, void *MPI_data, ptlLhandle-eq-t eventq,
ptl_processid.t sender, pthnatch-bits-t match, ptlmatch-bits_t ignore)

{
ptl-md-t md_buf;
ptl-handlemdd md~andle;
ptl-handleme-t me~andle;
ptl-event -t event;

jh build a memory descriptor for the receive./
md-buf.start = but
md_buf.length = len;
md-buf. threshold = O; /* temporarily disabled #
md.buf.options = PTL_MDIUT.OP;
md-buf. user_ptr = MPI-dat~
md-buf.eventq = eventq;

~ see if we have already received the message */
if(SearchRcvd(buf, len, sender, match, ignore, &event))

return CopyMsg(buf, length, event, md-buf);

/* create the match entry and attach the memory descriptor+/
PtlMEInsert(sender, match, ignore, PTL-UNLINK, PTL.-INS-BEFORE, RcvMark, &me_handle);
PtlMDAttach(me-handle, md_buf, PTL_UNLINK, &md.landle);

md_buf.threshold = 1;
do

if(

}

PtlEQGet (UnexpQueue, &event) # PTLEQEMPTY) {
if(MPIMatch(event, match, ignore, sender)) {

PtlMDUnlink(mdlmndle); /* don ‘t Ieave the receive posted */
return CopyMsg(buf, len, event, md-buf);

} else{
AppendRcvd(event);

}

while(PtlMDUpdate(mdlmndle, NULL, &md-buf, unexp-queue) == PTL-NOUPDATE);
return POSTED;

)

42

References

[1] R. Brightwell, D. S. Greenberg, A. B. Maccabe, and R. Riesen. Massively Parallel Computing with Commodity
Components. Parallel Computing, To appem, 2000.

[2] R. Brightwell and L. Shuler. Design and implementation of MPI on Puma portals. In Proceedings of the Second
MPI Developer’s Conference, pages 18–25, July 1996.

[3] Compaq, Microsoft, and Intel. Virtual Interface Architecture Specification Version 1.0. Technical report, Com-
paq, Microsoft, and Intel, December 1997.

[4] Cray Research, Inc. SHMEM Technical Note for C, SG-2516 2.3, October 1994.
[5] M. Lauria, S. Pakin, and A. Chien. Efficient Layering for High Speed Communication: Fast Messages 2.x. In

Proceedings of the IEEE International Symposium on High Performance Distributed Computing, 1998.
[6] A. B. Maccabe, K. S. McCurley, R. Riesen, and S. R. Wheat. SUNMOS for the Intel Paragon: A brief user’s

guide. In Proceedings of the Intel Superwmputer Users’ Group. 199.4 Annual North America Users’ Conference.,
pages 245–251, June 1994.

[7] Message Passing Interface Forum. MPI: A Message-Passing Imterface standard. The International Journal of
Supercomputer Applications and High Performance Computing, 8, 1994.

[8] Message Passing Interface Forum. MPI-2: Extensions to the Message-Passing Interface, July 1997.
http: //~.mpi-forum.org/docs/mpi-2O-html/mpi2-report.html.

[9] Myricom, Inc. The GM Message Passing System. Technical report, Myricom, Inc., 1997.
[10] Sandia National Laboratories. AS(X Red, 1996. http: //www.sandia.gov/ASCI/TFLOP.
[11] L. Shuler, C. Jong, R. Rlesen, D. van Dresser, A. B. Maccabe, L. A. Fisk, and T. M. Stallcup. The Puma

operating system for massively parallel computers. In Proceeding of the 1995 Intel Superwmputer User’s Group
Conference. Intel Supercomputer User’s Group, 1995.

[12] Task Group of Technical Committee Tn. Information Technology - Scheduled Transfer Protocol - Working
Draft 2.0. Technical report, Accredited Standards Committee NCITS, July 1998.

43

Distribution:

1 MS 0321
1 MS 0841
1 MS 0318
1 MS 0318
1 MS 1111
1 MS 1110
1 MS 1110
1 MS 0321
1 .Ms 1111
1 MS 0847
1 MS 0819
1 MS 0820
1 MS 0806

2 MS 0899
1 MS 9018
1 MS 0612

W. J. &rnp, 9200
P. J. Hommert, 9100
G. S. Davidson, 9201
P. D. Heermann, 9215
S. S. Dosanjh, 9221
D. E. Womble, 9222
N. D. Pundit, 9223
A. L. Hale, 9224
G. S. Hefflefinger, 9225
R. W. Leland, 9226
J. Peery, 9231
P. Barrington, 9232
L. Stans, 4616
Technical Library, 4916
Central Technical Files, 8940-2
Review and Approval Desk, 4912
For DOE/OSTI

44

