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Force transducer may drastically alter system =

. . Laboratories
dynamics if not accounted for.
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Both translational and rotational quantities =
can pollute the measured FRFs

Begin with a similar approach as Ashory (1998 IMAC) but include rotation terms

Frequency response at output p: Considering the drive-point (p = g = )
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Subiect to th j{"’ ’ s Both translational and rotational
Hbjectto the constraints. quantities modify the true FRF

(o= =0 - McConnell (1999 MSSP) shows a
{ ]i; }+{ f}” }:0 similar result

[1] Ashory, “Correction of Mass-Loading Effects of Transducers and Suspension Effects in Modal Testing,” IMAC, 1998.
[2] McConnell and Cappa, “Transducer Inertia and Stinger Stiffness Effects on FRF Measurements,” MSSP, 1999.
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= Theoretical Development




Substructuring enables removal of the force =
transducer from the system.
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Experimental system Analytical model Experimental
with transducer, CT of transducer, T system, C

Equations of motion:

Mecr 0 ucr n Cer O ucr n Ker 0 ucr | | for 4] gor
0 —MT ﬁT 0 0 ﬁT 0 0 ur N 0 g7

Subject to:

Compatibility at interface: ucrr—ur=0 =—> B { ILC;T } =0

Interface force equilibrium:  8cr +gr =0 —— L' { 8CT } =0




System analytical model is unknown; instead, =,
use modal equations derived from tests.

Transformation to the modal coordinate system retaining 2., measured
system modes and R, transducer rigid body modes::

Ca -l el

Modal equations of motion:

[I%T [I}T] { qdiT } {[\2@%\ oT 0] { deT } {\WES}CT g] { quT }
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Subject to: 0 0 ®r 8T

Compatibility at interface:

Requires rotational mode shapes at
connection point which are unavailable

Need to find a different set of B,and B,
using measurable quantities!




Can estimate connection point motion using ) &=
an analytical model of the local system.
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Measured system CT Analytical model of AT
Constrain translation measurements on Expand response to estimate full motion at
system CT and local system AT: transducer connection point:
UAT,m = UCT,m uar,T = ParTqAT
Transform into the modal coordinate system: UarT = [(I)AT,T(I)AT,mT(DCT,m qor = oy
P AT mAaT = Por mdeT < -~ -
Take pseudoinverse of analytical mode orT
shape matrix 1_ Estimated mode shape matrix now
dar = arm Lormdor contains rotational information!

[3] Allen, Mayes, and Bergman, “Experimental modal substructuring to couple and uncouple substructures with flexible fixtures and multi-point
connects,” JSV, 2010. 8



Previously unknown constraint matrices are ) =,
found using measurable quantities.

Constrain modal motion of transducer T and measured system CT

i T qcr
Porrqer — Prar = 0 S i@CT,T - ‘I’Tl{ ar } =0
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B, enforces as many constraints as
there are transducer rigid body modes

Have R, constraints and R+ R, modal equations of motion — can transform to a set
unconstrained equations by simply choosing g, as the unconstrained modes:
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Force transducer can now be immediately

removed from the experimental system.
Apply the transformation to the modal EOM

qcT
=L
{ qr } pAdCT

Unconstrained equations of motion
Mdgcer + Cacr + Kqer =f+ g
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measurement locations allowing for immediate removal!

This process creates equivalent transducer mass with zero inertia at

— [ 0 @7 JU 8T ]
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= Numerical Results




Overview of numerical model 7

Beam system modeled using FEM

e T o A [oem s
Y, I_ Material Steel Steel
L, =% B 1 a, Length [mm] 114 305
“ ; . Width [mm] 25.4 25.4
A B
v Thickness [mm] 254 19.1
fe—
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Transducer modeled as rigid body
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Correction approach requires a sufficient
number of analytical modes

Mode 1 Mode 2 Mode 3 Mode 4

Mode 5

Mode 6 Mode 7 Mode 8 Mode 9

Mode 10

system with transducer, CT

Simulated experimental kJ — NT s er

Analytical model of local First 4 analytical modes (3
system with transducer, AT

rigid body, 1
bending) sufficiently capture the full
system modal motion




The analytical model of beam AT estimates full =
motion at transducer connection point.

Force transducer
\‘ Mode 7

Accels. measuring in- \

plane translations

Estimated local shape using |
analytical model of AT
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The corrected frequencies show much better =
agreement with the truth case.
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The corrected FRF and CMIF show much better
agreement to the truth case.

100 | ©-No transducer
—Transducer: Uncorrected
Transducer: Corrected

Drive-point FRF
[ ] | T T T T Only modes with frequencies < 10 kHz were
510t - “measured” -- Leads to the deviations in the
% L [\ ‘ FRF starting around 8 kHz
:5;102‘- 1
g
E

Complex Modal Indicator Function

10° 104 108
Freq. [Hz]
106,
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showed further improvements , J
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= Experimental Results
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Hammer test with no attached transducer Tl 2
used for the truth baseline.

Hammer Test Setup Shaker Test Setup

Excitation up to ~3 kHz provided information
for the first 2 flexible modes

18
-



The corrected FRFs shows much better Tl

Laboratories
agreement to the truth case.
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= Conclusions




Successfully developed a method to remove Tl 2
force transducer effects during shaker testing.
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» A local analytical model of experimental
system facilitated estimation of connection

point motion
- Removed requirement for measurements of
rotation to correct for mass moment of inertia
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= Numerical results show the correction Numerical Results

method provides excellent agreement with
the case of no attached transducer.
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= Experimental tests provide validation for the
method, especially for correcting the fregs.
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Experimental Results

21




