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Probability & Statistics

 Statistics = analysis of past events

 Observe outcomes of events

 Build & test statistical model to explain outcomes

 Probability = prediction of future events

 Assume probability model

 Often based on a statistical model

 Predict outcomes to make decisions

 We are not going to go into probability theory
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Statistics question: Is the Die fair? 

Histograms show frequencies of each 
outcome for the response/QoI: face number 

for a fair die

 Observe data, find correlations

 Hypothesize causation

 Statistics issues:

 Inputs & Responses/ Quantities of 

Interest (QoI)

 What do we measure?

 Quantity & Quality of data:

 What can be said for 10 vs 1 million 

samples?

 Not a focus of this course
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Probability Question: What is the next roll?

 Cannot be answered deterministically

 Identify ALL possible outcomes for the QoI

 Assume a model:

Probability of occurrence of each outcome

 Defines a probability distribution

 Use model to make predictions and decisions

(Were those predictions correct?)
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 10 rolls of a die

 What is the statistical model?

 Probability: what is the probability model?

 ?
 Expert opinion can help to improve a model

 Inherent weakness of models

 Include only what you put in (including limited knowledge)

 “Garbage in, garbage out” 

 “All models are wrong, some are useful” – George Box

Known unknowns, unknown unknowns?
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A bit of jargon

 (Real valued) Random Variable

 A function that associates outcomes

with probabilities of their occurrence

 Discrete: 

Coin flip – outcome is heads, P(heads) = 1/2

 Continuous: 

Failure – outcome is that material will fail if subjected 

to impact at 1km/s, prob = ½

 Random variable  probability distribution
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Ways to summarize a 

distribution:

Mean, mode, median, 

standard deviation, etc.

Discrete outcomes 
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Commonly used terms

 Statistics: based on data – N points

 Sample Mean

 Sample Variance

 Coefficient of Variation (CoV)

 Correlation

 Two random variables are correlated if the outcome of one 

changes the probabilities of the second

 Example: Number of gate guards & Wait times at gate

More samples  better estimates

Standard Deviation is
sqrt of variance

Estimates from data 
can have error
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UQ Tools

 Various tools exist internally and externally

 UQLab (Matlab)

 UQToolbox (Python)

 PSUADE (from LLNL)

 ...plus tons of home-grown tools and other statistics packages

 Sandia has it’s own tools

 UQ Toolkit (C++/Matlab)

 Dakota (standalone and C++)

 We will focus on Dakota but this is not a Dakota training 

course!
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What is Dakota?

 Automation of model runs 

 Make it cheap to run simulations 

(user time, not CPU hrs)

+

 Methods

 Make the runs more useful

 Uncertainty Quantification, Surrogate Models, Optimization, 

Design of Experiments, Parameter Study, Sensitivity Analysis
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Analysis Code
Analysis 

Input
Analysis 
Output

4) post-processing:
Read analysis output

Repeat

3) Run Code

1) Dakota picks a 
simulation to run

Look familiar? Many analysts do this manually.
Many similar codes exist.

2) pre-processing:
Write analysis input

How does it work?

0) Dakota Input
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Comparisons

Manual

 Repetitive process

 Costs add up

 Can make mistakes, 

lose track of data, 

simulations, etc.

 Hard to repeat. Poor 

data provenance

Automation

 Requires scripting

 Larger up-front cost

 Minimal additional cost

 Fewer errors

 Gain access to powerful 

methods
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Rule 1: There is always a relevant XKCD

http://xkcd.com/1205/

Automation 
is vital when 
analyzing 
many model 
evaluations

Typically:
• Bash
• Python
• (mix)

Dakota can 
do some of it
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Tools in ESP700

 Today’s examples use 
Bash, Matlab and 
Python

 Similar tools:

 JMP

 Minitab

 R

 Octave

 Excel

 Etc…

 Simple Dakota Examples

 Demonstrate capabilities/ 
methods

 Simple workflow

 Learn about available 
resources

 What you won’t see

 Dakota tutorial

 Scripting details

 Complicated data analysis
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Questions?

 Dakota resources:

 dakota.sandia.gov

 Dakota Product Manager for 1500: George Orient

 Dakota support: Adam Stephens
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Models are wrong, but they can be useful

Questions to ask about the model:

What parts matter most?

 Sensitivity analysis: which inputs affect the response?

How well do we know the response value?

 UQ: how do uncertainties in inputs affect the response?

Do we know enough? ARE the models useful?

 V&V  how accurate / wrong is the response?

What are the costs and benefits? VALUE?
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Outline

 A day in the life of a 1544 analyst

 Examples

 Sensitivity analysis

 Uncertainty quantification

 Surrogate models

 Advanced methods

Basic methods, 
demonstrations,
interpretation,
value proposition 
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Lecture 3 Goals

 Introduce topics at a high level

 Describe the basic methods

 Promote Dakota usage

 Demonstrate methods and tools 

 Simple example – compute ballistic trajectory

 Case study – 3 leg structural dynamics problem

 Leave with a basic knowledge of methods, 

tools, context – there is much more
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What does 1544 do?

 Project work

 Supporting other analysts (1500 and others)

 Sensitivity analysis, UQ, V&V, optimization

 Tailoring methods for each project

 Interpreting results

 Methods research & development

 Creating resources/ tools

 Enable other analysts to do what we do
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Example: Ballistic Trajectory

 Inputs
 Angle, θ

 Initial Velocity, 

 Gravity

 Quantities of Interest
 Max Height, H
 Range, R
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 Hardware consists of 3 
top conic sections and 3 
bottom sections

 9 total combinations of 
top/bottoms
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 3D finite element model representing 3 leg 
hardware was created

 Bolted joints are modeled using an Iwan element

 Non linear transient analysis was performed using 
Sierra-SD (structural dynamics)
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Quantities of interest
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3leg Simulations

 Sierra SD, a.k.a Salinas

 Ran on CEE platforms, 8cores, ~20 min

 Salinas results file

 Dakota “drives” the simulations

 Automation

 Bash scripting, Linux utilities

 Matlab post-processing
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Abstract View of Simulation

 Think of models / code as a black box

 Inputs go in, QoI’s come out

Inputs QoI’s
Model/Code &

Post-Processing

 Input = ANYTHING that changes the QoI’s
 Model parameter, code setting (solvers, tolerances)

 Boundary conditions, external forcing, etc.

 mesh, geometry

 model form a.k.a model structure

 Computational hardware
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Sensitivity Analysis

 How do changes to inputs affect the response?

 How “sensitive” is the response to each input?

 Direction and magnitude

 Which inputs matter the most?

 Typically focus on model parameters

OR other inputs

 Today – focus on quantitative inputs (parameters)

 Lecture 2: verification – Sensitivity analysis and 

uncertainty quantification for meshes/ codes
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• Qualitative Sensitivity, a.k.a. “Expert Opinion”

– V↑  Height ↑ & Range ↑

– Gravity ↑   Height ↓ & Range ↓

– θ↑  Height ↑ & Range ??

– V↑, θ↓  Height ?? & Range ??

Is this enough information?

Example 1: Ballistic Trajectory
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Goal: spend resources to understand the significant 
inputs for the important responses

Why Do Sensitivity Analysis?

 Identify trends in responses – exploration

 Bonus information: smoothness, robustness

 Provide a focus for future work

 Model development

 New experiments

 Characterization of input uncertainty & UQ
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Quantitative Sensitivity Analysis

Summary

1. Vary the inputs

2. Run the model

3. See if QoI’s change, compute metrics

• More samples  more information

• Methods – efficiently compute metrics

– Efficiently gather information
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Example: Ballistic Trajectory
Nominal
Step size = ±5%

Results:

Basic Quantitative Sensitivity Analysis

 Local sensitivity:

 Metric: Partial derivative

 Method: [Relative] Finite differences 

 Must pick nominal point and step sizes
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Lessons

 Sensitivities:                         (But depends on QoI)

 On Earth: how much does gravity vary?

 Most sensi�ve ≠ most significant

 Must consider possible range of values (CoV[g] ≈0.001)

 Compare sensitivity of height and range

 Depends on the QoI

 Repeat at: 

 Sensitivities: 

 Nominal value matters

0V g  

0 2
01 , 10 / , 10 /V m s g m s   

0V g  

Cheap – bare minimum of model evaluations

Limited – Estimate of main effects, no interactions
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Case Study: 3leg

Forward differences : 'chi' 'R' 'S‘ 'phi_max'
MaxAccelSensitivity -2e-2 2e-10 1e-8 8e2
MaxAccelDiffOverRange 1400 250 680 280

'chi‘   >>   'S‘   >>   'phi_max‘  ≈  'R‘ 

 Local sensitivity

 Pick nominal values for 4 Iwan parameters

 Pick range & step size = 10%

 QoI’s are most sensitive to Phi_max

 Absolute change in response over whole range

 chi and S are most significant
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“Projection” Plots

 Visualize change over ranges (2x step size)

 Absolute changes of QoI are an indicator of significance

 Limited # of runs  receive minimal information

Central 
differences

• 5D space – 4 parameters, 1 response

• Project onto 2D – collapse 4 parameters into 1D
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Basic Method 2 – Sampling “LHS”

No connotations of probability

1. Define ranges for each input

2. Sample uniformly within the ranges for all inputs

3. Run model at samples

4. Analysis: plotting + correlation coefficients

Concept – local sensitivity at many nominal values

 Average the sensitivities “globally” over parameter space

 Need a lot of samples
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Aside: Latin Hypercube Sampling (LHS)

 LHS seeks to maximizes the spread of the 

samples by:

 Subdividing the space

 Selecting “active” regions to be the only 

one in each row/column/...

 Placing points randomly in regions
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LHS Continued

 More advanced algorithms also 

optimize properties of the LHS

 Maximin – Maximize minimum 

distance

 Correlation – Minimize correlation

 Random – No further improvements

 Note: Not all LHS samples are 

“good”

 Key advantage of LHS sampling: 

 Dimensionally independent

Python: pyDOE
Matlab: lhsdesign

Dakota: 
method
sampling

sample_type lhs
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Qualitative LHS Analysis

 Projection, scatterplot see nonlinear trends

 Compare vertical spread vs. trendline

 Qualitative indicator of significance

Local Sensitivity Result:
'chi‘   >>   'S‘   >>   'R‘   >   'phi_max'
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Qualitative LHS Analysis

 Identify outliers w/ major effect on quantitative indicators

 Investigate discrepancy between visualizations and 

quantitative results

Local Sensitivity Result:
'chi‘   >>   'S‘   >>   'R‘   >   'phi_max'
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Quantitative LHS Analysis

 Correlation Coefficients

 Regression slope ∝ simple 

correlation

 Linear assumptions!

 Compare simple vs. partial

 Difference indicates significance of 

interactions between inputs

Simple Correlation Matrix

MaxAccel

chi -0.43

R 0.25

S 0.52

phi_max 0.45

Partial Correlation Matrix

MaxAccel slope

chi -0.56 0.46

R 0.18 0.34

S 0.64 0.25

phi_max 0.57 -0.21

most data analysis software will compute these also
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Dakota Output
Simple Correlation Matrix among all inputs and outputs:

Iwan_chi Iwan_R Iwan_S Iwan_phi_max MaxAccel slope        peakf
Iwan_chi 1.00000e+00 
Iwan_R -2.43445e-01  1.00000e+00 
Iwan_S -1.36501e-02  2.08260e-03  1.00000e+00 

Iwan_phi_max 3.74511e-02  9.00157e-02  7.24891e-02  1.00000e+00 
MaxAccel -4.33950e-01  2.54036e-01  5.24557e-01  4.46247e-01  1.00000e+00 

slope  3.61841e-01  1.89368e-01  1.95584e-01 -1.25004e-01 -3.46778e-01  1.00000e+00 
peakf -3.48324e-01  2.08969e-01  5.30246e-01  4.77021e-01  9.91092e-01 -3.74105e-01  1.00000e+00 

Partial Correlation Matrix between input and output:
MaxAccel slope        peakf

Iwan_chi -5.62312e-01  4.57113e-01 -4.63355e-01 
Iwan_R 1.83893e-01  3.38446e-01  1.31099e-01 
Iwan_S 6.36234e-01  2.45571e-01  6.18525e-01 

Iwan_phi_max 5.72524e-01 -2.12998e-01  5.77898e-01 
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Quantitative LHS Analysis

Correlation coefficients 
have range [-1 , 1]

0, no relationship

+1, strong positive relationship 

-1, strong negative relationship

 Simple correlation: 

measures the strength and direction of a linear relationship 

between variables

 Partial correlation: 

like simple correlation but adjusts for 

the effects of the other variables
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Back to Ballistics Example
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Variance Based Methods

 Another method is to decompose the variance:

 Each            is the variance only due to that 

parameter or group of parameters

 Requires bounds (or distributions) 

on the inputs

 Sensitivity:

 First Order  

 Total Order
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Sensitivity Methods

Low expense but not the 
full picture

More expensive.

Very expensive with 
sampling. Use 
alternative tools

 Expert Opinion

 Local methods

 Finite differences

 Design of Computer Experiments

 Global methods

 Sampling

 Monte Carlo, Quasi-Monte Carlo

 Latin Hypercube Sampling (LHS)

 Variance Based
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 For N parameters

 Local sensitivities

 Finite differences: N+1, 2N+1 model runs

 Local estimates, no interactions

 Design of Computer Experiments

 Full Factorial: 3N (grows FAST)

 Other special designs  reduced cost, need to think

 Use ANOVA – get “main effects” a.k.a sensitivity in each 

dimension, plus sensitivities for 2D interactions

Costs & benefits: you get what you pay for

Curse of Dimensionality



ESP700 48

Warnings on Sampling

Local Sensitivities

 Known cost

 Very easy to implement

 Limited information
 Local analysis

Sampling

 Scales better with 
dimensions, N > 4

 Global, nonlinear effects

 Benefit is hard to predict

 Quality of statistics

 Known convergence of statistics

 Absolute accuracy of statistics is NOT KNOWN a priori

 Do not know whether the qualitative or quantitative 
results will help to downselect parameters

What about sampling
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Some Guidance

 Which method?

 Trade off simplicity and cost vs. amount of information

 How much info do you need for sensitivity analysis?

 Why choose just one?

 Start w/ cheap local sensitivity method, add LHS

 How many LHS samples?

 Rule of thumb: 10*N  get trends, mean, variance

 Use incremental studies – N, 2N, 4N, 8N, 16N …

 Can predict computational cost

 When benefit stops increasing, stop analysis
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Incremental LHS Samples

 Advanced methods allow incremental LHS

 Reuse previous sample for the new one

Source: 
C. M. Sallaberry and J. C. Helton. A 
method for extending the size of 
latin hypercube sample. 
SAND2004-5092C, Sandia National 

Laboratories, 2004.UUR

Dakota has this build in

method
sampling

sample_type incremental_lhs
previous_samples 10
samples 20
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3leg Sampling

 Ran 10, 20, 40 LHS samples

 See if metrics change

 Outlier has BIG effect w/ only 10 samples

 Check against local sensitivity result

 Check assumptions: are parameter ranges sensible?

Partial Correlation Matrix MaxAccel

10 20 40

chi -0.68 -0.56 -0.59

R -0.59 0.18 0.15

S 0.78 0.64 0.61

phi_max 0.62 0.57 0.52

Simple Correlation Matrix MaxAccel

10 20 40

chi -0.33 -0.43 -0.46

R -0.14 0.25 0.17

S 0.62 0.52 0.49

phi_max 0.39 0.45 0.39

# samples # samples
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Sensitivity Analysis Conclusion

 How many samples are needed to assess significance?

 Recall goal: learn model, prioritize future analysis

 Risks – will this impact the project, decision?

 Miss significant parameters

 Run future analysis on the wrong parameters

 Future analyses is too expensive

 But remember…

 This is exploratory work

 Don’t spend too much time/effort
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Questions?

 "Sensitivity Analysis in Practice A Guide to Assessing 

Scientific Models" by Saltelli, A. and Tarantola, Stefano 

and Campolongo, Francesca and Ratto, Marco. John 

Wiley & Sons, Chichester. 2004.
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Models are wrong, but they can be useful

Questions to ask about the model:

What parts do we need to understand?

 Sensitivity analysis: which inputs affect the response?

How well do we know the response value?

 UQ: how do uncertainties in inputs affect the response?

Do we know enough? ARE the models useful?

 V&V  how accurate / wrong is the response?

What are the costs and benefits? VALUE?
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Uncertainty Quantification

 What is uncertainty? Lack of information

 Uncertainty quantification = information quantification

 Have a model, know the significant inputs, etc…

 How much information do you have about QoI’s?

 What are the significant sources of uncertainty?

1. Characterize the uncertainty in significant inputs

2. Propagate

3. Interpret
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Characterization of Uncertainty

 Sources of Uncertainty

 Model parameter, code setting (solvers), mesh, geometry, 

model form a.k.a model structure

 Types of uncertainty

 Epistemic and Aleatoric

 Provide more insight into the information we have

 Quantitative methods 

 parameters require mathematical description

Focus on parameters

Very confusing! 
We’ll return to this later
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Mathematical Description of Uncertainty

Bounds, pdf’s… Where do these come from???

 Experimental Data

 Expert Opinion/ Assumptions

 Theory/ Models

Increasing cost, complexity, 
information content

 None – deterministic

 Intervals
Lower Bound |-------------| Upper bound

 Probability distributions
 Discrete – probability mass function (pmf)

 Continuous – probability density function (pdf)

 Uncertainty context
Higher mass/density  value is more probable

 Fuzzy Probability, P-boxes, Evidence Theory

Statistics: Construct 
models from data and 
assumptions

Sweet spot…
(opinion)
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Propagation of Uncertainty

 Sampling methods – Latin Hypercube Sampling (LHS)

 Exact same as for sensitivity analysis

 Difference – uncertainty context

 Based on characterization of parameter uncertainty

 MOST other methods can be formulated as

1. Construct a surrogate model with as few realizations as 

possible

2. Sample the surrogate model with many, many more 

samples

3. Compute desired quantities

 Discussed in Advanced topics
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Example: Ballistic Trajectory

Uniform input 
parameter PDF’s

UQ Process: Sample
many times 
(model or surrogate)

Non-uniform output 
PDF

Neglect gravity and assume other parameters are 
uncertain. What can we figure out about the 
output?
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Types of Uncertainty – Definitions

 Epistemic (Reducible uncertainty)

 Lack of knowledge about the appropriate value to use

 Reduced through increased understanding or more data. 

 Aleatoric (Irreducible uncertainty)

 Cannot be reduced by further data 

 Variability (due to part-to-part, test-to-test variation, etc.)

Most parameters in engineering models have both 

aleatoric / epistemic components of uncertainty



ESP700 62

Importance

 Epistemic vs. aleatoric distinction is subtle

 What is the model attempting to predict?

 Ex: modeling a validation experiment

1. Response of a specific unit to a specific event?

2. Possible responses from a population of units, and 

population of events consistent with a scenario?

 What do we expect to match?

 Only aleatoric uncertainties should match
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Ballistic Trajectory Example

 Angle is determined by launcher and base

 Launch tube creates shot-to-shot variability

 Base is not always on level ground

 What is aleatoric vs. epistemic?

 What are we attempting to predict?

To estimate WHERE the shot will hit, we don’t need to 
decompose into aleatoric and epistemic nature of uncertainty.

The distinction provides additional insight into the quality of 
the predictions  this is important for decisions
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Example: Ballistic Trajectory

Base is fixed but unmeasured, velocity is known

Scenarios:

1. Predict range for next shot

2. Predict ranges for next dozen shots

3. Observe shots, validate model – Is our understanding of physics 
& uncertainty consistent w/ observed data?

Q: What is aleatoric vs. epistemic? Is the separation useful? How 
to use this information?
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Example: 3leg Characterization 

 Experimental data – 20 tests on different joints

 Iwan Model: Calibrate 4 model parameters to each
 Result – 20 “best estimates”

 Represents variability of joint behaviors

 Aleatoric uncertainty

 Generalize this small set of data to a 4D joint pdf
 Make assumptions  find a pdf that is (mostly) consistent with data

 Example – Multivariate Gaussian, Karhunen-Loeve Expansions

 Also have epistemic uncertainty with the parameters
 Related to assumptions

 Related to imperfect calibration

 Related to model form uncertainty, experimental uncertainty

 Advanced topic – we will ignore this for now…
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 20 sets of best estimates for 4 parameters

 Assume Gaussian distributions w/ correlations

 Propagate w/ incremental LHS: 10, 20, 40, 80 samples

Example: 3leg 

Higher moments 
need more samples 
to converge

Samples Mean Std Dev

10 60297 2131.5

20 60488 1700.4

40 60365 1558.6

80 60589 1496.3
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Interpret UQ: present and assess results

 Sampling  histogram

 With many LHS samples, normalized histogram  pdf

 CDF – cumulative distribution function, “integrated pdf”

 CCDF – complementary CDF

 Many other ways to present information

 Statistics: mean, median, variance, percentiles

 Layers of information!

 Inputs  Model  Quantity of interest

 UQ  uncertainty / information quantification on QoI

 Quality of UQ – convergence, data analysis on uncertainty
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 Construct surrogate models from LHS

 Gaussian Process w/ 1e6 samples

Example: 3leg w/ surrogate 

Same information as pdf
Different look

Do we trust the 
surrogate?

Salinas propagated 
best estimates

Surrogate propagated 
Gaussians
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 Difference: mathematical form and expense 

 Polynomials / PCEs

 Collocation / Interpolation

 Gaussian process / kriging

 Train from “data” = full model evaluations

 No physics, just fitting to data

 Diagnostic metrics: R2, mean absolute error, sum-squared error, cross-
validation metrics

 Often the surrogate is less accurate at bounds or endpoints:  use caution

 Challenge: Build a sufficiently-accurate surrogate with as few model 
evaluations as possible
 What are the best model evaluation points? LHS? Grid? Sparse-Grid?

 Potentially very high dimension

Surrogate Models

 MARS/”Earth”

 Radial basis functions

 Neural Network
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Quick Look at Surrogates: PCE

 PCE – Polynomial Chaos Expansion

 Generalized Fourier method on orthogonal polynomials

Nothing to do with 
dynamical chaos

Estimate 
coefficients with
• Regression
• Integration
• Advanced 

Techniques

Built in to Dakota
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Quick Look at Surrogates: GP

 Gaussian Processes (aka Kriging)

 Model the function as a multivariate Gaussian distribution 

with a set covariance function with a noise model

 Use optimization to find “best” parameters

 Also provides confidence

Source: Scikit_Learn Documentation: http://scikit-learn.org/stable/modules/gaussian_process.html

Built in to Dakota
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Quick Look at Surrogates: Collocation

 Collocation is essentially advanced interpolation

 Can be adaptive both locally and globally to minimize 

sample evaluations

 Similar to PCEs except exact interpolation

Source: 
https://people.sc.fsu.edu/~jburkardt/m_src/lagrange_basis_display/lagrange_basis_displa
y.html

Built in to Dakota
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Quick Look at Surrogates: RBF

 Radial Basis Functions are an interpolation technique

 Interpolate function as a linear combination of 

functions that only depend on radial distance

 Developed for geosciences

 Can handle high dimensional problems

Source: http://www.it.uu.se/research/project/rbf

Built in to Dakota
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Assess UQ results

 UQ  what we know about QoI’s

 Based on model, inputs, parameters

 Also need to consider the process!

1. Characterization of parameter uncertainty

2. Limited LHS sampling

3. Constructing surrogates

 What to do? How to assess the effect?

1. Verify data analysis, document assumptions

2. Incremental LHS  check convergence of statistics

3. Surrogate diagnostics, cross-validation, multiple surrogates
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Notes on Uncertainty Quantification

 More samples  more information

 Sampling, especially LHS, gives more samples in high 

probability areas

 Very good for mean, standard deviation – “bulk properties”

 NOT good for tails, “extreme events”

 Same for characterization of parameter uncertainty

 Surrogate models – accurate where training data exists

 For tails: Advanced methods – reliability
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Uncertainty Quantification Conclusion

 How to do UQ? Method, # samples, surrogates?

 Recall goal: understand QoI information

 Why?:  QMU?  PLoAS?  Design study?  Validation?

 Principles

 Fidelity of UQ should be determined by intended use

 Always have option to do more UQ – iterate w/ application

 Balance sources of uncertainty (“the uncertainty budget”)

 Uncertain parameters, mesh, code, model form, UQ methods, surrogate

 Don’t need high fidelity UQ when mesh is poor quality
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Questions?

 No “standard” texts

 Recent book:

 Dakota Users and Theory Manuals have many 

references

 Course: Verification, Validation and Uncertainty 

Quantification- Hands on Lab – April at AWE
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Big Picture

 Discussed sensitivity analysis, uncertainty 

quantification for model parameters

 SA  prioritization of resources

 UQ  pdf of QoI

 Demonstrate how each is used 

for an engineering project

 3leg example

 Understand cost and benefit

 Uncertainty budget concept

 Driven by the decision to be made, not math/ computer time

QMU Example
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Contact

Uncertainty Quantification

Justin Winokur, Dept. 1544
(505) 844-0630

jgwinok@sandia.gov


