17 October 2017

@

SAND2017- 10826PE

Tools for Simple Yet
Very High Consequence Controls

Robert Armstrong, Geoffrey Hulette, Karla Morris,
Jason Michnovicz, Jon Aytac, Philip Johnson-Freyd,
Andrew Smith, Jackson Mayo, Ratish Punnoose

Sandia National Laboratories, Livermore, CA 94551, USA

\
A ORd
HEE‘“ [=]

Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology
and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for

the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Tools for
Simple Yet
Very High
Consequence

Controls

Armstrong et al.

1/31

Outline @

Tools for
Simple Yet
) Very High
Introduction Consequence

Controls
Statecharts
Q Tool o
Correct by Construction A
Accidents and Out-of-Nominal Analysis
[@ Complexity and Robustness "‘.,',{f

Formal Analysis of Complex Systems

Armstrong et al.

2/31

High-consequence controls: simple function, @
complex “always/never’ requirements

3 F Tools fol
m Our control systems are mostly low complexity, relatively easy to Siniele o
Very High
ana/yze' Consequence
Controls
m But, they often have a large number of complex,
high-consequence safety, security, and reliability requirements. -
ntroduction
m Low complexity + high consequence + complex requirements =
ideal for a formal approach to design and/or verification.
L
£
Q
£
] @ high-consequence
" controls
£
Q
£
g
3
o
] @ generic
commercial Armstrong et al.

function complexity — 3/31

Statecharts is an intuitive design language for
simple controllers

m Well-suited to our simple controller domain.

m Mealy machine-based semantics, based on Argos — simple,
effective, and approachable for end-users.

m Semantics is easy to express within action systems: Event-B,

TLA+, etc.

@

Tools for
Simple Yet
Very High
Consequence

Controls

Statecharts

Armstrong et al.

4/31

Statecharts can support refinement-based design (A

Tools for
Simple Yet
Very High
Consequence

Controls

Chart-based constructions in our Statecharts are refinements in the
action system sense: SR
m Parallel and hierarchical composition

m Signal-based synchronization

Extended with a “math language,” our system also supports
GCL-style refinement (strengthening guards, weakening actions, etc.)

Armstrong et al.

5/31

Statecharts provide “natural” mechanisms for @
refinement

Tools for
Simple Yet
Very High

4 - i % . Consequence
Hierarchical composition: An abstract parent state is refined by a set Controls
of concrete child states and their transitions.

Statecharts

Figure: Abstract model Figure: Refined model

Armstrong et al.

6/31

Statecharts provide “natural” mechanisms for @
refinement

Tools for
Simple Yet
. i) Very High
Guard Strengthening: Add guards to previoulsy defined abstract Consequence

o . Controls
transitions. New guards are based on new concrete variables.

Statecharts

Figure: Refined model with temperature

Figure: Abstract model A
conditions

Armstrong et al.

7/31

Restrictions on the Statechart Semantics

Our version of Statecharts is restricted vis-a-vis Herel's original
paper, simplifying the formal semantics:

m Arrows can only go up or down one encapsulation level at a time

m Signals are scoped to the box in which they are created

@

Tools for
Simple Yet
Very High
Consequence

Controls

Statecharts

Armstrong et al.

8/31

Research interests (:]

Tools for
Simple Yet
Very High
Consequence

Controls

We are broadly interested in research areas related to refinement,
action systems, and/or Statecharts:

Statecharts
m "Components” and connections to rely/guarantee reasoning
m Liveness properties

m Mathematical foundations (coalgebraic models, connections to
logic, category theory)

m Practical issues, e.g., tractably managing deep hierarchies.

Armstrong et al.

9/31

Collaborators interested in refinement-friendly @
Statecharts:

Tools for

H Simple Yet

m Jet Propulsion Laboratory (US) St
Consequence

N Controls

A‘)ﬁ Jet Propulsion Laboratory
California Institute of Technology
m University of Southampton (UK) Statecharts

Southampton

m Atomic Weapons Establishment (UK)

Armstrong et al.

10/31

W3C SCXML Statechart Representation

I —
W3C text representation called SCXML has been modified to
accomodate refinement

m XML tools allow new meta-model namespaces to be introduced.
m Existing SCXML tools will ignore them

m Needed in order to support:
m Refinement levels (new attribute <iumlb:refinement >)

m Invariants (new element <iumlb:invariant >)

m Guards (new element <iumlb:guard >)

@

Tools for
Simple Yet
Very High
Consequence

Controls

Statecharts

Armstrong et al.

11/31

SCXML Attribute Extensions

Table 1: icm E:

Attributes

Attribute name:

Allowed Parents

string used as the name of an
label Event-B event elaborated by scxml:transition
the generated i-UML-B
sexml:sexml, sexml:datamodel,
gative integer repr 1:d 1:
fin the refinement level at which 1:parallel i
R SE the parent element should scxml:onEntry, scxml:onExit,
be introduced scxml:assign, iumlb:invariant,
iumlb:guard
string used as the membership
type set for the Event-B variable stilidata
generated from the parent E
data element
string used for the name
name or label of a d 1b iant, iumlb d
iUML-B element
predicats string used for t}_)e p "' _ jant, fumlbs d
of a guard or invariant
boolean indicating that
derived the guard is a theorem iumlb:invariant, iumlb:guard
(default to false)

@

Tools for
Simple Yet
Very High
Consequence
Controls

Introduction
Statecharts
Q Tool

Correct by
Construction

Accidents and
Out-of-Nominal
Analysis

Complexity and

Robustness

Formal Analysis
of Complex
Sys

ems

Armstrong et al.

12/31

q_ compiler takes SCXML and turns it into various

prover languages

Output Language
Statechart SCXML e.g. SMV

9

>
Compiler

by hand
Model Checker

e.g. NuSMV

or auto-
mated

m We have created the Q compiler to take advantage of graphical
Statechart-like tools that Engineers are familiar with

m Engineers use Statechart and Statechart-like tools to create
specifications and prototypes for their controls

m Some examples
m Mathworks Stateflow/Simulink
m Ansys SCADE

@

Tools for
Simple Yet
Very High
Consequence

Controls

Q Tool

Armstrong et al.

13/31

Argos semantics “flattens” Statecharts into Mealy @
machines

Tools for
Simple Yet
Very High
. .. Y Consequence
Argos defines a compositional semantics for Statecharts. Controls
m Building blocks are Mealy machines, and the operators are
parallel composition, hierarchical composition, and encapsulation
(synchronization on signals).
Q Tool

m Argos avoids some problematic constructions in Herel
Statecharts, e.g., arrows that cut across the hierarchy.

m Still has correctness conditions around causality, which are not
easy to check for in general.

m Every valid (e.g., causal) Argos chart denotes a Mealy machine.

m We are working on showing that in Argos composed machines
are refinements of their constituent machines.

Armstrong et al.

14/31

Argos example: Statechart representation

power_on

Off
—

power_off

push/ unlock

reset

!

Card Reader

Ready

insert reject

Reading

ok/unlock

'

Accept

—

reset

@

Tools for
Simple Yet
Very High
Consequence

Controls

Q Tool

Armstrong et al.

15/31

Argos example: Statecharts are compositions of @
machines

Tools for
Simple Yet
P G C Very High
Consequence
I Controls
Ready]
power_on * Q Tool
push/ unlock insert giect
power_off reset ¢ ¢
e
—
ok/unlock reset
Accept —
S |

Armstrong et al.

We can express the chart from the last slide as an expression over 16/31

these Mealy machines: P > {On — G x C}/unlock, reset.

Argos example: After flattening

OnClosedReady

insert
~power_off

power_on

power_off
reject

~power_off

Off «— power_off OnClosedReading

ok pu
power_off ~poweroff Tpow
wer_

sh
er_off

OnOpenAccept

Each state also has an explicit self-transition
where the condition is the negated
disjunction of the pictured outgoing

transitions.

@

Tools for
Simple Yet
Very High
Consequence

Controls

Q Tool

Armstrong et al.

17/31

C]_ tool maps Statecharts to many languages for @
further analysis by various formal tools

Tools for
Simple Yet
Very High
Consequence
Controls

q_ Compiler C compiler —» micro-controller
c

ACSL i Frama-C formal model checker

Executable Spec.

‘ Why3. Alt Ergo theorem prover/SMT solver

: —) | e | SCXML — sCXML =T :Cm: theorem prover/proof assistant Q Tool
Writte
Requirements Statechart-tool 0

NUSMV LTL/CTL formal model checker

VHDL Cadence commercial formal tools

(1_ Analog Analysis

T Ol+l\ev

Xyce Physics Sim

b

Wﬁ ominal or Nominal
=7 (Analog Model)

VHDL for forensic analysis

Armstrong et al.

18/31

Refinement and analysis across language
boundaries

m Refinement from Statecharts to C

Formally requires a mapping of logic and semantics from
Statecharts to C (usually obvious)

Obtain a refinement relation between the Statechart program
and the C program

Find the “flattened” Statechart transition relation in C by
transforming through the refinement relation

B Check that the C proves the transition relation with Frama-C
m Current work-flow:
m all done “by hand”

® needs tooling for autogenerating refinement relation, proof
obligations,etc.

m In principle can do Statechart — VHDL /Verilog following the
same procedure

m Substitute Commercial Formal EDA tool for Frama-C

@

Tools for
Simple Yet
Very High
Consequence

Controls

Correct by
Construction

Armstrong et al.

19/31

Recover a specification for existing program, @
forensically

Tools for
Simple Yet
Very High
Consequence
Controls
m Start with:
m Existing program or firmware for which complete understanding
is lacking
m Partial specification (e.g. functional properties are known, safety —
properties are absent) Construction

m Proceeds similar to correct-by-construciton analysis as before:

m Reconstruct the specification and prove it against the extant
program

m Likely iterative, similar to CEGAR or abstract interpretation

Armstrong et al.

20/31

Systems analysis can incorporate out-of-nominal
electrical behavior

m Research is extending digital systems analysis to address physical
environments where a device is not fully digital anymore

m Mixed-signal simulation can elucidate the digital imprint (e.g.,
bit flip pattern) of a physical insult (e.g., radiation) on a circuit

m Using analog electrical model for the part of the circuit subjected
to the insult

m By including digital upsets in a formal or complexity model,
effect on rest of the digital state space can be quantified and
mitigated

m Example: Does a digital safety property still hold even in an

accident scenario?
Formal model
Mixed-signal simulation

Digital design

Analog model

@

Tools for
Simple Yet
Very High
Consequence

Controls

Accidents and
Out-of-Nominal
Analysis

Armstrong et al.

21/31

Failure modes can be understood via abstractions @

Tools for
m Examples of failures that result in an overapproximation: f}g‘r;";g
; ; i C

m A logic gate becomes unreliable and nondeterministic s

m A sensor fails, providing random input to a digital control

m Generally: any malfunction that generates additional

behaviors that were not part of the design intent

m Errors induced by environmental physics are common:

m Radiation (cosmic rays, etc.) pecldeneend,

Analysis

m Heating (fire, etc.)
m Physical insult (destruction of sensor, etc.)

m Abstraction techniques can reveal failure modes for which a
particular design will be robust

m Abstraction techniques can support designed-for failure modes
anticipating likely accidents and faults

Armstrong et al.

22/31

Square diagram shows refinement relationships that
preserve requirements

Out-Of-Nominal Nominal
: X Fail-Safe Nominal
Requirements Requirements G Requirements
Refinement Abstract h Nominal
Failure Modes Refinement

/71

Failure Failure Failure
Mode 3 Mode 2 Mode 1

Figure from J. R. Mayo et al., Proc. 4th FTSCS Workshop, CCIS 596, doi:10.1007/978-3-319-29510-7_10. (© 2016 Springer.

m Refinement/abstraction conceptual diagram for treating
out-of-nominal and nominal models in a unified way

m Arrows point in the direction of abstraction

@

Tools for
Simple Yet
Very High
Consequence

Controls

Accidents and
Out-of-Nominal
Analysis

Armstrong et al.

23/31

Broader principles support robustness in @
complex systems

Tools for
Simple Yet
Very High
Consequence

Controls

m Biological and social complex systems typically are not formally
verified, but show impressive robustness to unforeseen failures

m Why? They have inherent stability constraints from their origins
in adaptation and selection

m Our hypothesis: Digital designs constrained by formal methods _
also exhibit enhanced robustness to unforeseen failures by a L
similar mechanism

Armstrong et al.

24/31

Complex adaptive dynamical systems offer a useful @
perspective on hardware and software

Tools for
m As dynamical systems, today's typical digital designs are chaotic Sk

ery g
m Formal methods, by contrast, enforce bounded behavior, similar C°C”§i3:'jgce

to that seen in complex systems adapted to their environments

m To be useful (engineering) or viable (evolution), an adaptive
dynamical system must show a coherent response, neither
strongly overdamped /inert nor profoundly chaotic/random

m At the “edge of chaos” (critical) or somewhat below it
(subcritical), broad robustness to perturbations is obtained

m Subcriticality or “smoothness” generalizes the constraints

imposed by formal analyzability amieitiand

Robustness
m Restricted programming models also extend the power of testing

m New programming models with intrinsic smoothness could enable
more confident generalization of correctness to untested inputs

m Empirically, incidence of vulnerabilities does differ measurably Armstrong et al.
based on programming language 25/31

Boolean networks provide a simple representation @
of digital logic

Tools for
. . . - Simple Y.
m Originally investigated in biology, Boolean networks (BNs) Very High
correspond closely to hardware sequential logic gates Cocnseiuelnce
ontrols
m Each node in the directed graph has two possible states, 0 and 1
m A node’s state transition at each discrete time step is
determined from its input connections by a “transfer function”
m Create BNs that add two 1-bit numbers (half-adder function),
by random sampling and selection
m This function is very simple, but we seek BNs representative of
more complex implementations Complextyiand
Robustness
m BN ensembles differ in average inputs per node (k)
m Select 20-node BNs that compute the correct result for all inputs
when operating nominally, and then introduce 1% bit errors to
evaluate robustness
m Cascading errors are outlined in red Armstrong etal

26/31

Boolean network “programs” exhibit quiescence for @

k < 2 and chaos for k > 2

=10 k=25 Simple Yet
A Inputs Step 20 B Inputs Step20 Very High
(] (] o o Consequence
Controls
L]
v
vy Y | i
- V4 Y
VR
A X
Y * . Py
» — °. -)
1 N .
[\ y ®
d / 1 |
v . E y Wy A \
N
. y . . " .
g L] L4 B = p Complexity and
Y N o™ Robustness
- 3 |
. \ AN {
p J A
. X | - & ‘
. " . o
Outputs
Outputs :)
(Average incorrect bits: 0.10) (Average incorrect bits: 0.73)
Armstrong et al.

Figure from J. R. Mayo et al., Proc. 9th IEEE Systems Conference, doi:10.1109/SYSCON.2015.7116737. (© 2015 IEEE.

Formal verification confirms insights from @
dynamical systems theory

Tools for
Simple Yet
Very High
m While BN stability is relevant well beyond the reach of Sone e
exhaustive verification, the example half-adder BNs are simple
enough to check directly with formal methods
m With the NuSMV model checker, we exhaustively prove/disprove
correct function of these two BNs in the presence of bit errors
m Using a nondeterministic model that allows any single bit error
during a range of time steps
m Example correctness requirement for carry bit: Compiidiy and
LTLSPEC F ((clock=20) & (n18 = (n00&n01))) Robustness

m NuSMV results: Chaotic BN is susceptible to corruption from
any time step, whereas quiescent BN can be corrupted only in
the last 5 of 20 time steps and is self-healing otherwise

Armstrong et al.

28/31

Formal Analysis Uncovers Unwelcome Surprises in
Complex Systems

m Normally FM work on programs and digital hardware, but here
the program is a representation of a physical system

m Find violations of safety, security and reliability in the model
m Draw a correspondence to the physical reality that it represents

m Big difference: model is an abstraction of reality but also has
error bars, digital systems don’t have error bars

Model factory for building blood pressure monitors

Find evidence of rare but catastrophic failures that mere simulation
cannot provide

@

Tools for
Simple Yet
Very High
Consequence

Controls

Formal Analysis
of Complex
Systems

Armstrong et al.

29/31

Our methodology proceeds similar to CEGAR @

5 s . Tools fol
Establish a complex system (discrete event) model at some high Sirole et
level of abstraction above the physical system Ry
onsequence

Controls

Exhaustively find all counter-examples (may need HPC for this?)

Examine counter-examples for concurrence with reality (likely
not on first try)

B

Refine model to eliminate unphysical counter-examples

Either all counter-examples are physical or loop back to 2

]

Formal Analysis
of Complex
Systems

Armstrong et al.

30/31

Model factory for building blood pressure monitors

Correct by construction for the design of complex @
systems

x . . s « Tools f
m Imagines a discrete event model constructed to find violations Sl ot
(or proofs of compliance with) safety, security, and reliability Very High
N onsequence
properties Controls
m not necessarily for simulation
Introduction

m Use the formal analysis as a design tool to eliminate as many Siradiharts
counterexamples as possible L

m strategically design-in tests, checks, and inspections to make the Comect by
design of the physical system more robust

Accidents and
Out-of-Nominal
Analysis

Requirements Complexity and
Robustness

Formal Analysis
of Complex

Finite State Model Set of Logical Systems
M Properties

Armstrong et al.

31/31

