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• Thought to be essential for memory formation 

• In rodents - spatial coding

What is the hippocampus?

figures from https://en.wikipedia.org/wiki/Hippocampus and Amaral DG, Witter MP. (1995) Hippocampal formation. in: Paxinos G, editor. The Rat Nervous System.

https://en.wikipedia.org/wiki/Hippocampus
https://en.wikipedia.org/wiki/Hippocampus


• Patient H.M. (Henry Molaison)
- Both hippocampi were surgically removed to treat epilepsy

- After surgery could not form new memories

• 2014 Nobel Prize in Physiology or Medicine
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What is the hippocampus?



Recording from neurons in the 
hippocampus
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figures from http://dsp.rice.edu/sites/dsp.rice.edu/files/Lecture%208%20-%20recording%20techniques.pdf
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Recording from neurons in the 
hippocampus

figures from http://dsp.rice.edu/sites/dsp.rice.edu/files/Lecture%208%20-%20recording%20techniques.pdf
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figures from Moser et al (2008) Annu. Rev. Neurosci. 31: 69-89

Spatial coding in the hippocampus

• form very fast

• “randomly” placed

• thought to tile space
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Spatial coding in the hippocampus
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Spatial coding in the hippocampus
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Temporal coding in the 
hippocampus

figures from http://dsp.rice.edu/sites/dsp.rice.edu/files/Lecture%208%20-%20recording%20techniques.pdf
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Temporal coding in the 
hippocampus

figures from http://dsp.rice.edu/sites/dsp.rice.edu/files/Lecture%208%20-%20recording%20techniques.pdf



Temporal coding in the hippocampus
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Phase precession
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Phase precession
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Phase precession
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Models of phase precession in the 
hippocampus
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mouse 
runs

from O’Keefe & Recce (1993)



from O’Keefe & Recce (1993) from Skaggs et al (1996)from Mehta et al (2002)
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Phase precession



CA1

EC3
CA3

CA1 pyramidal cells receive input from CA3 (via Schaffer 
collaterals) and from EC3 (via temporoammonic pathway)

16

Phase Precession from Dual 
Components

Chance FS (2012) J. Neurosci. 32: 16693
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Integrate-and-Fire Model of a Neuron
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Integrate-and-Fire Model of a Neuron



19

Integrate-and-Fire Model of a Neuron
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Phase Precession from Dual Components



ACA3 AEC3

x (cm)

input rate = 

run direction

21



CA3

EC3

ACA3 AEC3

x (cm)

Mizuseki, Sirota, Pastalkova & Buzsáki (2009) Neuron 64: 267
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run direction



CA3

EC3x

CA1 model spiking when driven only by CA3 input
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run direction



CA3

EC3

CA1 model spiking when driven only by EC3 input
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run direction



CA3

EC3

PARAMETERS: 1 = 260 deg, 2 = 100 deg, x1 = 90 cm, x2 = 110 cm, 1 = 2 = 21.2 cm

ACA3 AEC3

x (cm)

Chance FS (2012) J. Neurosci. 32: 16693
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run direction
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run direction

PARAMETERS: 1 = 260 deg, 2 = 100 deg, x1 = 90 cm, x2 = 110 cm, 1 = 2 = 21.2 cm

Chance FS (2012) J. Neurosci. 32: 16693
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run direction

PARAMETERS: 1 = 260 deg, 2 = 100 deg, x1 = 90 cm, x2 = 110 cm, 1 = 2 = 21.2 cm

Chance FS (2012) J. Neurosci. 32: 16693
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run direction

PARAMETERS: 1 = 260 deg, 2 = 100 deg, x1 = 90 cm, x2 = 110 cm, 1 = 2 = 21.2 cm

Chance FS (2012) J. Neurosci. 32: 16693



CA3

EC3

ACA3 AEC3
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run direction

PARAMETERS: 1 = 260 deg, 2 = 100 deg, x1 = 90 cm, x2 = 110 cm, 1 = 2 = 21.2 cm

Chance FS (2012) J. Neurosci. 32: 16693



CA3
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ACA3 AEC3
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run direction

PARAMETERS: 1 = 260 deg, 2 = 100 deg, x1 = 90 cm, x2 = 110 cm, 1 = 2 = 21.2 cm

Chance FS (2012) J. Neurosci. 32: 16693



from O’Keefe & Recce (1993)
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from O’Keefe & Recce (1993) from Skaggs et al (1996)from Mehta et al (2002)
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PARAMETERS: 1 = 230 deg, 2 = 0 deg, x1 = 95 cm, x2 = 110 cm, 
1 = 35.36 (left), 21.2 (right), 2 = 7.2 cm, k = 2.7 deg/cm, 
b1 = b2 = 1, x0 = 80 cm, EC3/CA3 amplitude ratio = 0.75

from Mehta et al (2002)
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weak EC3 input / strong CA3 input



from Skaggs et al (1996)
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PARAMETERS: 1 = 230 deg, 2 = 0 deg, x1 = 95 cm, x2 = 110 cm, 
1 = 2 = 21.2 cm, k = 2.7 deg/cm, b1 = b2 = 0.5, x0 = 80 cm.
EC3/CA3 amplitude ratio = 0.8
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stronger EC3 input / weaker CA3 input



Chance FS (2012) J. Neurosci. 32: 16693

weak EC3 input / strong CA3 input stronger EC3 input / weaker CA3 input
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EC3
CA3

CA1

Model of CA1 pyramidal cell activity

CA1 place cells are driven by two input 
components

input components are distinguished by 
spatial and theta-phase preferences

phase precession arises through 
interaction between two input components

model phase precession matches 
experimentally-observed phase 
precession in CA1
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Range of phase precession is less in CA3 compared to CA1

ref = local theta

from Mizuseki et al (2012) Hippocampus 22: 1659
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Range of phase precession is less in CA3 compared to CA1

from Mizuseki et al (2012) Hippocampus 22: 1659
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Range of phase precession is less in CA3 compared to CA1

from Mizuseki et al (2012) Hippocampus 22: 1659

extra component of 
phase precession 
from EC3
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EC3
CA3

CA1

Model of CA1 pyramidal cell activity

CA1 place cells are driven by two input 
components

input components are distinguished by 
spatial and theta-phase preferences

phase precession arises through 
interaction between two input components

model phase precession matches 
experimentally-observed phase 
precession in CA1

What does this mean about how
CA1 neurons represent information?
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EC3

CA3
auto-associative function 
pattern completion

head-direction information
position information
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EC3

CA3
auto-associative function 
pattern completion

head-direction information
position information
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Chance FS (2012) J. Neurosci. 32: 16693
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Chance FS (2012) J. Neurosci. 32: 16693
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Chance FS (2012) J. Neurosci. 32: 16693
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Chance FS (2012) J. Neurosci. 32: 16693
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Chance FS (2012) J. Neurosci. 32: 16693
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Chance FS (2012) J. Neurosci. 32: 16693
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Chance FS (2012) J. Neurosci. 32: 16693
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Chance FS (2012) J. Neurosci. 32: 16693

CA3-driven

EC3-driven

CA3-driven

EC3-driven
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 (6-11 Hz)

sensory
expectation
memory
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Prediction for neurophysiological data



 (6-11 Hz)

Cabral et al (2014) Neuron 81: 402-415.

sensory
expectation
memory
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Prediction for neurophysiological data



- address-free multiplexing
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Implications for encoding in the brain



- address-free multiplexing
- gating at the target

sensory

expectation
memory
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Implications for encoding in the brain



- address-free multiplexing
- gating at the target
- comparison within the circuit

sensory

expectation
memory
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Implications for encoding in the brain
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<the end>



• CA1 pyramidal cells receive input from CA3 (via Schaffer 
collaterals) and from EC3 (via temporoammonic pathway)

(from EC3)

from Woo et al. (2009) Mol. and Cell. Neuroscience 42: 1-10.57


