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What is the hippocampus?
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 Thought to be essential for memory formation
* |Inrodents - spatial coding

figures from htips://en.wikipedia.org/wiki/Hippocampus and Amaral DG, Witter MP. (1995) Hippocampal formation. in: Paxinos G, editor. The Rat Nervous System.
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What is the hippocampus?

e Patient H.M. (Henry Molaison)

- Both hippocampi were surgically removed to treat epilepsy

- After surgery could not form new memories

e 2014 Nobel Prize in Physiology or Medicine

Photo: A. Mahmoud Photo: A. Mahmoud Photo: A. Mahmoud
John O'Keefe May-Britt Moser Edvard I. Moser




Recording from neurons in the =
hippocampus

Intracellular (single unit)

30
20 b
10
s Or
® -10F
-
c
Q
g -20f
§ w0
§
= -40
-60
] I ] ] ] i I ) L] 1 1 1 ] ] ] I
-70 1 1 i L L 1 1
0 1000 2000 3000 4000 5000 6000 7000 8000
Time (msec)

figures from http://dsp.rice.edu/sites/dsp.rice.edu/files/Lecture %208%20-%20recording%20techniques.pdf
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Recording from neurons in the =

hippocampus
Extracellular (multi unit)

Raw microelectrode signal

\ / M 1-5000 Hz
Filtered to extract action potentials
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figures from http://dsp.rice.edu/sites/dsp.rice.edu/files/Lecture %208%20-%20recording%20techniques.pdf
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Spatial coding in the hippocampus @

 form very fast

 “randomly” placed
* thought to tile space

figures from Moser et al (2008) Annu. Rev. Neurosci. 31: 69-89
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Temporal coding in the ) ..
hippocampus
Extracellular (multi unit)

Raw microelectrode signal

\ / 1-5000 Hz

Filtered to extract action potentials

“" HH“ IH “HM ‘HH IHH“H ” H‘H ”H “ H HH 300-5000 Hz

figures from http://dsp.rice.edu/sites/dsp.rice.edu/files/Lecture %208%20-%20recording%20techniques.pdf
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Temporal coding in the ) ..

hippocampus

1TmV

Extracellular (multi unit)

Raw microelectrode signal

1-5000 Hz

Filtered to extract action potentials

““ HH“ IH “HM ‘HH IHH“H ” H‘H ”H “ H HH 300-5000 Hz

Filtered to extract local field potential (micro-EEG’)

1-100 Hz

1s

figures from http://dsp.rice.edu/sites/dsp.rice.edu/files/Lecture %208%20-%20recording%20techniques.pdf
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Temporal coding in the hippocampus
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Phase precession




Sandia
r.h National _
Laboratories

Phase precession
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Phase precession

360°
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Models of phase precession in the
hippocampus
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Phase precession ) .
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Phase Precession from Dual
Components
[ CA1

EC3
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CA1 pyramidal cells receive input from CA3 (via Schaffer
collaterals) and from EC3 (via temporoammonic pathway)
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Chance FS (2012) J. Neurosci. 32: 16693
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Integrate-and-Fire Model of a Neuron
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Integrate-and-Fire Model of a Neuron
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Integrate-and-Fire Model of a Neuron
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input rate = Rcas pos = A(z)|cos(2m ft + ¢cas rcs) + 0]+

CA3 input rate
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ACA3 AEC3

™ ,

run direction x (cm)

input rate = Rcas pcs = A(x)|cos(2m ft + dcas rcs) + 0]+
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ACA3 AEC3

™ ,

run direction x (cm)
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Mizuseki, Sirota, Pastalkova & Buzsdki (2009) Neuron 64: 267
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ACA3 *C3
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CA1 model spiking when driven only by CA3 input
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CA1 model spiking when driven only by EC3 input
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PARAMETERS: ¢, = 260 deg, &, = 100 deg, x; = 90 cm, X, = 110 cm, o4 = 5, = 21.2 cm

Chance FS (2012) J. Neurosci. 32: 16693
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PARAMETERS: ¢, = 260 deg, &, = 100 deg, x; = 90 cm, X, = 110 cm, o4 = 5, = 21.2 cm

Chance FS (2012) J. Neurosci. 32: 16693
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PARAMETERS: ¢, = 260 deg, &, = 100 deg, x; = 90 cm, X, = 110 cm, o4 = 5, = 21.2 cm

Chance FS (2012) J. Neurosci. 32: 16693
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Chance FS (2012) J. Neurosci. 32: 16693
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PARAMETERS: ¢, = 260 deg, &, = 100 deg, x; = 90 cm, X, = 110 cm, o4 = 5, = 21.2 cm

Chance FS (2012) J. Neurosci. 32: 16693
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weak EC3 input / strong CA3 input
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PARAMETERS: ¢, = 230 deg, ¢, = 0 deg, x; =95 cm, x, =110 cm,
o =35.36 (left), 21.2 (right), o, = 7.2 cm, k = 2.7 deg/cm,
by =b, =1, Xy =80 cm, EC3/CA3 amplitude ratio = 0.75
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% = 60 cm stronger EC3 input / weaker CA3 input
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Chance FS (2012) J. Neurosci. 32: 16693



Model of CA1 pyramidal cell activity [rh

e CA1 place cells are driven by two input

components

e input components are distinguished by

spatial and theta-phase preferences

e phase precession arises through
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interaction between two input components

e model phase precession matches
experimentally-observed phase

"\ precession in CA1
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from Mizuseki et al (2012) Hippocampus 22: 1659
I ———————
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Range of phase precession is less in CA3 compared to CA1 fh Nofiowl
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Model of CA1 pyramidal cell activity [rh

e CA1 place cells are driven by two input

components

e input components are distinguished by

spatial and theta-phase preferences

e phase precession arises through
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interaction between two input components

e model phase precession matches
experimentally-observed phase

"\ precession in CA1
EC3
What does this mean about how
CA1 neurons represent information?
\ ,
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EC3

head-direction information
position information

CA3

auto-associative function
pattern completion
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head-direction information
position information

CA3

auto-associative function
pattern completion
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Prediction for neurophysiological data h) i,
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sensory memory
expectation
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sensory memory
expectation

Cabral et al (2014) Neuron 81: 402-415.




Implications for encoding in the brain h) i,

- address-free multiplexing




. . . . . Sandia
Implications for encoding in the brain L

SeNsory oemory

- address-free multiplexing expectation
- gating at the target
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SeNsory oemory

- address-free multiplexing expectation
- gating at the target
- comparison within the circuit
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<the end>




- CA1 pyramidal cells receive input from CA3 (via Schaffer ) Hetona
collaterals) and from EC3 (via temporoammonic pathway)
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