SAND2015- 9294 PE

Sandia

Exceptional service in the national interest National
Laboratories

Intrepid2

Integrating Kokkos with Intrepid

T, U.S. DEPARTMENT OF TR T a3
q @ ENERGY AT TN Y Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
24 P ucnt ey b prog ry manag P Y poration, y ry

Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Intrepid

Intrepid package is a library of tools
for compatible discretizations of Partial
Differential Equations (PDESs)

Used in: Drekar, Albany and
other codes

Current Status of Intrepid) .

Intrepid is currently split into two sub-packages but will
soon become its own package

Core

e Classic Intrepid

. e Support for Compile-Time
Intrepld Containers

Intrepid?2

e Classic Intrepid

e Support for Compile-Time
Containers

e Kokkos Parallel Functors

Support for Compile-Time) i,
Containers

The following code causes error with compile time rank containers

switch(rank){
case 2:
container(1,5)=container(1,5)+10;
break;

case 3:

container(1,5,7)=container(1,5,7)+10;
break;

)
-]

Support for Compile-Time) i,
Containers

Our solution to this issue is to use wrapper class with partial template
specialization on rank

The code becomes

ArrayWrapper<Scalar,ArrayContainer, Rank<ArrayContainer >::value,
false>container\Wrap(container)

switch(rank){
case 2:
containerWrap(1,5)=containerWrap(1,5)+10;
break;

case 3:
containerWrap(1,5,7)=containerWrap(1,5,7)+10;
break;

}

Support for Compile-Time) i,
Containers

template<class Scalar,class ArrayType>
struct ArrayWrapper<Scalar,ArrayType,5,false> {
ArrayType& view;

typedef typename Return_Type<ArrayType, Scalar>::return_type rtype;
ArrayWrapper(ArrayType& view):view(view) {};
index_type dimension(int i)const{

return view.dimension(i);

}

int rank()const{
return 5;

}

rtype operator() (index_type i0, index_type i1=0, index_type i2 = 0,
index_type i3 = 0, index_type i4 = 0, index_type i5 =0,
index_type i6 = 0, index_type i7 = 0) const {

return view(i0,i1,i2,i3,i4);

Sandia
rl1 National

Laboratories

Intrepid is a Good Candidate for
Parallelization

Intrepid has a large number of nested loops without loop carried dependencies

for(index_type cell = 0; cell < numCells; cell++) {

for(index_type point = 0; point < numPoints; point++) {

for(index_type row = 0; row < matDim; row++) {
outputDataWrap(cell, point, row) =\
inputDatalLeftWrap(cell, point, row)*inputDataRightWrap(cell, point, row);

} [/ Row-loop

} I/ P-loop

M/ C-loop

Sandia
rl1 National

Laboratories

Parallel Functors Intrepid2

template <class Scalar,class ArrayOutFieldsWrap,class ArraylnDataWrap,class
ArrayinFieldsWrap,class ArraylnFields>
struct matvecProductDataField 3 3 {
ArrayOutFieldsWrap outputFields;
ArraylnDataWrap inputData;
ArrayIinFieldsWrap inputFields;
typedef typename conditional _eSpace<ArraylnFields>::execution_space execution_space;
matvecProductDataField 3 3 (ArrayOutFieldsWrap outputFields , ArraylnDataWrap
inputData_,ArraylnFieldsWrap inputFields) :
outputFields (outputFields),inputData (inputData_),inputFields(inputFields)
{}

KOKKOS _INLINE_FUNCTION

void operator () (const index_type cell) const {
for(index_type field = O; field < outputFields.dimension(1); field++) {
for(index_type point = 0; point < outputFields.dimension(2); point++) {
for(index_type row = 0; row < outputFields.dimension(3); row++) {
outputFields(cell, field, point, row) =\
inputData(cell, point, row)*inputFields(field, point, row);
} I/ Row-loop
} 1/ P-loop
} Il F-loop

—

Sandia
,‘1 National

Laboratories

Parallel Functors Intrepid2

e \We check to see if the container being passed to the
kokkos kernel contains a member execution space

e If the container does not have execution space itis
assumed that the code should be run on the host in serial

e Containers that should work include Kokkos::View,
MDField, FieldContainer Kokkos

e [0 do this we use

typedef typename conditional _eSpace<ArraylnFields>::execution_space execution_space;

