

Laser Ablation of Thin Films on LTCC

M.A. Girardi¹, K. A. Peterson², P. T. Vianco², Rory Grondin³ and David Weiliczka¹

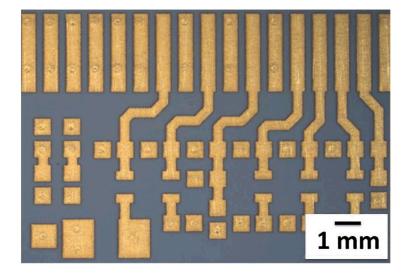
¹ NNSA's Kansas City Plant, Kansas City, MO USA *Phone: 816-488-4242 Email: mgirardi@kcp.com ²Sandia National Laboratories, Albuquerque, NM, USA ³LPKF, Tualatin, OR, USA National Security Campus

Presentation
Wroclaw University of Technology
April 24, 2015, Wroclaw, Poland

Background

LTCC

- Thick film is conventional
- Thin film treated here
- Ti; 2000 Å, Cu; 4 μm, Pt; 2 μm, Au 3750 Å
 - Multifunctional: Solder, wirebond, RF conductivity
- Ion-milled fabrication
- Also: Unfired feature definition


LASER

- UV laser (355nm diode-pumped, tripled Nd:YAG)
- Parameters--laser power, pulse frequency, travel speed, and configuration definition for the hatch/contour modes

Requirements

- Preserve solderability
 - Edge effects
- Wire bondability
 - Contamination by redeposition of Ti/Cu/Pt/Au metal stack
- Preserve adhesion
- Preserve LTCC mechanical integrity
 - -Microcracking
- Preserve metal stack integrity
- Improve yield
 - 'Right-sizing' the conductor pattern to as-fired LTCC
- Increase throughput
- Reduce flow time
- Reduce cost

Process Comparison

ION Milling

- High equipment cost
- Batch process, parallel
- Requires photolithography (equipment and effort)
 - Glass masks
 - Photoresist
 - Mask aligner
 - Develop
 - Strip
- Automated loading

Laser Ablation

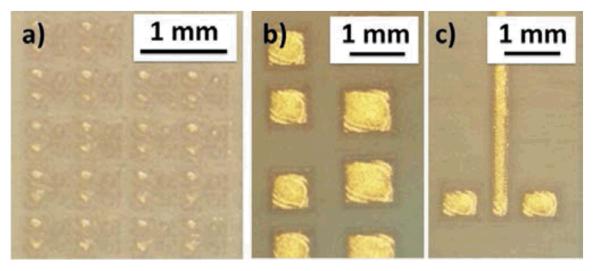
- More affordable equipment (4:1)
- Batch process, serial
- Requires 'cleaning'
- Larger 'heat-affectedzone'
- Artifacts
 - Deep cut at line edges
 - Other edge effects
 - Secondary cracking in open areas
- Manual loading
- Agile programming

Applications of Laser Etching

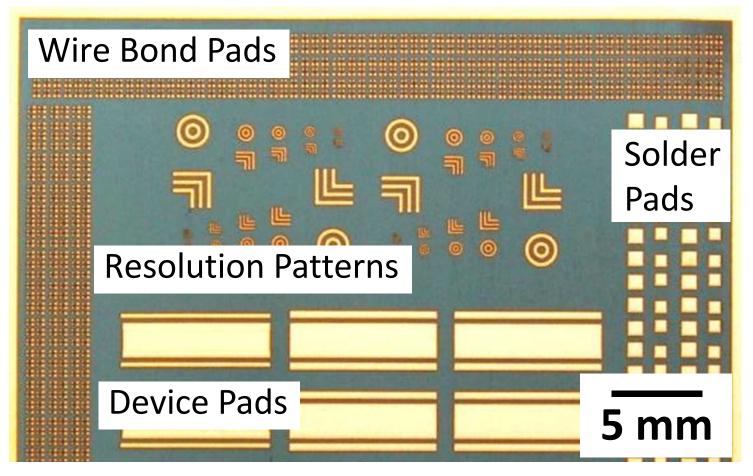
- Definition of conventional circuitry
- Minimal etching approach
- Definition of unfired circuitry
- Depth engraving to a buried ground plane

DOE Summary

- 355 nm diode-pumped, tripled Nd:YAG UV Laser
- Thin film stack:
 - 0.20 um Ti
 - 4.0 um Cu
 - 2.0 um Pt
 - 0.38 um Au
- Hatch parallel raster, single direction
- Cross-hatch two hatch cuts in orthogonal directions
- Analysis (top view, cross section)
 - Optical photos
 - SEM
 - a) Secondary electron
 - b) Back scattered electron EDX maps of elements

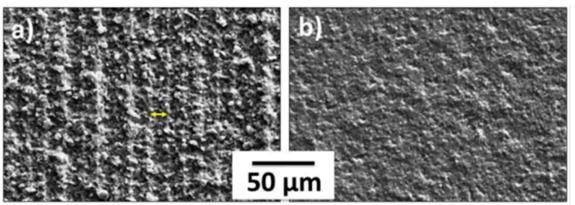

Experimental Phase	1	2	3	4
Laser Model	U	U	U3	U3
Power (W)	2.5 - 3.0	2.5 - 3.0	6.7	1.1 / 0.5
Frequency (kHz)	150	150	150	75
beam spot size (μm)	20	20	15	14
beam pulse (μm)	15	15	12	7
Travel Speed (mm/sec)	7 5	100	100 - 250	600
Air Pressure	NO	NO	NO	YES
Contour Reps	2	1	1	0-2
Hatch Reps	2	1	1	1-6*

* Cross-hatch used

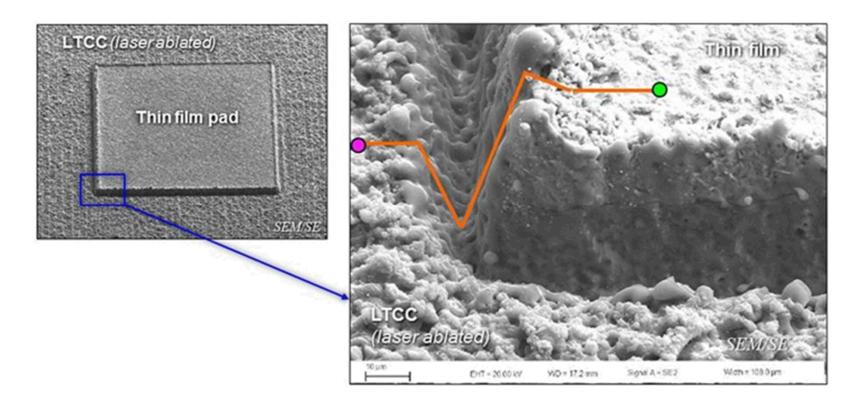

Phased Development Approach: Phase One

- LPKF U uv laser
- Square 150 μm and 200 μm wirebond pads
- Square 0.86 mm and 0.97 mm solder pads
- S- band (2- 4 GHz) transmission lines
- Wirebond pads not resolved
- Open areas, excessive loss of substrate material
- Wire bondability and solderability not tested

Phase Two

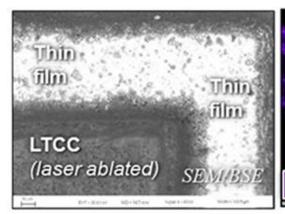

- LPKF U1 UV Laser
- SEM/SE and BSE images follow

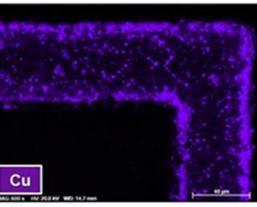
Phase Two Continued

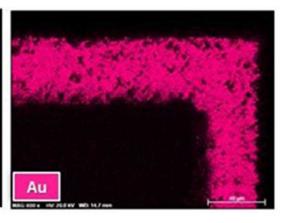

- 10 µm
- Can next-assembly environmental shockand-vibration conditions cause catastrophic failures?
 - Sandia National Laboratories

- Hatch cut, single orientation (top-tobottom)
- Grooves, 10-15 µm wide (yellow arrow)
- Redistribution of the SiO2 and Al2O3 phases.
- Increased porosity
- Rapid melting/resolidification of the LTCC surface (rounded particles).
- Surface cracks (magenta arrows)

Phase Two Continued

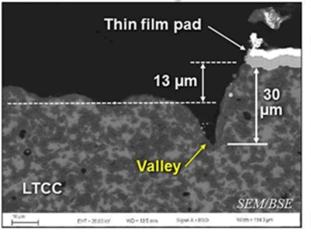

 Note the contour at the pad perimeter

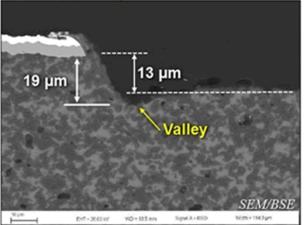




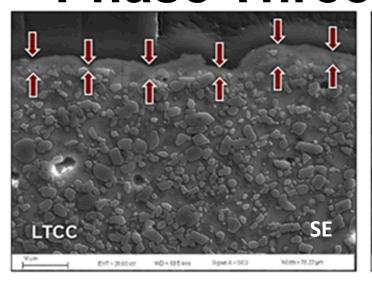
Phase Two Continued

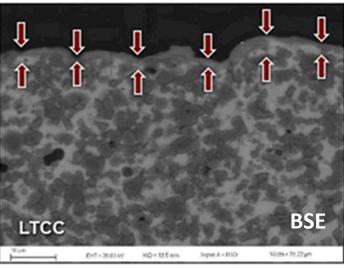
- Energy-dispersive X-ray analysis
- Cu is the primary constituent at the pad edge.
- Cu (purple map) is the primary element that is redeposited on top of the Au layer (strawberry) of the pad.
- Redeposited Cu on top of the thin film pad is oxidized.
- Degradation to the wire bond pull strength, 5.01g avg pull strength, 2.13g std

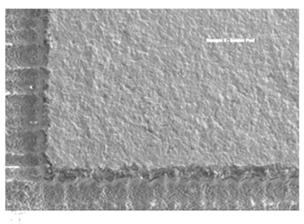


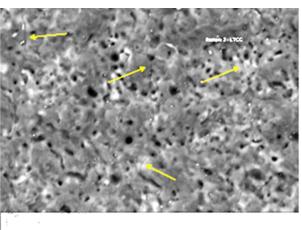


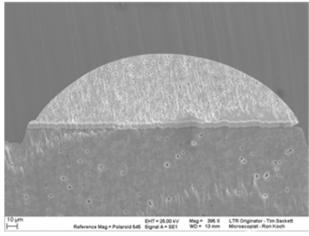
Phase Three


U3 process parameters:

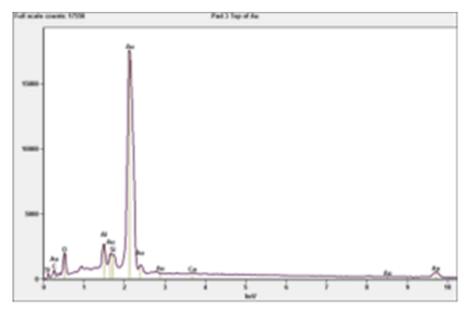

- 6.67 watts laser power
- 15um beam spot size
- 12um beam pulse width
- 250 mm/s travel speed
- One hatch/contour pattern


Results:


- 13 um of LTCC removed
- 30 um removed at pad edge
- Asymmetry of pad edge depth due to laser path overlap
- Melting and resolidification (red arrows)
- Minor cracking (substrate fracture strength studies required)
- Thin film delamination near laser ablation edge
- 🕩 Sandin National Harmanitage pull str., 0.7gm std dev, issues related to pad edges



Phase Four


U3 process parameters:

- 1.1 watts laser power
- 75KHz beam frequency
- 14um beam spot size
- 7um beam pulse width
- 600 mm/s travel speed
- Four cross hatch cuts
- No contour cuts

Phase Four Continued

Results

- Micro-cracking was reduced.
- Surface contamination by redeposition was eliminated (EDX spectrum).
- Excellent wire bonding strengths, 12.25g avg pull strength, 0.77 std dev
- Solderability was excellent.
- Cleaning step was necessary to removal laser slag and FOD.

DOE Summary

- 355 nm diode-pumped Nd:YAG UV Laser
- Thin film stack:
 - 0.20 um Ti
 - 4.0 um Cu
 - 2.0 um Pt
 - 0.38 um Au
- Hatch parallel raster, single direction
- Cross-hatch two hatch cuts in orthogonal directions

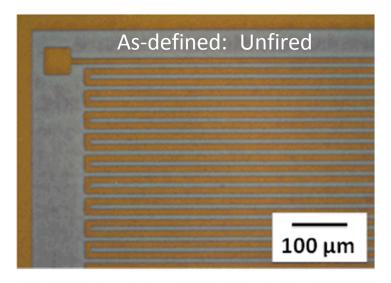
Experimental Phase	1	2	3	4
Laser Model	U	U	U3	U3
Power (W)	2.5 - 3.0	2.5 - 3.0	6.7	1.1 / 0.5
Frequency (kHz)	150	150	150	75
beam spot size (μm)	20	20	15	14
beam pulse (μm)	15	15	12	7
Travel Speed (mm/sec)	75	100	100 - 250	600
Air Pressure	NO	NO	NO	YES
Contour Reps	2	1	1	0-2
Hatch Reps	2	1	1	1-6*

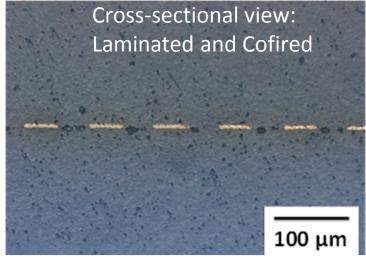
* Cross-hatch used

- Analysis (top view and cross sections)
 - Optical photos
 - SEM
 - a) Secondary electron
- Sandia National Laboratories
- b) Back scattered electron EDX maps of elements

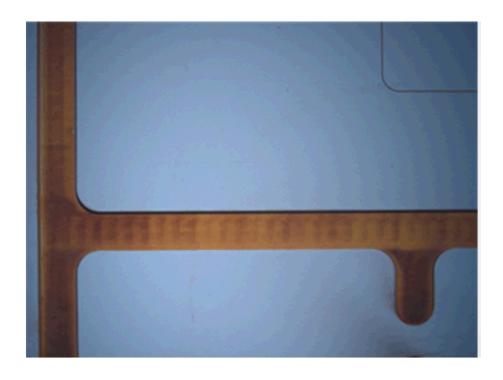
DOE Summary Continued

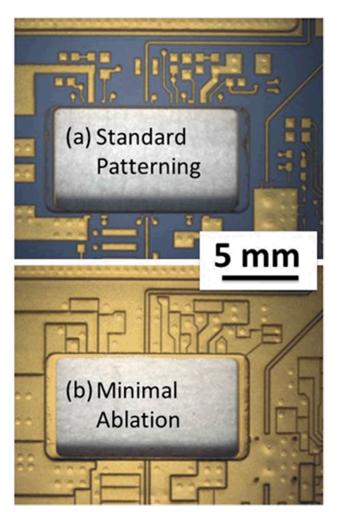
Phase	1	2	3	4
Average Pull Strength	N/A*	5.01g	11.35g **	12.25g
Standard Deviation	N/A*	2.13g	0.70g **	0.77g
Mean minus 3 Standard Deviation	N/A*	> Zero	9.25g **	9.94g


^{*6} x 6 and 8 x 8 mil pads not defined, not tested


^{**}bonding on 38 mil square pads

Laser Ablation of Unfired LTCC


- Definition of thick film on unfired tape demonstrated
- 50 um lines and spaces
- Du Pont 951, PX tape
- Du Pont 5734 Au thick film
- Settings:
 - 0.36 watts laser power
 - 75KHz beam frequency
 - 14µm beam spot size
 - 7µm beam pulse width
 - 800 mm/s travel speed
 - Two cross hatch cuts
 - No contour pass

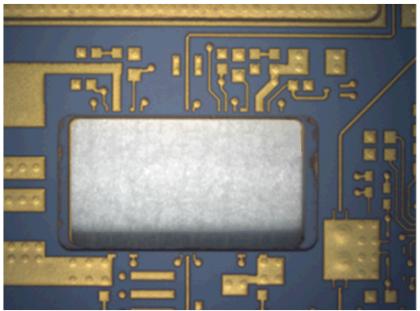

- Unfired definition of shielding valleys
- Du Pont 951, PX tape
- Du Pont 5734 Au thick film, 2 layers printed
- 50 mil wide valley
- Possible back-up process to 'green machining'

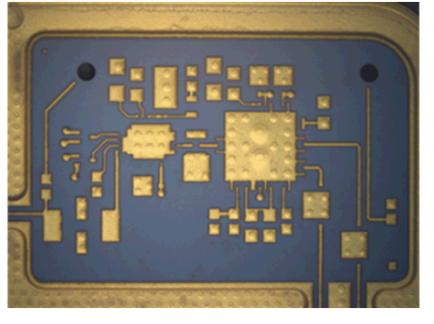
National Nuclear Security Administration

Alternate Design Goals for Laser Ablation of Thin Films

- Reduced etching time
- 1/3 process time savings
- Dielectric mask provides pad definition
- Minimum ablation supports coplanar waveguide design requirements.

Conclusions


- Demonstrated successful laser ablation of the thin film metallized LTCC and green LTCC/thick films.
- The advantages of laser ablation over Ion Milling / Photolithograpy were demonstrated.
- The study highlighted the importance of enhanced power mapping via SEM and compositional analysis.
- Laser ablation can be used to deliver fast turnaround prototype units for design validation based on initial electrical results.
- Further work utilizing laser-ablation is underway.
- Confirmation testing: HALT, peel test, aged adhesion, and cross section on fully assembled MCMs.



Acknowledgments

- LPKF: Jeff Bengtson (LPKF) and Drake Van Praag
- DuPont: James Parisi
- Honeywell: Christopher Bell, Bob Williams, and Ron Koch
- Sandia: Alice Kilgo and Bonnie McKenzie

