
Photos placed in horizontal position
with even amount of white space

 between photos and header

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Intrepid2
Integrating Kokkos with Intrepid

SAND2015-9294PE

Intrepid

Intrepid package is a library of tools
for compatible discretizations of Partial

Differential Equations (PDEs)

Used in: Drekar, Albany and
other codes

Current Status of Intrepid

Intrepid	
 is	
 currently	
 split	
 into	
 two	
 sub-­‐packages	
 but	
 will	

soon	
 become	
 its	
 own	
 package	

3	

Intrepid2

Core

Intrepid
●  Classic Intrepid
●  Support for Compile-Time

Containers

●  Classic Intrepid
●  Support for Compile-Time

Containers
●  Kokkos Parallel Functors

Support for Compile-Time
Containers

The following code causes error with compile time rank containers

switch(rank){
 case 2:
 container(1,5)=container(1,5)+10;
 break;

 case 3:
 container(1,5,7)=container(1,5,7)+10;
 break;
}

Support for Compile-Time
Containers
Our solution to this issue is to use wrapper class with partial template
specialization on rank

The code becomes

ArrayWrapper<Scalar,ArrayContainer, Rank<ArrayContainer >::value,
false>containerWrap(container)

switch(rank){
 case 2:
 containerWrap(1,5)=containerWrap(1,5)+10;
 break;

 case 3:
 containerWrap(1,5,7)=containerWrap(1,5,7)+10;
 break;
}

Support for Compile-Time
Containers
template<class Scalar,class ArrayType>
struct ArrayWrapper<Scalar,ArrayType,5,false> {
 ArrayType& view;

 typedef typename Return_Type<ArrayType, Scalar>::return_type rtype;
 ArrayWrapper(ArrayType& view_):view(view_) {};
 index_type dimension(int i)const{
 return view.dimension(i);
 }
 int rank()const{
 return 5;
 }
 rtype operator() (index_type i0, index_type i1=0, index_type i2 = 0,
 index_type i3 = 0, index_type i4 = 0, index_type i5 = 0,
 index_type i6 = 0, index_type i7 = 0) const {

 return view(i0,i1,i2,i3,i4);
 }
};

Intrepid is a Good Candidate for
Parallelization

Intrepid has a large number of nested loops without loop carried dependencies

 for(index_type cell = 0; cell < numCells; cell++) {
 for(index_type point = 0; point < numPoints; point++) {
 for(index_type row = 0; row < matDim; row++) {
 outputDataWrap(cell, point, row) = \
 inputDataLeftWrap(cell, point, row)*inputDataRightWrap(cell, point, row);
 } // Row-loop
 } // P-loop
 }// C-loop

Parallel Functors Intrepid2
template <class Scalar,class ArrayOutFieldsWrap,class ArrayInDataWrap,class
ArrayInFieldsWrap,class ArrayInFields>
struct matvecProductDataField_3_3 {
 ArrayOutFieldsWrap outputFields;
 ArrayInDataWrap inputData;
 ArrayInFieldsWrap inputFields;
typedef typename conditional_eSpace<ArrayInFields>::execution_space execution_space;
 matvecProductDataField_3_3 (ArrayOutFieldsWrap outputFields_, ArrayInDataWrap
inputData_,ArrayInFieldsWrap inputFields_) :

 outputFields (outputFields_),inputData (inputData_),inputFields(inputFields_)
 {}
 KOKKOS_INLINE_FUNCTION
 void operator () (const index_type cell) const {
 for(index_type field = 0; field < outputFields.dimension(1); field++) {
 for(index_type point = 0; point < outputFields.dimension(2); point++) {
 for(index_type row = 0; row < outputFields.dimension(3); row++) {
 outputFields(cell, field, point, row) = \
 inputData(cell, point, row)*inputFields(field, point, row);
 } // Row-loop
 } // P-loop
 } // F-loop
 }
};

Parallel Functors Intrepid2

●  We check to see if the container being passed to the
kokkos kernel contains a member execution_space

●  If the container does not have execution_space it is

assumed that the code should be run on the host in serial

●  Containers that should work include Kokkos::View,

MDField, FieldContainer_Kokkos

●  To do this we use

typedef typename conditional_eSpace<ArrayInFields>::execution_space execution_space;

