
U.S. Department of Energy 

Brookhaven National Laboratory 

Notice: This manuscript has been authored by employees of Brookhaven Science Associates, LLC under 
Contract No.                                   with the U.S. Department of Energy. The publisher by accepting the 
manuscript for publication acknowledges that the United States Government retains a non-exclusive, paid-up, 
irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others 
to do so, for United States Government purposes. 

Submitted to the 15th International Conference on Machine Learning and Data Mining MLDM'2019 Conference
to be held at Newark NJ, USA

July 20 - 25, 2019

H. Huang, S. Yoo

Failure Analysis on Multivariate Time-series Data given Uncertain Labels

BNL-211640-2019-COPA

Computational Science Initiative

USDOE Office of Science (SC), Advanced Scientific Computing Research (SC-21)

DE-SC0012704



DISCLAIMER 

This report was prepared as an account of work sponsored by an agency of the 
United States Government.  Neither the United States Government nor any 
agency thereof, nor any of their employees, nor any of their contractors, 
subcontractors, or their employees, makes any warranty, express or implied, or 
assumes any legal liability or responsibility for the accuracy, completeness, or any 
third party’s use or the results of such use of any information, apparatus, product, 
or process disclosed, or represents that its use would not infringe privately owned 
rights. Reference herein to any specific commercial product, process, or service 
by trade name, trademark, manufacturer, or otherwise, does not necessarily 
constitute or imply its endorsement, recommendation, or favoring by the United 
States Government or any agency thereof or its contractors or subcontractors. 
The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof.  



Failure Analysis on Multivariate Time-series Data given
Uncertain Labels

Hao Huang1, Shinjae Yoo2, and Yunwen Xu3

1 General Electric, San Ramon, CA, USA 94583 haohuanghw@gmail.com
2 Brookhaven National Lab, Upton, CA, USA 11973 shinjae@gmail.com

3 Amazon, Palo Alto, CA, USA 94303 yunwenxu04@gmail.com

Abstract. Machine failure analysis and detection is critical to today’s industrial
society. Given a number of failure events on multivariate temporal data, the abil-
ity to identify 1) the discriminative patterns prior to the events and 2) the most
relevant features to the failure has practical use for early warning and root cause
analysis. However, since these patterns are not necessarily adjacent to the onset
of failure in time, faulty labels are often with uncertainty, which makes traditional
supervised detection methods inapplicable. To address the label uncertainty and
learn the complicated correlation in multivariate time series, we design Failure
Analysis on Multivariate Time-series Data (MAMT) that jointly selects the most
failure-relevant features and time-instances by a novel dynamic and directional
label diffusion process. Extensive experiments demonstrate that MAMT is more
effective while more efficient than popular baselines.

Keywords: Failure Analysis ·Multivariate Time-series · Uncertain Labels.

1 Introduction
With the rapid advancement in industrial machinery design, data-driven analytics has
gained tremendous success in various industrial aspects. Among these applications, fail-
ure analysis is a long-standing crucial problem that can significantly benefit from data
mining. One usually assumes that there are discriminative patterns that appeared prior
to the failure events on certain features and timestamps. Knowing these patterns not
only helps on finding root causes of the failure, but also makes early detection possible
in the future. However, extracting such patterns from large-volume multivariate sensor
data collected from a number of independently operated data sources (e.g., machines)
is a big challenge. The goal here is to find these patterns and design better classifiers
upon such patterns.

There are two major challenges in finding such patterns besides the large-scale data
processing requirement: 1) the dataset is multivariate and usually collected from multi-
ple data sources, both fault-related or not; 2) while the timestamp and presence of the
failure event is known, the contributing features are unknown (feature uncertainty), and
the time fault patterns occurred is uncertain and not necessarily adjacent to the event
(label uncertainty). So reliable labels on time instances required for supervised machine
learning are not available.

To address these challenges, we design a method called Multi-view Failure Anal-
ysis on Multivariate Time-series Data (MAMT), which overcomes the limitations of
traditional supervised methods on such problems. The concept of the multi-view failure
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Fig. 1. Illustration of the multi-view failure analysis on a dataset collected from six machines
(data sources). Given the event machine (rounded by green box) and its event time, MAMT can
bi-select the key features (rounded by yellow box) and the most relevant time-instances (rounded
by purple box).

analysis is illustrated in Figure 1. The left panel displays the data viewed by differ-
ent sources (machines), where the failure source and event time is known. The right
panel shows the multivariate temporal plots of the failure source. The fault pattern on
the feature view (failure-related features, rounded by the yellow box) and timestamp
view (failure-related time-instances, true “1”s, rounded by the purple box) are unknown.
Without other prior knowledge, MAMT can select on both views (marked by the red
shadow). Our contributions can be summarized as follows:

(1) We design a method that jointly selects feature and time-instance that relevant to
failure from multivariate multi-source temporal data.

(2) To address label uncertainty, we propose dynamic and directional label diffusion
(DDLD) which corrects timestamps that are falsely labeled as “failure-relevant”,
and thus locates the true ‘failure-relevant” timestamps.

(3) The selected features and instances can be used to build more accurate failure clas-
sifiers/detectors.

(4) Compared to popular methods, MAMT is more effective with a lower time/space
computational complexity.

2 Preliminaries
2.1 Background

A failure mode is a type of failure. An event (e.g. the final shutdown of the green
rounded machine in Figure 1) is a real failure case happens in one data source at cer-
tain timestamps. We assume that there exist discriminative patterns (e.g. the red shaded
pattern in Figure 1) prior to failure events that can be used to detect failure. As usually
one starts by labeling all time-instances in a time-window (exploration windows) prior
to the failure event as positive, but often only a small fraction of the instances within
certain feature space in such window are relevant to failure. The analytical goal is to
bi-select both failure-relevent features and time-instances, which can be used for failure
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detection and diagnosis. With certain domain knowledge, we assume the pattern ap-
pears no earlier than η timestamps before the events; or we make a formal assumption
here: the exploration windows contain no more than η time-instances for each event. In
practice, η is set conservatively. We will further discuss in Section 6.

2.2 Notations
For a matrixZ ∈ Rm×n,ZT denotes its transpose andZ−1 denotes its (pseudo)inverse,
while Z(i, j) denotes the element in the i-th row and j-th column, and Z(i, :) and Z(:
, j) denote its i-th row and j-th column respectively. We use entry-wise norms denoted
by ‖Z‖p, where p = 2 gives Frobenius norm ‖Z‖F =

√∑
ij Z(i, j)2 =

√
tr(ZZT ),

and p = (2, 1) gives `2,1 norm ‖Z‖2,1 =
∑m
i=1 ‖Z(i, :)‖2. For a vector [w1, ..., wm] ∈

Rm×1, diag([w1, ..., wm]) ∈ Rm×m denotes a diagonal matrix with w1, ..., wm as its
diagonal entries, while diag(Z) for a given square matrix Z is a square matrix that has
the same diagonal entries as Z but off-diagonal entries are all zeros. Im is an identity
matrix of dimension m×m.

3 Problem Formulation
3.1 Problem Setting
Consider a failure analytic task with k available events of the same failure mode. Let
any instance have m-dimensional features after feature engineering (see Section 6.1
for details). Without loss of generality, we assume η is less than the smallest time gap
between two consecutive events if there are more than one events from one source
(that is, the exploration windows from the same source are disjoint). Therefore, any
instance can belong to at most one exploration window. Also as time-dependency is
captured by the derived features, instances from different timestamps or data sources
become independent. Thus, the data matrix can be organized as X = [x1, x2, ..., xn] =
[Xa, Xb] ∈ Rm×n, where n is the number of all instances, a := kη, b := n − kη,
Xa = [x1, x2, ..., xa] ∈ Rm×a are instances from all the exploration windows, and
Xb = [xa+1, xa+2, ..., xa+b] ∈ Rm×b are all the normal instances that irrelevant to the
failure (usually b� a).

The initial exploration windows define the tentative event label matrix, given by
E ∈ {0, 1}k×n, where E(j, i) = 1 if xi is an instance from the exploration window of
the j-th event, otherwise E(j, i) = 0. Similarly, we define the time-instance weighting
matrix as Y ∈ Rk×n, where the continuous value Y (j, i) represents the relevance of
instance xi to the j-th event. Obviously, the associated label matrices can be written as
E = [Ea, Eb] and Y = [Ya, Yb], where Ea ∈ {0, 1}k×a and Ya ∈ Rk×a correspond to
the instances from Xa, and Eb = Yb = 0k×b correspond to normal instances from Xb.
Note that, Ea has exact one “1” in each column.

We then introduce the key components of our algorithm to address the feature and
label uncertainties.

3.2 Supervised Feature Selection
Suppose reliable labels Y is given, identifying event-relevant features can be addressed
by the following supervised feature selection method [9].

min
W
‖WTX − Y ‖2F + α‖W‖2,1, (1)
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where X ∈ Rm×n is the input data matrix with n instances and m features, and Y ∈
Rk×n is the (binary) class label indicator matrix with Y (j, i) = 1 if xi is labeled as
class j, otherwise Y (j, i) = 0. The solution W ∈ Rm×k gives a feature weighting
matrix, where W (i, j) represents the importance of the i-th feature to the j-th class.

The first term in Eq (1) is a smooth convex loss function, the second term represents
the sparsity of W with α controlling the trade-off. This method has been popularly
used in industrial failure analysis domain [8,21] due to its better explainability and
outperformance, so we use it as our feature selection baseline.

3.3 Label Diffusion

However, due to uncertainty in the tentative labels, the aforementioned supervised meth-
ods will fail. Most existing label noise-reduction methods [4,15] are not suitable either,
since they all assume only a small portion of labels are wrong.

Here we leverage the label propagation idea from semi-supervised learning, which
tries to learn the unknown labels by propagating information from the labeled data.
Classical Label Propagation (CLP) [11] defines a label diffusion process on a graph,
whose nodes are instances and edges represent the similarity between nodes [11]. The
diffusion starts from labeled instances, then propagates to the entire graph via random
walks. Its stationary state can be solved analytically by

min
Y

n∑
i,j=1

Ã(i, j)‖Y (:, i)− Y (:, j)‖2F + µ

n∑
i=1

‖Y (:, i)− E(:, i)‖2, (2)

where E ∈ {0, 1}k×n is a binary label initialization, Y ∈ Rk×n represents the final
(soft) label assignments, and Ã ∈ Rn×n is a normalized transition matrix with Ã(i, j)
defining the transition probability from xi to xj . Eq (2) seeks the trade-off between the
global smoothness meaning that two similar instances should share the same labels (the
first term), and the local fitness meaning that the final label should not be dramatically
different from the initialization (the second term), with µ controlling the balance.

CLP defines a symmetric diffusion process. However, a unique challenge in failure
analysis is the asymmetric uncertainty assumption, that is the uncertainty only comes
from Ea. To exploit this property, we propose a directional label diffusion (DLD) pro-
cess, which allows to correct the initial positive labels through information propagation.
The details of DLD will be discussed in Section 4.1.

3.4 Formal Definition

With the baseline solution suite, the goal of our Multi-view Failure Analysis on Multi-
variate Time-series Data (MAMT) can be stated as to identify the failure-relevant fea-
tures and time-instances from massive multi-sourced data. Or more formally, to solve a
feature score matrix W ∈ Rm×k, and an instance score matrix Y ∈ Rk×n (or equiva-
lently Ya ∈ Rk×a) that minimize the following loss function,

M(W, Ŷ ) = ‖WTXB − Ŷ B‖2F + α‖W‖2,1︸ ︷︷ ︸
(I)
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+ δ

[ n∑
i,j=1

Ã(i, j)‖Ŷ (:, i)− Ŷ (:, j)‖2F + µ

n∑
i=1

‖Ŷ (:, i)− E(:, i)‖2
]

︸ ︷︷ ︸
(II)

+ γ ‖Ŷ T ‖2,1︸ ︷︷ ︸
(III)

(3)

where Ŷ = Y ◦ E is the Hadamard product of Y and E, and B = diag([β1a, 1b])
is the instance weights in a diagonal format with β being the relative weight for all
instances in Xa. Eq (3) simultaneously addresses feature selection (Term I) and label
correction (Term II). Meanwhile, it also seeks sparsity in selected instances (given by
the `2,1 norm regularization on Ŷ T in Term III). The resulting score matrices W (i, j)

and Ŷ (j, i) represent the contribution of the i-th feature and instance to the j-th event.
Remark 1: The reason to bring Ŷ is to “suppress” Yb; and the reason to bringB is to

introduce cost-sensitive objective to handle data imbalance issue between Xa and Xb.
Remark 2: Although each event may have its respective feature weights, features

weights from different events are not totally independent, as they are from the same
failure mode. Therefore, we want to find consistent event-related features across all
events. Eq (3) adopts two strategies to enforce the global consistency: the parameter α
controls the global row sparsity of W , and the normalized transition matrix Ã controls
global diffusion process.

Remark 3: In a failure analysis task, interpretability is usually of high priority. The
objective is for any given number p and q, provides the top-p features that characterize
the most separable pattern between Xb and the q most representative event instances in
Xa.

4 Problem Solution

(a) Classical Label Propagation (CLP) (b) Directional Label Diffusion (DLD)

Fig. 2. The difference between our proposed DLD and standard CLP. In the left most plots, red
and blue points are instances initially labeled as “1” and “0”. In CLP, both red and blue propa-
gate out along the edges. But in DLD, red label can either stay with itself, or diffuse out, while
transitions from blue to red or between red nodes are not allowed. As a result, DLD successfully
corrects the mislabeled “1”s in (b).

4.1 Directional Label Diffusion
In the initial setting, only the positive labels are assumed to be uncertain. Our goal is
to correct the wrong positive labels. We propose an asymmetric Directional Label
Diffusion (DLD) based on a directional random walk (Figure 2(b)), in contrast to the
omnidirectional random walk used in the CLP (Figure 2(a)).
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Given the whole dataset X = [Xa, Xb] ∈ Rm×n with m features and n instances,
of which Ya ∈ {0, 1}k×a is initially labeled as “1” for one event, and Yb ∈ 0k×b are all
“0” to start with. We construct an instance transition matrix A ∈ Rn×n and split it into
four blocks

A =

[
Aaa Aab
Aba Abb

]
, (4)

where Aaa describes the transition within Xa, Aab describes the transition from Xa to
Xb, and so forth.

We assume the instances in Xa that carry wrong positive labels are close to (partial
of) Xb on all feature subspace, and only those labeled correctly are separable from
Xb in certain feature subspace. Therefore in the diffusion process, we hope that the
wrong “1”s are smoothed out through their “0” neighborhood and the right “1”s can be
maintained. Specifically, we allow the “1” labels to diffuse from Xa to Xb only. Also
we ignore the diffusion within Xb since we assume all “0”s are labeled confidently.
Furthermore, within Xa, we only allow self-loops so that right “1”s can be conserved
during diffusion process. In other words, diffusion from each instance in Xa to Xb

are independent, because transition between two instances in Xa are not defined. As a
result, A in our DLD is defined as

A =

[
diag(Aaa) Aab

0ba 0bb

]
, (5)

where diag(Aaa) only keeps the diagonal of Aaa, and the original Aba and Abb are set
to be 0 matrix. Figure 2(b) illustrates our proposed DLD. By using Eq (5), entries of Ŷa
will be decreased and the wrong “1”s will be decreased much faster as we dissipate the
confidence. As a result, the wrong positive labels would be corrected and only the right
ones would be conserved. Such instance transition matrix A by DLD will be used in Eq
(3).

4.2 Proposed Algorithm
We now present an iterative solution to solve Eq (3). By rewriting the Term II of Eq
(3) in matrix form, δtr(Ŷ (In − Ã)Ŷ T ) + µδtr(Ŷ − E)(Ŷ − E)T , it is easy to verify
that the loss function M is jointly convex in W and Ŷ , so a global optimal solution
exists. It is difficult to optimize W and Ŷ simultaneously. Therefore we adopt an alter-
nating and iterative optimization procedure, which works well for a number of practical
optimization problems[15].
Given Ŷ, optimize W. Given Ŷ , the optimal W can be computed by minimizing the
following objective function

M(W ) = ‖W>XB − Ŷ B‖2F + α‖W‖2,1 + const wrt W. (6)

The update rule for W at each iteration is given by

Theorem 1. When fixing Ŷ , W can be obtained by

W = (XB2X> + αDW )−1(XB2Ŷ >), (7)

whereDW is a diagonal matrix with the i-th diagonal element asDW (i, i) = 1
2‖W (i,:)‖2 .
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Proof. The cost function (without constant term) in Eq (6) can be written as

L(W ) = tr(W>XB2X>W − 2W>XB2Ŷ >) + α‖W‖2,1.

This is quadratic (thus convex) in W , so taking the partial derivative ofM

∂L(W )W = 2XB2X>W − 2XB2Ŷ > + 2αDWW.

and setting it to be 0 yields the update rule as in Eq (7).

Given W, optimize Ŷ. Given W , the optimal Ŷ can be computed by minimizing the
following objective function

M(Ŷ ) = min
Ŷ
‖W>XB − Ŷ B‖2F + γ‖Ŷ >‖2,1

+ δ

[ n∑
i,j=1

Ã(i, j)‖Ŷ (:, i)− Ŷ (:, j)‖2F + µ

n∑
i=1

‖Ŷ (:, i)− E(:, i)‖2
]
. (8)

Below is the update rule for Ŷ in each iteration.

Theorem 2. When fixing W , Ŷ can be obtained by

Ŷ = (W>XB2 + δµE)(B2 + γDŶ > + δL̃+ δµIn)−1, (9)

whereDŶ > is a diagonal matrix with the i-th diagonal element asDŶ >(i, i) = 1
2‖Ŷ (:,i)‖2

,

and L̃ = In − Ã is a Laplacian matrix of Ã from Section 4.1.

Proof. We rewrite the cost function in Eq (8) as

L(Ŷ ) = tr(Ŷ B2Ŷ > − 2W>XB2Ŷ >) + γ‖Ŷ >‖2,1

+ δtr

[
Ŷ L̃Ŷ > + µ(Ŷ − E)(Ŷ − E)>

]
. (10)

The partial derivative of L(Ŷ ) for Ŷ is therefore

∂L(Ŷ )Ŷ = 2Ŷ B2 − 2W>XB2 + 2γŶ DŶ >

+ 2δŶ L̃+ 2δµ(Ŷ − E). (11)

Since Eq (10) is convex, setting the above partial derivative to zero gives us Eq (9).

The directional label diffusion is essential for correcting the initial labels and it
relies on the accuracy of the transition matrix A. Here we introduce a dynamic process
to build a more adaptive A by considering the most current feature weighting. Within
each iteration, once the W got updated we use it to attach importance to each feature.
In other words,A is being updated during the optimization process. TheAmatrix at the
t-th iteration, At, is built upon a weighted dataset X>Wt where Wt is the W matrix at
the t-th iteration. Therefore our proposed Dynamic and Directional Label Diffusion
(DDLD) is controlled by the following (time-varying) transition matrix

At =

[
diag(X>a WtWt

>Xa) X>a WtWt
>Xb

0ba 0bb

]
, (12)

where we utilize the traditional linear kernel by default. For the non-linear problem,
non-linear kernels such as Gaussian kernels could be used in a similar way.
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4.3 Efficient Implementation
The running complexity is determined by Eq (7), (9), and (12). When the number of
instances n is large, each iteration consumes a lot of time and memory. In this section
we introduce an efficient implementation by taking advantage of the sparsity in Ŷ and
A.

Proposition 1. Eq (7) can be rewritten as

W = (XbX
>
b + β2XaX

>
a + αDW )−1(β2XaY

>
a ). (13)

The label update rule in Eq (9) only depends on the part corresponding toXa. Since
the other part in Ŷ corresponding to Xb is always suppressed by E in Ŷ = Y ◦ E. We
then have the following:

Proposition 2. Ya can be extracted from Eq (9) by

Ya = (W>XaB̄ + δµE)(B̄ + γD
Ŷa

> Īan + δL̄+ δµĪan)−1, (14)

where B̄ = [diag(β21a), 0ab] ∈ Ra×n, Īan = [Ia, 0ab] ∈ Ra×n, and L̄ ∈ Ra×n is the
upper part of L̃.

Both Proposition 1 and 2 are easy to prove. To save space we omit the details. Now
we summarize our final Algorithm 1. Given b � max(a,m), the time complexity of
each iteration is O(amb+ a2b+m2b) and space complexity is O(a2 + ab).

Algorithm 1: MAMT
Input: X , E, α, β, γ, δ, µ,
X = [Xa, Xb] ∈ Rm×n where n is #instances and m is #features, while Xa ∈ Rm×a

corresponds to the instances initially labeled as “1” and Xb ∈ Rm×b are those initially
labeled as “0” (usually b� a). And E ∈ Rk×n to be the initial event labels, where
E(j, i) = 1 if xi is initialized as one of the event instances for the j-th event, otherwise
E(j, i) = 0.
Output: Feature weight W ∈ Rm×k and instance weight Ya ∈ Rk×a.

1 Initialize Y = E and Ya to be the first a columns of Y ;
2 Initialize DW = Im;
3 while Not convergent do
4 Calculate W using Eq (13) ;
5 Calculate L̃ = In − Ã where Ã = D−1A and A is from Eq (12) ;
6 Calculate Ya using Eq (14) ;
7 Update Y by Y = [Ya, 0b] ;
8 end while ;

5 Related Work and Discussion
Our problem is unique in the following aspects: 1) it simultaneously conducts instance
selection (to remove label uncertainty) and feature selection while begins with very



Failure Analysis on Multivariate Time-series Data given Uncertain Labels 9

rough label initialization; 2) data may come from multiple sources which involve healthy
and event ones. Here we introduce the most related work and discuss accordingly.

Our problem definition can be viewed as an extension of multiple instance learning
to time series with feature selection. Many works have been done on computer aided
diagnosis or image analysis [12,7] with global consistency as constraint. Comparatively,
our setting is flexible as we allow each event case to have its own feature and instance
weighting.

Unsupervised feature selection has been widely studied [19,2]. But they don’t con-
sider instance weighting. Some researches proposed feature and instance selection in
the same framework [20] based on global normal distribution only. When applied to
our problem setting, they could not differentiate the anomalous part from normal.

(Semi-)supervised learning can learn from the label initialization [9,18]. Classic
label propagation (CLP) [17,11] shed insights into the design of our algorithm, but
none of them focuses on both feature/instance selection. Furthermore, CLP is semi-
supervised, while our problem is more close to supervised learning. Another key differ-
ence is that, CLP assumes that the initial labels are truly reliable, while in our problem
setting the positive label may contain wrong labels and our goal to correct them and
learn a more accurate model.

Researches have been focusing on time series event analysis [16,1,3], many of
which are built upon auto-regression (e.g. ARIMA, VAR). Cheng et.al. proposed a
ranking causal anomaly detection based on vanishing correlations on sensor graph [3].
It assumes that there exists an invariant network on sensors/features, which is not true
in many real world problems where the normal data usually contains different patterns
and the underlying distribution changes over time. And it is only for a single data source
analysis. Comparatively, our MAMT allows dynamic patterns in normal data and it is
capable to build one single model for multiple data sources. The method by Batal et al.
[1] converts time series into intervals of temporal abstractions and detects discrimina-
tive patterns according to predefined abstract states. But it is sensitive to the setting of
abstract states and cannot handle high dimensional data. On the contrary, MAMT di-
rectly learns the weight of features and is well applicable to a large number of features.

6 Experiment
6.1 Experiment Setup
Baseline methods
We consider five categories of baselines as follows.
MI-RVM [12]: a multiple instance learning algorithm with feature selection, which is
completely automatic and does not require tuning any parameters. Coselect [15]: uses
E as initial labeling seed but iteratively filters out the noisy labels with high resid-
uals between predicted and observed labels. SVM-FS: trains support vector machine
(SVM) on all X (Xa and Xb) with initial label E, then relabels the top instances of
Xa as 1 (instance selection) according to their predicting scores, and finally performs
the supervised `2,1 norm-based feature selection given by Eq (1) with Xb labeled as 0.
One-class SVM (or 1SVM) [14] and Gaussian Mixture Model (GMM)-FS [10]: train on
true normal dataXb only, then label the most anomalous instances ofXa as 1 (instance
selection), and finally perform supervised `2,1 feature selection with Xb labeled as 0 4.

4 Although some anomaly detection methods like 1SVM also output feature weight, the weights
are purely based on the normal set distribution (i.e., Xb here). As our goal is to use the
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Table 1. Baseline Methods

Description Methods
#1 Multiple instance learning MI-RVM [12]
#2 Iteratively update feature weights and instance

weights
Coselect [15]

#3 Perform (supervised) classification first and fea-
ture selection later

SVM-FS

#4 Perform (unsupervised) anomaly detection first
and feature selection later

1SVM-FS [14], GMM-FS [10]

#5 Perform feature selection first and anomaly de-
tection later

FS-GMM

FS-GMM: first performs supervised `2,1 feature selection with the initial label E, and
then performs GMM anomaly detection (trained on Xb and tested on Xa) on the top
features subspace to choose the most anomalous instances (instance selection).

We do not include Classical Label Propagation (CLP) as baseline here because it is
semi-supervised method and therefore not applicable in our problem setting.

In model training, we use linear kernel for all the SVM (i.e. libsvm) due to its
popularity and interpretability in industry [6,13]. Specifically, i) all the parameters in the
baselines are tuned to get the best performance; ii) the number of components for GMM
is set to be six; iii) the linking graph R in Coselect is constructed with R(i, j) = 1 if xi
and xj belong to the same event in Xa, zero otherwise. As for our MAMT, we choose
the default regularization parameters in Algorithm 1 as: α = n/m, β =

√
b/a, γ = 1,

δ = 1 and µ = 0.3. The selection is motivated by balancing the sample sizes from
normal and faulty classes; however, our sensitivity study in Section 6.4 indicates the
algorithm performance is reasonably stable to such parameters tuning.

The selection of a (exploration window size) usually requires field knowledge. Gen-
erally it should not be either too small (not to exclude the failure-relevant instances) or
too large (not to include other failure-irrelevant anomalies).

Table 2. Dataset summary: number of data sources, events(k), features(m), initial event
instances(a) and normal instances(b).

data name # sources # k # m # a # b
Data A 1599 12 77 (s=11) 3452 2893581
Data B 135 22 90 (s=12) 31680 2321200

Real world dataset
We use two industrial datasets to evaluate the algorithm performance (dataset sum-
marized in Table 2). In the first dataset, sensor data from a fleet of 1599 engines are
available. This fleet have 2 years running life on average, and 12 engines have demon-
strated a thrust deficit problem after certain usage. The sensor data were recorded two

reweighted (or selected) features to distinguish the abnormal patterns in Xa, the supervised
feature selection is more suitable.
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times a day, and contain 11 raw measurements, including engine fan speed, compres-
sor pressure and temperature, exhaust gas temperature, oil temperature, fuel flow and
vibration parameters and so on. The second dataset was collected from electrical pump
system that includes a fleet of 135 pump machine, among which 22 have pump failure
after certain usage. The sensor data were recorded at a frequency of every 30 minutes.
There are 12 measurements including electric current, intake pressure and temperature,
output frequency, vibration and voltage parameters. Domain experts believe that the ex-
ploration window should not exceed 3 months for the first dataset and 1 month for the
second dataset, and the value of a was set accordingly.
Time-series feature construction
We embed the temporal dependency into feature space with temporal feature engineer-
ing. Different methods (e.g. EMD, FFT) have been explored [5]. Here we use sliding-
window-based constructions. Given the window size ρ, each operation g is an algorithm
that takes a time series window (x′1, x

′
2, ..., x

′
ρ) as input, and outputs a single number.

The x′i is usually univariate or bivariate. Here we apply auto-correlation (of univari-
ate raw sensor) and cross-correlation (of pairwise raw sensors). Together with the raw
sensor record, the dataset dimension becomes m = 2s + s(s − 1)/2 given s as the
number of raw sensors. The setting of ρ should involve domain knowledge as well. In
our experiments we set ρ = 20, and each dimension of X is then scaled into [0, 1].
Evaluation method
The biggest challenge in evaluating failure analysis is the limited ground truth. There
are two ways to verify the selected features/instances: one is by domain expert exam-
ination, and the other is by checking the classification capability upon selected fea-
tures/instances. We show the latter comparison in Figure 3, but also discuss the former
in Section 6.3. In detail, our evaluation method is designed to test the event classifier
developed with the selected top q-instances and p-features. The value of p and q are
selected in advance, and usually set for the interpretability requirement and investiga-
tion budget. In our problem, we also got the insights from industrial domain experts.
Nevertheless, the numerical experiments also indicates that the MAMT is reasonably
stable for p and q tuning (as shown in Figure 3).

Having the classifiers from each methods, we evaluate their performance by the
leave-one-out cross-validation (LOOCV). Every time we randomly train on k−1 events
to generate the top instances and features; then a linear SVM classifier is constructed.
The classifier is tested on the left-out event, and detection quality is measured by pre-
cision and recall. In particular, a detection is a true positive if a predicted value “1” is
obtained within three months prior to the final failure (effective event detection), other-
wise it is false positive. The recall value equals to one if a model successfully predicts
the event with a lead-time no longer than predefined window (longer lead-time is con-
sidered as irrelevant or false positive), and otherwise equals to zero.

6.2 Experiment Result Analysis
Besides the baselines in Table 1, we also included a linear SVM without feature/instance
selection to show the necessity of feature/instance selection. Figure 3 shows the perfor-
mance with different number of features (when fixing q = 5) and different number of
instances (when fixing p = 2). There are a few importance observations:

(1) Classifiers upon bi-selection clearly outperform simple SVM without any selection.
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(2) MAMT gives the best classifier with consistently the highest precision and recall.
(3) MAMT has relatively low false positive rate. For Data A, the false positive by

MAMT include only four data sources on average, which is much lower than the
false positive by the other that involve more than eight data sources. For Data B, the
false positive by MAMT include only three data sources on average, but the second
best baseline has more than nine on average.

(4) The precision/recall usually drop in the end with large number of features/instances.
It is because more irrelevant features/instances introduce more noise. This is dif-
ferent from the standard binary classification, for which the performance usually
increases (both precision and recall) as more relevant instances are used for train-
ing, if the labels are reliable.

(5) In Figure 3, precision/recall by MAMT usually reach its top performance with in-
termediate number of features/instances. This suggests that our MAMT perform
better due to the combination of both better feature selection and better instance
labelling.

6.3 Identified Features by MAMT
For Dataset A, the top features by MAMT are edge deteriorations and exhaust gas
temperature. The domain experts confirmed that they were physically responsible to
the engine thrust deficit problems. While the top features from Dataset B by MAMT
are relatively high or low intake temperature and motor temperature, which are also
confirmed as physically driven features of pump failure by domain experts. On the
other hand, the top features by the other baselines are either physically irrelevant or
incomplete compared against our MAMT selection.

6.4 Parameter Sensitivity and Scalability Analysis
Although MAMT requires some user-defined parameter (α, β, γ, δ), we observe that
the MAMT performs stably in a wide range of values in Figure 4, which illustrates the
precision/recall value by respectively fixing two of the four parameters (α, β, γ, δ) and
using grid search on the rest two. Each parameter is timed by a base-10 power scale.

Figure 5 shows the scalability comparison with a simulation dataset, in which we
change the size of Xb, the key affecting factor for complexity, while holding the rest
parameters fixed. The linear SVM (libsvm) training time is non-linear, and Coselect
requires to build a full instance graph, therefore they are not scalable. With the fast
implementation in Section 4.3, MAMT has the second best scalability. FS-GMM is the
fastest since its GMM is only trained on the selected feature subspace, making it more
efficient than GMM-FS which trains on the full feature space.

7 Conclusion
This paper presents a failure-relevant feature/time-instance selection method for ma-
chine failure detection and analysis on multivariate temporal data. Different from the
standard supervised methods, MAMT identifies the most relevant features and time-
instances which can be used for better classification. Furthermore, MAMT can in-
volve multiple data sources, which is difficult to any uni-source analytics. We show
that MAMT is effective and efficient, verified by theoretical analysis and industrial ex-
periments.
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(a) Data A: Precision across different # in-
stances

(b) Data A: Recall across different # instances

(c) Data A: Precision across different # fea-
tures

(d) Data A: Recall across different # features

(e) Data B: Precision across different # in-
stances

(f) Data B: Recall across different # instances

(g) Data B: Precision across different # fea-
tures

(h) Data B: Recall across different # features

Fig. 3. Classification performance of each method with different p (# top features) and q (# top
instances).
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(a) precision: α, β (b) recall: α, β

(c) precision: γ, δ (d) recall: γ, δ

Fig. 4. Parameter sensitivity analysis

Fig. 5. Scalability Comparison.


