SAND2015- 10654PE

Strategies for Next Generation HPC Applications and Systems

Michael A. Heroux
Scalable Algorithms Department
Sandia National Laboratories

SNL Collaborators: Erik Boman, Marc Gamell, Carter Edwards, James, Elliot, Mark
Hoemmen, Siva Rajamanickam, Keita Teranishi, Christian Trott

IDEAS Project: Lois Mclnnes, David Bernholdt, David Moulton, Hans Johansen

Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin company, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

Sandia National Laboratories

Outline

* Background.

« “Easy” and “Hard".

« SW Engineering and Productivity.
 Application Design and Productivity.
* Productivity Incentives.

Sandia National Laboratories

The work ahead of us: Threads and vectors
MiniFE 1.4 vs 2.0 as Harbingers

3

vs Solver Speedup

0 Typical MPI-only run: MiniFE: Setup

Balanced setup vs
solve

0 First MIC run:
Thread/vector solver
No-thread setup

0 V 2.0: Thread/vector ——

Lots of work: "

= Data placement, const 0o
[restrict declarations, |
avoid shared writes, find
race conditions, ...

Unique to each app

Setup
Solve::SpMV
Solve::DOT
Solve::AXPY

50.0

Time (sec)

40.0

0.0

V 1.4/M)C-Vec V 2.0/M|C-NoV V 2.0/MAC-Vec
Version/System

Sandia National Laboratories

“Easy” Work in Progress

* Thread-scalable algorithms:
— Turning out to be feasible.
— Clever ideas: Fast-ILU (Chow, Anzt, Rajamanickam, etc.)
— Lots to do, but steady progress
— Much evidence in today’s talks.
* Current Thread Programming Environments:
— C++, OpenMP, others: Working.
— Runtimes: Still a lot of work, but progress.

* Lots to do, but community is focused.

111} Sandia National Laboratories

Trilinos/ShyLU and Subdomain Solvers : Overview
Led by Siva Rajamanickam, Sandia

P}
Compute \ {PZ{ \, E
Node 1 \ ||| P Procs] S0 on the Amesos?2 lfpack2
Sl \ {PS{ i ad " matrix)
domain1 \ \ | 2 mres ____________]
i ShyLU
_________________________ irllesd)
P6 | ompute | | 5
| o} Sl ey KLU2 Basker = Tacho FAST
%P7 % Sub domain2 J | I LU
‘ N KokkosKernels — J
« MPI+X based subdomain solvers SGS, Tri-Solve (HTS)

— Decouple the notion of one MPI rank as one subdomain: Subdomains can span
multiple MPI ranks each with its own subdomain solver using X or MPI+X

— Epetra based solver, Tpetra interface still being developed
 Trilinos Solver Factory a big step forward to get this done (M. Hoemmen)

» Subpackages of ShyLU: Multiple Kokkos-based options for on-node parallelism

— Basker : LU or ILU (t) factorization (J. Booth)

— Tacho: Incomplete Cholesky - IC (k) (K. Kim)

— Fast-ILU: Fast-ILU factorization for GPUs (A. Patel)
» KokkosKernels: Coloring based Gauss-Seidel (M. Deveci), Triangular Solves
+ Experimental code base under active development.

111} Sandia National Laboratories

More “Easy” Work in Progress

* Resilience:
— CPR: Compression, NVRAM, Offloading.
« Steady progress, long life extension.

— LFLR: Good progress with ULFM.

« Example Paper: Local Recovery And Failure Masking For Stencil-
based Applications At Extreme Scales

— Marc Gamell, Keita Teranishi, Michael A. Heroux, Jackson Mayo, Hemanth Kolla, Jacqueline Chen,
Manish Parashar

http://sc15.supercomputing.org/schedule/event detail?evid=pap682
(Thursday, 1:30)

« System-level error detection/correction.
« Many unexploited options available. Talk with Al Gara, Intel.
« Conjecture:

— System developers will not permit reduced reliability until the
user community produces more resilient apps.

111! Sandia National Laboratories

“Hard” Work

* Billions (yes, billions) SLOC of encoded science &
engineering.
 Challenge:
— Transfer, refactor, rewrite for modern systems.
— Do so with modest investment bump up.
— Deliver science at the same time.
— Make the next disruption easier to address.

ﬂ'l Sandia National Laboratories

From the NSCI Announcement (Fact sheet):

Improve HPC applieation developer productivitv.

Current HPC systems are very difficult to program, requiring careful measurement and
tuning to get maximum performance on the targeted machine. Shifting a program to a
new machine can require repeating much of this process, and it also requires making
sure the new code gets the same results as the old code. The level of expertise and effort
required to develop HPC applications poses a major barrier to their widespread use.

Government agencies will support research on new approaches to building and
programming HPC systems that make it possible to express programs at more abstract
levels and then automatically map them onto specific machines. In working with
vendors, agencies will emphasize the importance of programmer productivity as a
design objective. Agencies will foster the transition of improved programming tools
into actual practice, making the development of applications for HPC systems no more
difficult than it is for other classes of large-scale systems.

https://www.whitehouse.gov/sites/default/files/microsites/ostp/nsci_fact_sheet.pdf

111! Sandia National Laboratories

Productivity
Better, Faster, Cheaper: Pick all three

Confluence of trends

10

 Fundamental trends:

— Disruptive HW changes: Requires thorough algorithm/code
refactoring

— Demands for coupling: Multiphysics, multiscale
 Challenges:

— Need refactorings: Really, continuous change

— Modest app development funding: No monolithic apps

— Requirements are unfolding, evolving, not fully known a priori
* Opportunities:

— Better design and SW practices & tools are available

— Better SW architectures: Toolkits, libraries, frameworks

 Basic strategy: Focus on productivity

ﬂ'l Sandia National Laboratories

I D E A | Interoperable Design of Extreme-
productivity scale Application Software (IDEAS)

Enable increased scientific productivity, realizing the potential of
extreme- scale computing, through a new interdisciplinary and agile
approach to the scientific software ecosystem.

Terrestrial ecosystem use cases tie IDEAS to modeling and
simulation goals in two Science Focus Area (SFA) programs and
both Next Generation Ecosystem Experiment (NGEE) programs
in DOE Biologic and Environmental Research (BER).

Address confluence of trends in hardware and
increasing demands for predictive multiscale,
multiphysics simulations.

Respond to trend of continuous refactoring with
efficient agile software engineering
methodologies and improved software design.

Use Cases:
Terrestrial
Modeling

ASCR/BER partnership ensures delivery of both crosscutting methodologies and
metrics with impact on real application and programs.

Interdisciplinary multi-lab team (ANL, LANL, LBNL, LLNL, ORNL, PNNL, SNL)
ASCR Co-Leads: Mike Heroux (SNL) and Lois Curfman Mclnnes (ANL)
BER Lead: David Moulton (LANL)

Topic Leads: David Bernholdt (ORNL) and Hans Johansen (LBNL)
Integration and synergistic advances in three communities deliver scientific

productivity; outreach establishes a new holistic perspective for the broader
scientific community.

Software
Productivity for
xtreme-Scale
Science

Extreme-Scale

Methodologies
for Software

Development Kit

Productivity (xSDK)

U.S. DEPARTMENT OF

ENERGY

Office of Science

0) g Y o] .
“each gng o www.ideas-productivity.org 'L Sand

12

IDEAS project structure and interactions

DOE Program Managers

ASCR: Thomas Ndousse-Fetter
BER: Paul Bayer, David Lesmes

BER Lead: J. David Moulton (LANL)

IDEAS: Interoperable Design of Extreme-scale
Application Software

ASCR Co-Leads: Mike Heroux (SNL) and Lois Curfman Mclnnes (ANL)

Executive Advisory Board
John Cary (Tech-X)
Mike Glass (SNL)
Susan Hubbard (LBNL)
Doug Kothe (ORNL)
Sandy Landsberg (DOD)
Paul Messina (ANL)

BER Use Cases
Lead: J. David Moulton (LANL)
Carl Steefel (LBNL) *1
Scott Painter (ORNL) *2
Reed Maxwell (CSM) *3
Glenn Hammond (SNL)
Tim Scheibe (PNNL)
Laura Condon (CSM)
Ethan Coon (LANL)
Dipankar Dwivedi (LBNL)
Jeff Johnson (LBNL)
Eugene Kikinzon (LANL)
Sergi Molins (LBNL)
Steve Smith (LLNL)
Carol Woodward (LLNL)
Xiaofan Yang (PNNL)

Methodologies for

Software Productivity
Lead: Mike Heroux (SNL)
Roscoe Bartlett (ORNL)
Todd Gamblin* (LLNL)
Christos Kartsaklis (ORNL)
Pat McCormick (LANL)
Sri Hari Krishna Narayanan (ANL)
Andrew Salinger* (SNL)
Jason Sarich (ANL)
Dali Wang (ORNL)
Jim Willenbring (SNL)

Extreme-Scale Scientific Software

Development Kit

Lead: Lois Curfman Mclnnes (ANL)
Alicia Klinvex (SNL)

Jed Brown (ANL)

Irina Demeshko (SNL)
Anshu Dubey (LBNL)
Sherry Li (LBNL)

Vijay Mahadevan (ANL)
Daniel Osei-Kuffuor (LLNL)
Barry Smith (ANL)

Mathew Thomas (PNNL)
Ulrike Yang (LLNL)

Outreach and Community

Lead: David Bernholdt (ORNL)
Katie Antypas* (NERSC)

Lisa Childers* (ALCF)

Judy Hill* (OLCF)

IDEA

productivity

* Liaison
*1 *2 *3: Leads: Use Cases 1, 2, 3

BER Terrestrial Programs

DOE Extreme-scale Programs

DOE Computing Facilities

Crosscutting Lead: Hans Johansen (LBNL) Sept 2015
R T T T T T el s ik N Vi i w7, I T s = - o hE i
i SFAs NGEE Exascale Co-Design ASCR Math & CS ALCF i
! |
i CLM ACME Exascale Roadmap SciDAC NERSC OLCF i b s DEPARTMENT OF
g Y ENERGY
; I

Office of Science

. Use cases: Multiscale, multiphysics
~ representation of watershed dynamics

13

» Use Case 1: Hydrological and biogeochemical
cycling in the Colorado River System

» Use Case 2: Thermal hydrology and carbon
cycling in tundra at the Barrow Environmental
Observatory

» Use Case 3: Hydrologic, land surface, and
atmospheric process coupling over the
continental United States

» Leverage and complement existing SBR and TES

Elevation in meters
High 4314

programs: P —
- L B N L a n d P N N L S FAS %ﬁﬁ%ﬁ.ﬁx‘mm 0 2 4 [EMILES
— NGEE Arctic and Tropics TR —

» General approach:
— Leverage existing open source application codes
— Improve software development practices

— Targeted refactoring of interfaces, data structures,
and key components to facilitate interoperability

— Modernize management of multiphysics integration
and multiscale coupling

IDEAS interconnections

Use Cases:

Terrestrial

14 — 77\ Modeling N

Software \

Productivity for 4

Extreme-Scale
. L L] L] S .

» Use cases: Drive efforts. Traceability (iooome), ° fosmeme scae
for Software $cientific Softwa.r
effO rtS e D eve(l)(:ggleir;t Ki

— But generalized for future efforts \
* Methodologies (‘HowTo") for SWP:

— Infrastructure, testing, porting, refactoring, portability, etc.

— Workflows, lifecycles: Document and formalize. Identify best
practices

« XxSDK: frameworks + components + libraries
— Build apps by aggregation and composition
» Qutreach: Foster communication, adoption, interaction

* First of a kind: Focus on software productivity

111} Sandia National Laboratories

SW Engineering & Productivity

Scientific Software Engineering

“A scientist builds in order to learn;
an engineer learns in order to build.”

- Fred Brooks

Scientist: Barely-sufficient building.
Engineer: Barely-sufficient learning.

Both: Insufficiency leads to poor SW.

Sandia National Laboratories

Software Engineering and HPC:
Efficiency vs Other Quality Metrics

How focusing Source:
on the factor § G e :E’ . § Code Complete
below affects g _‘__z'\ ('c) —“f é\ "Qf-:, g é Steve McConnell
the factor to & = ;5 ﬁ‘ g" é‘ § 2
the right S|S|T|2]|E(Z2]|=2]|2
Correctness f * * f *
Usability f +(1
t<
C Efficiency + f * * + + >
—_— —
Reliability 1 t (1 R/
Integrity * i)
Adaptability v |4)
Accuracy + v/ 1 VitV Helps it 4
Robustness + t * * * t * t Hurts it +

TriBITS: One Deliberate Approach to SE4CSE

Component-oriented SW Approach from Trilinos, CASL Projects, LifeV, ...
Goal: “Self-sustaining” software

————— TrBITS Lifecycle Maturity [
Levels

0: Exploratory

1: Research Stable

2. Production Growth

- Enable Reproducible Research: Minimal software 3: Production Maintenance
quality aspects needed for producing credible -1: Unspecified Maturity
research, researchers will produce better research that will stand a better chance of being
published in quality journals that require reproducible research

- Allow Exploratory Research to Remain Productive:
Minimal practices for basic research in early phases

- Improve Overall Development Productivity: Focus on the right SE practices at the
right times, and the right priorities for a given phase/maturity level, developers work more
productively with acceptable overhead

- Improve Production Software Quality: Focus on foundational issues first in early-
phase development, higher-quality software will be produced as other elements of
software quality are added

- Better Communicate Maturity Levels with Customers: Clearly define maturity levels
so customers and stakeholders will have the right expectations

111! Sandia National Laboratories

End of Life?

19
Long-term maintenance and end of life issues for Self-Sustaining Software:
« User community can help to maintain it (e.g., LAPACK).

« |f the original development team is disbanded, users can take parts they
are using and maintain it long term.

« Can stop being built and tested if not being currently used.

» However, if needed again, software can be resurrected, and continue to
be maintained.

NOTE: Distributed version control using tools like Git greatly help in reducing
risk and sustaining long lifetime.

Sandia National Laboratories

10

20

20

Addressing existing Legacy Software

* One definition of “Legacy Software”: Software that is too far from away

from being Self-Sustaining Software, i.e:
— Open-source
— Core domain distillation document
— Exceptionally well testing
— Clean structure and code
— Minimal controlled internal and external dependencies
— Properties apply recursively to upstream software

* Question: What about all the existing “Legacy” Software that we have to
continue to develop and maintain? How does this lifecycle model apply to

such software?

« Answer: Grandfather them into the TriBITS Lifecycle Model by applying

the Legacy Software Change Algorithm.

QL

Sandia National Laboratories

Grandfathering of Existing Packages

21
Agile Legacy Software Change Algorithm:
1. Identify Change Points B ¥ -t
2. Break Dependencies WORKIhia'
3. Cover with Unit Tests EFFECTIVELY
4. Add New Functionality with Test Driven Development (TDD) [T TefVataae

5. Refactor to removed duplication, clean up, etc. Mchael C. Feathers
Grandfathered Lifecycle Phases:

1. Grandfathered Research Stable (GRS) Code ’ Cost per new feature

2. Grandfathered Production Growth (GPG) Code

3. Grandfathered Production Maintenance (GPM)
Code

7

I | S

NOTE: After enough iterations of the Legacy | I
. Legacy Grandfathered Production

Software Change Algorithm the software may £ Production Maintenance

approach Self-Sustaining software and be able to Riienancs

remove the “Grandfathered” prefix. 111! Sandia National Laboratories

71

Message to This Audience

Write tests now, while (or before) writing
your intended production software.

Sandia National Laboratories

23

IDEAS ‘What is’ and ‘How to’ docs

Motivation: Scientific software teams have a
wide range of levels of maturity in software
engineering practices
— Baseline survey of xSDK and BER Use Case
teams
Approach:

— ‘What Is’ docs: 2-page characterizations of
important software project topics

— ‘How To’ docs: brief sketch of best practices

* Emphasis on "bite-sized" topics enables CSE
software teams to consider improvements at a
small but impactful scale.

Initial emphasis:
— What is CSE Software Productivity?
— What are Software Testing Practices?

— How to Add and Improve Testing in Your CSE
Software Project

» Topics in progress:
— Refactoring tools and approaches
— Best practices for using interoperable libraries
— Designing for performance portability
— Etc.

https://ideas-productivity.org/resources/howtos

What Are Software Testing Practices? |DEAS
entte Sof . productivity

The IDEAS Sc fware Productty Progec

he IDEAS Scientific

Types and granularities of testing: Software eng
testing (see Definition a at z Tes

e Verification testing: T at e
* No-change (often,

Managing and reporting on testing: Tt

How to Add and Improve Testing IDEAS
in Your CSE Software Project proguctity

Software

fixing a bug. (3) improving the design and implementation. o
usage

Prerequisites: First read the document Yhat Are Softwa

Productivty Project

Impact: Provide baseline nhomenclature and
foundation for next steps in SW productivity
and SW engineering for CSE teams

h

Sandia National Laboratories

24

Managing issues:
Fundamental software process

* |ssue: Bug report, feature request

* Approaches: Informal, less
— Short-term memory, office notepad training

— ToDo.txt on computer desktop (1 person)
— Issues.txt in repository root (small co-located team)

— Web-based tool + Kanban (distributed, larger team)
— Web-based tool + Scrum (full-time dev team)
Formal, more

I DEAS prOjeCt: training
— Jira Agile + Confluence: Turnkey web platform (ACME too)
— Kanban: Simplest of widely known Agile SW dev processes

111} Sandia National Laboratories

25

Kanban principles

* Limit number of “In Progress” tasks
* Productivity improvement:

— Optimize “flexibility vs swap overhead” balance. No
overcommitting.

— Productivity weakness exposed as bottleneck. Team must
identify and fix the bottleneck.

— Effective in R&D setting. Avoids a deadline-
based approach. Deadlines are dealt with in a
different way.

 Provides a board for viewing and managing issues

111} Sandia National Laboratories

- -|IDEAS Confluence, Jira Agile, Kanban

Pages / IDEAS Common Home

Contents:

Overview

o

Created by Michael Heroux, last modified by Jim Willenbring about an hour ago

Standard JIRA Agile Issue Type Definitions
IDEAS Issue Management Structure

Managing IDEAS Project Activities Using JIRA Agile and Kanban

Developer Guide, on

~1 Confluence site

/

| 3

HOW-4

» IDEAS Projects
rd v A
o Issue Status Kanban board Board
» Viewing Issues QUICKFILTERS: Nosubtasks NoToDo Epics Noepics [WGeLACN Outreach UseCase xSDK Only Mylssues FY15 ... Show more
Entering an IDEAS Project Activity
Managing Existing IDEAS Issues | 24 of 64 To Do 5 of 13 Selected 6 of 24 In Progress 6 of 32 Done Release...
Fd How-10 L How-22 -~ L How-7 E L How-t)
HowTo-2.1: Assess and Develop plan an agile - Based on assessment, i Hans adds IDEAS leads to =
measure SE maturity within software ecosystem lifecycle recommend use case testing JIRA and Confluence
IDEAS teams model (ASELM) for practices and infrastructure
HowTo-2.1: Establish sci... C
Fd HOw-14 11 How-2 HY
Ka n ba n Boa rd on HowTo-2.1: Measure SW Write up summary notes from =
y productivity improvement and L How-28 LI How-36 - Methodology telecon
J . . t benefits Create a Performance - Create Confluence page for -
ceeseseed Portability What-Is Document guiding IDEAS team member ceesesed
Ira SI e on how to use Jira
Fd HOw-12 L [l How-9
FO ur Col umns: HowTo-2.1: Establish HowTo-2.1: Adapt and pr... Hans yells at Procurement
" scientific software ecosystem HOW.87 csessssss about Pcard
lifecycle model -
TO D o) 4) tecvnceed Coordinate all interested L HOw-16 e
IDEAS team members to * Single repository git workflow -
Fd HOw-11 ﬂ discus Jenkins setup/use best practices. L How-18
HowTo-2.1: Develop What Is & . - - Conduct a GQM style survey
SeleCted and How To Content for C HowTo-2.1: Establish sci... refactoring opportunities and
Improving CSE SW Practices sesssssss needs of UseCases
In Pro gress || . HOW-38 L How-24 E HowTo-2.1: Establish Sci...
Fd HOow-40 Develop strategy for * Assess status of use case §8 cececseed
HowTo-2.1: Adapt and ¢ addressing contributor testing
Done provide tools & processes agreements for open-source . Ll How-19
that will enhance IDEAS & cessssssd HowTo-2.1: Assess and ... Evaluate the readiness of
HOW42 sescscscs UseCases in Identifying
- change points, Finding test
Fd HOW-41 Develop training material on ﬁ L How-26) }]D
* HowTo-2.1: Provide training how to use Jira Agile and Develop a list of future How : HowTo-2.1: Establish sci...
opportunities for IDEAS Team Kanban to topics to post on ideas- cescessss
members productivity.org
de traini... | . Ll How-3s ﬂ
L Document How the IDEAS ~ f

Project will Use Jira for Issue

Message to This Audience

Improve your issue tracking habits:

* Nothing -> Desktop/todo.txt

* Desktop/todo.txt -> clone/todo.txt

clone/todo.txt -> Git Issues

»Git Issues -> Git Issues + Kanban
or Jira + Kanban

Sandia National Laboratories

Three Application Design Strategies
for Productivity & Sustainability

Sandia National Laboratories

Strategy 1. Array and Execution
Abstraction

(1) sandia National Laboratories

Multi-dimensional Dense Arrays

 Many computations work on data stored in multi-dimensional
arrays:

— Finite differences, volumes, elements.
— Sparse iterative solvers.
* Dimension are (k,I,m,...) where one dimension is long:
— A(3,1000000)
— 3 degrees of freedom (DOFs) on 1 million mesh nodes.
* A classic data structure issue is:
— Order by DOF: A(1,1), A(2,1), A(3,1); A(1,2) ... or
— By node: A(1,1), A(1,2), ...
* Adherence to raw language arrays forces a choice.
* Physics 1,j,k should not dictate storage i,j,k.

(1) sandia National Laboratories

Y

1

Kokkos: Execution and memory space abstractions

 What is Kokkos:

— C++ (C++11) template meta-programming library, part of (and not) Trilinos.
— Compile-time polymorphic multi-dimensional array classes.

— Parallel execution patterns: For, Reduce, Scan.

— Loop body code: Functors, lambdas.

— Tasks: Asynchronous launch, Futures.
 Available independently (outside of Trilinos):

— https://github.com/kokkos/

 Getting started:
— GTC 2015 Content:

* http://on-demand.gputechconf.com/qtc/2015/video/S5166.html

* http://on-demand.gputechconf.com/qgtc/2015/presentation/S5166-H-

Carter-Edwards.pdf
— Programming guide doc/Kokkos PG.pdf.

m

Sandia National Laboratories

Message to This Audience

Consider an array/patterns library, e.q.,
Kokkos.

Sandia National Laboratories

Strateqgy 2: Application Composition

Extreme-scale Science Applications

Domain component interfaces

e Data mediator interactions.

* Hierarchical organization.

* Multiscale/multiphysics coupling.

Native code & data objects

* Single use code.

* Coordinated component use.
* Application specific.

* Meshes.
* Matrices, vectors.

Library interfaces

* Parameter lists.

* Interface adapters.
* Function calls.

=
1
1
1
1
1
1
1
1
1
1
1
1
1
:
! Shared data objects
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Documentation content
* Source markup.
* Embedded examples.

Testing content
* Unit tests.
* Test fixtures.

Build content
* Rules.
* Parameters.

Domain components Libraries

Frameworks & tools

Extreme-Scale
Scientific
Software
Ecosystem

|

SW engineering

* Reacting flow, etc. * Solvers, etc. * Doc generators. * Productivity tools.
* Reusable. * Interoperable. <+ Test, build framework. ¢ Models, processes.
| A
| J Extreme-Scale Scientific Software Development Kit (xSDK) I ?

Sandia National Laboratories

A

35

xSDK focus

« Common configure and link capabilities
— xSDK users need full and consistent access to all xXSDK
capabilities
— Namespace and version conflicts make simultaneous build/
link of xSDK difficult

— Determining an approach that can be adopted by any library
or components development team for standardized
configure/link processes

* Library interoperability
» Designing for performance portability

: | v | v :
: Domain components Libraries Frameworks & tools SW engineering :
I Reacting flow, etc. * Solvers, etc. * Doc generators. * Productivity tools.
: Reusable. * Interoperable. <+ Test, build framework. =« Models, processes. :
|

i i
1 i

| A g
_l Extreme-Scale Scientific Software Development Kit (xSDK) 'L

Standard xSDK package installation interface

3% Motivation: Obtaining, configuring, and
installing multiple independent software xSDK Build Example
packages is tedious and error prone.

Multiphysics Application C
* Need consistency of compiler (+version, options), / \
3rd-party packages, etc.

Application A Application B

Approach: Define a standard xSDK package
installation interface to which all xSDK
packages will subscribe and be tested

Accomplishments:
* Work on implementations of the standard @W)®
by the hypre, PETSc, SuperLLU, and ,

Trilinos developers

* PETSc can now use the “scriptable” Impact: Foundational step toward
feature of the installers to simultaneously seamless combined use of xSDK
install hypre, PETSc, SuperLU, Trilinos libraries, as needed by BER use
with consistent compilers and ‘helper’ cases and other multiphysics apps

llbI' aries N Sandia National Laboratories

Enabling Interoperable Biogeochemistry with
Alguimia

Several geochemistry libraries are well established in the community making
geochemistry ideal to explore componentization and interface design. Alguimia is
an interface library, and does not perform any reaction calculations.

[1 Alquimia currently assumes reactive
transport uses operator-splitting. | strong or weak coupler
[0 Fully-implicit reactive transport support is 2
being developed in collaboration with
IDEAS. PK:: 'I};mport
[1 Assists in enforcing geochemical conditions | Advection-Diffusion]
(speciation) for transport boundary
conditions ’ Alquimia Interface Library ‘
[0 Alquimia can facilitate benchmarking of

gl C-lmmistry)

Alguimia

s

Geod:e;:istry Geochemistry

geochemical capabilities in existing codes. - Eon
i !) ngine ngime
[J Geochemistry libraries, such as PFLOTRAN TSN | CranchFlow
and CrunchFlow, have implemented
interfaces to Alquimia. Schematic of the Alquimia interface library

providing uniform access to PFLOTRAN and
CrunchFlow geochemistry in Amanzi

Alquimia is open source, https://bitbucket.org/berkeleylab/alquimia @ e LT

TRILINOS COMMUNITY 2.0

Trilinos Community 2.0

 GitHub, Atlassian:
— Open source SW development, tools platforms.

— Workflows for high-quality community SW product
development.

* Trilinos value proposition:
— Included these same things, but are re-evaluating.
— Moving to GitHub.
— Supporting dual-mode package model.
* New types of Trilinos packages:
— Internal: Available only with Trilinos (traditional definition).

— Exported: Developed in Trilinos repository, available
externally.

— Imported: Developed outside of Trilinos, available internally.

!'I'l Sandia National Laboratories
ndia %

e Case studies:

Trilinos Community 2.0

— TriBITS: Was an internal package, now external.
— DTK: Has always been external.
— Kokks: Was internal. Is now developed externally, available

Internal.

— Move to GitHub: Several packages splitting off.
* |ssues to Resolve:

— Package inclusion policies: Define for each package type.

— Quality criteria: Contract between Trilinos and packages.

— Workflows: Development, testing, documentation, etc.

— Trilinos on GitHub: Almost there.

— Trilinos Value Proposition: Re-articulate Trilinos Strategic Goals

implications.

m

Sandia National Laboratories
40

Common Look-and-feel Expectations

 Consistent data management practices.
» Consistent API styles.

 Testing and other quality metric thresholds, e.g.,
coverity.

 What else?

Sandia National labgﬁtories

xSDK Minimum Compliance
Requirements:

 M1. Each xSDK compliant package must support the the standard
xSDK cmake/configure options.

* M2. Each xSDK package must provide a comprehensive test suite
that can be run by users and does not require the purchase of
commercial software

« M3. Each xSDK compliant package that utilizes MPI| must restrict its
MPI operations to MPI communicators that are provided to it and
not use directly MPI_COMM_WORLD.

* M4. Each package team must do a ‘best effort’ at portability to key
architectures, including standard Linux distributions, GNU, Clang,

vendor compilers, and target machines at ALCF, NERSC, OLCF.
Apple Mac OS and Microsoft Windows support are recommended.

« M5. Each package team must provide a documented, reliable way
to contact the development team; this may be by email or a
website. The package teams should not require users to join a
generic mailing list (and hence receive irrelevant email they must
wade through) in order to report bugs or request assistance.

*« M6 —-11...

https://ideas-productivity.org/resources/xsdk-docs: Open for public comment.

Sandia National Laboratories
42

xSDK Recommended Compliance
Requirements:

* R1. It is recommended that each package have a public
repository, for example at github or bitbucket, where the
development version of the package is available. Support
for taking pull requests is also recommended.

 R2. It is recommend that all libraries be tested with
valgrind for memory corruption issues while the test suite
IS run.

* R3. It is recommended that each package adopt and
document a consistent system for propagating/returning
error conditions/exceptions and provide an API for
changing the behavior.

* R4. It is recommended that each package free all system
resources it has acquired as soon as they are no longer
needed.

Sandia National Laboratories
43

Docker (about which | know little)

Containers vs. VMs

App B
Bins/Libs
VM Guest OS
Host OS
Server
Containers are isolated, Aop B ‘
but share OS and, where : i
appropriate, bins/libraries Bins/Libs |
A B B
Container e ; ; ;

Host OS

Docker Engine
Host OS

Server

O WEEK

111 Sandia National Laboratories

Typical Trilinos Cmake Script (edison)

cmake \

-D MPI_CXX_COMPILER="CC" \

-D MPI_C_COMPILER="cc" \

-D MPI_Fortran_ COMPILER="ftn" \

-D Teuchos ENABLE_STACKTRACE:BOOL=0OFF \

-D Teuchos_ ENABLE_LONG_LONG _INT:BOOL=ON \

-D Trilinos_ ENABLE_Tpetra:BOOL=0ON \

-D Tpetra_ ENABLE_TESTS:BOOL=ON \

-D Tpetra_ ENABLE_EXAMPLES:BOOL=0ON \

-D Tpetra_ ENABLE_EXPLICIT_INSTANTIATION:BOOL=0ON \
-D Teuchos ENABLE_EXPLICIT _INSTANTIATION:BOOL=ON \
-D TPL_ENABLE_MPI:BOOL=0ON\

-D CMAKE_INSTALL_PREFIX:PATH="$HOME/opt/Trilinos/tpetraEval" \
-D BLAS_LIBRARY_DIRS="$LIBSCI_BASE_DIR/gnu/lib" \

-D BLAS_LIBRARY_NAMES="sci" \

-D LAPACK_LIBRARY_DIRS="$LIBSCI_BASE_DIR/gnu/lib" \
-D LAPACK_LIBRARY_NAMES="sci" \

-D CMAKE_CXX_FLAGS="-03 -ffast-math -funroll-loops" \

|

Sandia National Laboratories

- & : WebTrilinos
webtrilinos matrixportal

webtrilinos matrixporta

Insert template -- select -- ¢| [insert] Or [ResetCode

Text area with 20 ¢ rowsand s ¢ columns. [Redispiay C++ Code Page [

v

Insert template -- select --

<>

\r‘sc’i[or Reset Code
Run with 1 ¢ process(es) and 1 ¢ thread(s).

Text area with 20 ¢ rowsand s ¢ columns. |redisplay
Please type your C++ code below.

Run with 1 ¢ process(es) and 1 ¢ thread(s).

Please type your C++ code below.

#include "Teuchos_ParameterList.npp”
#include "AztecOO.h"

int main(int argc, char *argv(])

{
#ifdef HAVE_MPI
MPI_Init(&argc,&argv);
Epetra_MpiComm Comm{ MPI|_COMM_WORLD);
#else
Epetra_SerialComm Comm;
#endif

Teuchos::ParameterList GaleriList;

/f The problem is defined on a 2D grid, global size is nx * nx.

VA int nx = 30;
GaleriList.set("n", nx * nx);
GaleriList.set("nx", nx);
Run Code Color Code

GaleriList.set("ny*, nx);
Epetra_Map* Map = Galeri::CreateMap("Linear", Comm, GaleriList);
Epetra_RowMatrix* A = Galeri::CreateCrsMatrix("Laplace2D", Map, GaleriList);

Run Code Color Code

This web site is hosted by St. John's University, MN.
= Credits: M. Sala, M. Phenow, J. Hu, R. Tuminaro.
’ — Last updated on June 30, 2015 - 9:53 am CDT.

This web site is hosted by St. John's University, MN.
Credits: M. Sala, M. Phenow, J. Hu, R. Tuminaro.
Last updated on June 30, 2015 - 9:53 am CDT.

Trilinos usage via Docker

* WebTrilinos Tutorial
— https://hub.docker.com/r/sjdeal/webtrilinos
* http://johntfoster.github.io/posts/peridigm-without-
building-via-Docker.html
— docker pull johntfoster/trilinos
— docker pull johntfoster/peridigm

— docker run --name peridigm0 -d -v "pwd :/output
johntfoster/peridigm \
Peridigm fragmenting_cylinder.peridigm
— Etc...

ri1| Sandia National Laboratories
T e

Message to This Audience

Consider what software ecosystem(s)
you want your software to be part of and
use.

Sandia National Laboratories

Strategy 3: Toward a New
Application Architecture

Sandia National Laboratories

Classic HPC Application Architecture

o Logically Bulk-Synchronous,

Subdomain
1 per MPI process

o Strengths: O

K0

Portable to many specific system
architectures.

Separation of parallel model (SPMD) from
implementation (e.g., message passing).

Domain scientists write sequential code
within a parallel SPMD framework.

L R SPMD
; /| 0 Basic Attributes:

Halo exchange.
Local compute.
Global collective.

Weaknesses:

Not well suited (as-is) to emerging manycore
systems.

Unable to exploit functional on-chip parallelism.
Difficult to tolerate dynamic latencies.
Difficult to support task/compute heterogeneity.

Supports traditional languages (Fortran, C).

Many more, well known.

Sandia National Laboratories

Task-centric/Dataflow Application
Architecture

o Patch: Logically connected portion of
global data. Ex: subdomain, subgraph.

o Task: Functionality defined on a patch.

o Many tasks on many patches.

ependencies = S gy -
i ny A Many per MPI process

o Strengths: = More strengths:
Portable to many specific system

architectures.

Separation of parallel model from
implementation.

Domain scientists write sequential code
within a parallel framework.

Supports traditional languages (Fortran, C).
Similar to SPMD in many ways.

Well suited to emerging manycore
systems.

Can exploit functional on-chip
parallelism.

Can tolerate dynamic latencies.

Can support task/compute
heterogeneity.

Sandia National Laboratories

=1

=9

Task on a Patch

« Patch: Small subdomain or subgraph.
— Big enough to run efficiently once its starts execution.
» CPU core: Need ~1 millisecond for today’s best runtimes (e.g. Legion).
« GPU: Give it big patches. GPU runtime does manytasking very well on its
own.

» Task code (Domain scientist writes most of this code):
— Standard Fortran, C, C++ code.

— E.g. FEM stiffness matrix setup on a “workset” of elements.
— Should vectorize (CPUs) or SIMT (GPUs).

— Should have small thread-count parallel (OpenMP)
» Take advantage of shared cache/DRAM for UMA cores.

— Source line count of task code should be tunable.

* Too coarse grain task:
— GPU: Too much register state, register spills.
— CPU: Poor temporal locality. Not enough tasks for latency hiding.
* Too fine grain:
— Too much overhead or
— Patches too big to keep task execution at 1 millisec. 1) Sandia National Laboratories

]

Portable Task Coding Environment

« Task code must run on many types of cores:
— Standard multicore (e.g., Haswell).
— Manycore (Intel PHI, KNC, KNL).
— GPU (Nvidia).
 Desire:
— Write single source.
— Compile phase adapts for target core type.
— Sounds like what?

« Kokkos (and others: OCCA, RAJA, ...):

— Enable meta programming for multiple target core architectures.

 Future: Fortran/C/C++ with OpenMP 4.
— Limited execution patterns, but very usable.

— Like programming MPI codes today: Déja vu for domain scientists.
 Other future: C++ with Kokkos/OCCA/RAJA derivative in std namespace.

— Broader execution pattern selection, more complicated.

QL

Sandia National Laboratories

Task Management Layer

* New layer in application and runtime:
— Enables (async) task launch: latency hiding, load balancing.

— Provides technique for declaring inter-task dependencies:

» Data read/write (Legion).
— Task A writes to variable x, B depends on x. A must complete before B starts.

* Futures:
— Explicit encapsulation of dependency. Task B depends on A’s future.

 Alternative: Explicit DAG management.
— Aware of temporal locality:

» Better to run B on the same core as A to exploit cache locality.
— Awareness of data staging requirements:

» Task should not be scheduled until its data are ready:
— If B depends on remote data (retrieved by A).

— Manage heterogeneous execution: A on Haswell, B on PHI.

— Resilience: If task A launched task B, A can relaunch B if B fails or times
out.

« What are the app vs. runtime responsibilities?
« How can each assist the other? 7111} Sandia National Laboratories

| g

Open Questions for Task-Centric/Dataflow
Strategies

« Functional vs. Data decomposition.

— Over-decomposition of spatial domain:

» Clearly useful, challenging to
implement.

— Functional decomposition:

» Easier to implement. Challenging to
execute efficiently (temporal locality).

» Dependency specification
mechanism.

— How do apps specify inter-task
dependencies?

— Futures (e.g., C++, HPX), data
addresses (Legion), explicit (Uintah).

» Roles & Responsibilities: App vs Libs
vs Runtime vs OS.

* Interfaces between layers.
» Huge area of R&D for many years.

Data challenges:

Read/write functions:
= Must be task compatible.
= Thread-safe, non-blocking, etc.
= Versioning:
= Computation may be executing across

multiple logically distinct phases (e.g.
timesteps)

= Example: Data must exist at each grid
point and for all active timesteps.

Global operations:
= Coordination across task events.

= Example: Completion of all writes at a
time step.

(1) sandia National Laboratories

«., - Execution Policy for Task Parallelism

« TaskManager< ExecSpace > execution policy
— Policy object shared by potentially concurrent tasks
TaskManager<...> tm(exec_space, ...);
Future<> fa = spawn(tm , task_functor_a); // single-thread task
Future<> fb = spawn(tm , task functor b);
— Tasks may be data parallel
Future<> fc = spawn_for(tm.range(0..N) , functor_c);
Future<value type> fd = spawn_reduce(tm.team(N,M) , functor_d);
wait(tm); // wait for all tasks to complete
— Destruction of task manager object waits for concurrent tasks to
complete
» Task Managers
— Define a scope for a collection of potentially concurrent tasks
— Have configuration options for task management and scheduling
— Manage resources for scheduling queue i) Sandia National Laboratories

Kokkos/Qthread LDRD

\

Manytasking: A Productive Application Architecture

e Atomic Unit: Task

— Domain scientist writes code for a task.
— Task execution requirements:

» Tunable work size: Enough to efficiently use a core once scheduled.

» Vector/SIMT capabilities.

« Utility of Task-based Approach:

I<g/

— Oversubscription: Latency hiding, load balancing.
— Dataflow: Task-DAG or futures.
— Resilience: Re-dispatch task from parent.

— Déja vu for apps developers: Feels a lot like MPI programming.
— Universal portability: Works within node, across nodes.

h

Sandia National Laboratories

=Q

Manytasking Implications

* Parallel Programming:

— Task is small thread, vector/SIMT parallel only. (Fortran can do
this, including the new Open Source LLVM-based Fortran!).

— Parallel Task management is external concern.
» Task scheduling:

— Runtime: Many tasks per node. Many tasks in-flight.

— Parallelism across node components: Really important.

— Issue: How to manage creation/completion rates.
 Resilience:

— How to coordinate task protection (parent), re-dispatch (child).

!'I'l Sandia National Laboratories

Message to This Audience

* Where does your software fit in a
manytasking application framework?

* How will data be pass to/from your
Software?

Sandia National Laboratories

Four Resilient Programming Models

* Relaxed Bulk Synchronous (rBSP)

« Skeptical Programming. (SP)

* Local-Failure, Local-Recovery (LFLR)

« Selective (Un)reliability (SU/R)

Toward Resilient Algorithms and Applications
Michael A. Heroux arXiv:1402.3809v2 [cs.MS]

Sandia National Laboratories
60

Resilience & Task-centric/Dataflow

« Relaxed Bulk Synchronous (rBSP)
— Async tasking: Addresses same issues.
— “Porous barriers™:

» Tasks contribute portion to global collective, move on.
« Come back later to collect global result.

» Skeptical Programming. (SP)

— Skepticism applied at task level.

— Parent task can apply cheap validation test up child’s return.
 Local-Failure, Local-Recovery (LFLR)

— Applied at task level.

— SSD storage available for task-level persistent store.
 Selective (Un)reliability (SU/R)

— Parent task (at some level in the task graph) executes reliably.

— Children are fast, unreliable.

— Parent corrects or regenerates child task if it times out ar SDC detected.
!'I'l Sandia National lahgrftories

6)

Creating Incentives to Improve
Productivity

(1) sandia National Laboratories

<o}

Reproducibility & Independent Verification

Requirement

* In order to publish a paper. Someone other than the
authors must be able to reproduce the computational

results.
e Latitude in “reproduce”:
— Exactly the same numerical results?
— Exactly the same runtime?
— Close, in the opinion of an expert reviewer?
* What about:
— Access to the same computing environment?
— High end systems?
* Lots of challenges.

 But just the expectation [threat] can drive efforts...

QL

Sandia National Laboratories

A

Fruits of the Threat

« Source management tools: In order to guarantee that results can be
reproduced, the software must be preserved so that the exact version
used to produce results is available at a later date.

» Use of other standard tools and platforms: In order to reduce the
complexity of an environment, standard software libraries and
computing environments will be helpful.

 Documentation: Independent verification requires that someone else
understand how to use your software.

« Source code standards: Improves the ability of others to read your
source code.

» Testing: Investment in greater testing makes sense because the
software will be used by others.

« High-quality software engineering environment: If a research team
is serious about producing high-quality, reproducible and verifiable
results, it will want to invest in a high-quality SE environment to improve
team efficiency.

Sandia National Laboratories

r4-4

Evidence:
Cover letter excerpt from RCR candidate paper

Thank you for taking the time to consider our paper for
your journal.

XXX has agreed to undergo the RCR process should
the paper proceed far enough in the review process to
qualify. To make this easier we have preserved the
exact copy of the code used for the results
(including additional code for generating detailed
statistics that is not in the library version of the
code).

Sandia National Laboratories

I ACM Transactions on

Mathematical Software

ACM TOMS

« TOMS RCR Initiative: Referee Data.
« Why TOMS? Tradition of real software that others use.
* Two categories: Algorithms, Research.
« TOMS Algorithms Category:
— Software Submitted with manuscript.
— Both are thoroughly reviewed.
« TOMS Research Category:

— Stronger: Previous implicit “real software” requirement is
explicit.
— New: Special designation for replicated results.

111 Sandia National Laboratories
P

4y

ACM TOMS Reproducible Computational

Results (RCR) Process

« Submission: Optional (for now) RCR option.

« Standard reviewer assignment: Nothing changes.

* RCR reviewer assignment:

— Concurrent with the first round of standard reviews
— Known to and works with the authors during the RCR

process.
* RCR process:
— Multi-faceted approach.
 Publication:
— Replicated Computational Results Designation.
— The RCR referee acknowledged.

— Review report appears with published manuscript.

QL

Sandia National Laboratories

RCR Process

 Independent replication:
— Transfer of or pointer to software given to RCR reviewer.
— Guest account, access to software on author’s system.
— Detailed observation of the authors replicating the results.

* Review of computational results artifacts:
— Results may be from a system that is no longer available.
— Leadership class computing system.

— In this situation:
» Careful documentation of the process.
» Software should have its own substantial verification process.

111! Sandia National Laboratories

LHQ

60

Status

* First RCR paper available:
— Editorial introduction.

—van Zee & van de Geijn, BLIS paper.

— Referee report.
* 1 RCR paper per TOMS issue.
— Hogg & Scott next.

Sandia National Laboratories

Message to This Audience

Be prepared to have someone else
replicate your results.

Sandia National Laboratories

Summary

» Thread-scalable algorithms making steady progress: “easy’.
» Resilience strategies too, and reliability will persist until we are ready: “easy”.
* Big task: Transforming application base to new systems and beyond.

« SW engineering focus is important for HPC:
— Pursuing efficiency negatively impacts many other quality metrics.

* Productive application designs will require disruptive changes:
— Array and execution abstractions needed for portability.
— Reuse via composition is attractive (think Android/iOS, Docker environments).
— A Task-centric/dataflow app architecture is very attractive for performance portability.

« Journal, funding agency policies can provide productivity incentives:
— Replicability expectations: Better SW practices are a natural reaction.
— Funding Proposals:

* We expect data management plans.
» Can we start expecting a SW quality management plan?

111} Sandia National Laboratories

1

-

Final Thought: Commitment to Quality

Canadian engineers' oath (taken from Rudyard Kipling):

My Time | will not refuse;

my Thought | will not grudge;
my Care | will not deny
toward the honour, use,
stability and perfection of
any works to which | may be

called to set my hand.

http://commons.bcit.ca/update/2010/11/bcit-engineering-graduates-earn-their-iron-rings

9

QL

Sandia National Laboratories

