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●Motivation

●Deposition with TEB + NH3

●Deposition with borazine (B3H6N3)

Outline
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Bulk applications

● Thermal neutron detection

● UV optoelectronics

2D applications

● Substrate for high mobility graphene 

● Chemical and thermal stability

● Single photon emitters,  gas sensing, 
hyperbolic optics

UV transparent p-type

Active layers

Buffer and release layer

UV AlGaN LED and how hBN could help 







Why hBN?

Maity et al., 2016
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MOCVD

● Scalable to large area

● Proven industrial technique

High Temperature

● Semiconductor or oxide substrates

● Prior reports of improving 
crystallinity with increasing 
temperatures

Nakamura,1986

Bulk Value

Why CVD? High temperature?

Chubarov,2012
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Effects of Deposition Temperature and Ammonia 
Flow on MOCVD Hexagonal Boron Nitride

arice@sandia.gov
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Kobayashi and Makimoto., 2006

Prior Literature

Paduano et al., 2014

arice@sandia.gov

Constant TEB + NH3 = Rate TEB + Constant NH3 = Rate
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Growth
MOCVD System

● Refitted existing MOCVD with new chamber

● Cold walled, RF heated

● Temperatures up ~1900 ˚C

● In situ reflectance monitor

The authors would like to thank Prof. Z. Sitar 
at NCSU for sharing reactor chamber design

Growth Conditions

● c-sapphire

● 50 Torr

● N2 diluent and carrier gas

● Triethylboron (TEB) at 22 µmol/min

● NH3 varied 2 sccm to 5000 sccm

● V/III ratio 5 to 10,000

● Temperatures varied 1100 ˚C to 1800 ˚C

arice@sandia.gov
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Growth Regimes

●Low NH3

●Thick films

●Discolored films

● Intermediate NH3

●Thick films

●Clear films

●High NH3

●Self-limiting films

Temperature and NH3 Space

arice@sandia.gov

Rice et al., 2018



9

● Growth rate is weakly 
temperature dependent

● ~2.5 time change over 600 ˚C

● Critical NH3 threshold exists 
for all temperatures

● 2-3 orders of magnitude 
change in growth rate

Growth Rate

100 sccm NH3

1600 ˚C

arice@sandia.gov
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Langmuir-Hinshelwood 

● Competitive absorption of species that 
react on a surface

● Controlling reactions:

● Growth rate:

● Model captures large decrease in growth 
rate from microns to monolayers per hour N
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PL Regimes

●No exciton emission

●Defect bound exciton

●Free exciton

Photoluminescence Regimes

RT PL

arice@sandia.gov

Rice et al., 2018



Room Temperature PL

Photoluminescence Results

5.590 eV
221.8 nm

~5.9 eV
~210 nm

5.742 eV
215.9 nm

PL at 6K
SNL hBN

CL at ~20K
Bulk hBN

5.590 eV
221.8 nm

5.742 eV
215.9 nm

arice@sandia.gov 12

Pierret, 2014



But…
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RT PL

TEB + NH3

● Monolayer hBN with room temperature free exciton emission

● Required temperatures over 1500 ˚C and with PNH3 = ~5 Torr

● Damaged substrate surfaces

30 sec NH3 exposure at 1600 ˚C
0.8 nm RMS roughness

13
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Deposition of Hexagonal Boron Nitride by Borazine



Why Borazine?

arice@sandia.gov

Pros

● Literature reports of BN deposition

● High vapor pressure

● Liquid source

● Single source growth

Cons

● Literature reports are mostly on metal

● Stability of source

● Purity of source

● Single source growth

(NH)3(BH)3

15



Nucleation Theory

Nucleation Theory

● Control of nucleation is critical       
for heteroepitaxy

● Classical Nucleation:

● Would expect:

● More temperature = Less nuclei

● More precursor = More nuclei

� = �����/��

BN nuclei on sapphire
Deposition at 1450 ˚C

16

Nuclei Density

Adatom Density

Temperature

arice@sandia.gov



Nucleation with Temperature

arice@sandia.gov 17

1500 ˚C 1600 ˚C1450 ˚C

• Fixed flux and dosage of borazine
– 5 min at 0.37 µmol/min + 15 min at 0.13 µmol/min

• Nuclei density decreases with increasing temperature



5 min at 0.75 µmol/min2 min at 1.5 µmol/min 5 min at 0.37 µmol/min + 
15 min at 0.13 µmol/min

Nucleation with Flux

arice@sandia.gov 18

• Fixed temperature of 1600 ˚C

• Nuclei density decreases with decreasing flux



Nucleation Theory

19

• Critical borazine partial pressure for nucleation
arice@sandia.gov



Characterization…

20

Characterization issues

● AFM

● Huge numbers of artifacts

● XPS

● Still have nitridation of surface

● Raman

● BN signal ~10 time less intense 
than graphene signal

● BN mode overlaps sapphire mode
~1 ML of BN on sapphire

arice@sandia.gov



FTIR Differential Reflectance

21

FTIR

● Large difference between BN and 
sapphire extinction coefficients

● 3 layer differential reflectance model

Sapphire = n3

hBN = n2

Air = n1

McIntyre and Aspnes., 1971

arice@sandia.gov
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1 Monolayer BN

Films between 1 and 2 monolayers by Raman



Film Deposition

22arice@sandia.gov

• Change in deposition behavior at ~2 monolayers



Film Deposition

23arice@sandia.gov

• Change in deposition behavior at ~2 monolayers

• Sapphire surface acting as an inhibitor? 

Slope 2

Slope 1

Crossover

~10x increase



Morphology

24

1 monolayer or less

RMS roughness ~0.2 nm

1 to 3 monolayers

RMS roughness ~0.5 nm

3 monolayers or more

RMS roughness >1 nm

• Morphology dependent only on film thickness

• Temperature and borazine flux impact only nucleation  

arice@sandia.gov



Summary

● Successful hBN deposition on sapphire 

● Room temperature free exciton emission with 
high temperature and high NH3 flows

● Borazine much less destructive than TEB + NH3

● FTIR differential reflectance very powerful for BN 
on semiconductor or oxide substrates

● Can still have monolayer thickness control on 
non-catalytic substrates

arice@sandia.gov 25
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Extra Slides

arice@sandia.gov



Estimation of Thickness of hBN Films
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Sapphire
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Peak:  1369 cm-1

FWHM:  ~30 cm-1

• Raman peak is comparable to 
published reports, little dependence 
on growth temperature ≥ 1400°C

• BN film appears to be very thin, 1-2 
monolayers  
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is a few ML thick 
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TEM check

BN Raman peak ratio (IBN/Isapp) 
vs. Pulse Cycles

Typical Raman Spectrum

 Apply calibration from thicker films

arice@sandia.gov



Estimation of Thickness of hBN Films

• Raman peak is comparable to 
published reports, little dependence 
on growth temperature ≥ 1400°C

• BN film appears to be very thin, 1-2 
monolayers  
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 Apply calibration from thicker films
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Potential for Self-limiting Growth at high Tg

Growth 
Temp (°C)

Growth 
Time (hrs)

Raman peak
ratio

STEM 
calibration

(MLs)

1600 0.25 0.1 ~1

1600 3 0.09 ~1

1600 3 0.18 ~2

1600 6 0.16 ~2

1600 24 0.26 ~3

Results from Raman Measurements

• Relatively little change in PL intensity over a 
large range of growth times

• Raman ratio (hBN/Sapphire) suggests only a 
few MLs even for 24 hours of growth

• Films roughen, with increased number of 
larger particulates, with longer growth times

PL Measurements

24 hr 14.1 nm RMS0.33 hr 0.971 nm RMS

AFM Measurements
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Nitrided Sapphire Substrate 
1600°C growth conditions but  

No Boron Source Material (TEB)

Challenge with High Temp Growth: 
Nitridization of Sapphire Substrate 

180 min 2.71 nm RMS

PL comparison:  BN on Sapphire vs. Nitrided Sapphire

BN
related

• High temperature NH3 exposure causes nitridization of 
sapphire surface (AlN peak seen by Raman)

• Lower crystalline quality than original sapphire, impacts 
BN morphology

• Contributes strong deep level emission at ~ 3.1 eV

Near Band Edge Deep Level

5 min 1.17 nm RMS
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Surface Passivation by NHx

Surface Passivation 

● DFT suggest NH is the most stable adsorbate

● Adsorption energy (Ea): -2.2 eV or -2.4 eV 

● Balancing impingement rate with desorption rate

● Our results consistent with Ea = -2.0 ± 0.5 eV 

�

2���
= ��ν����/��

Φ = R

Tang et al., 2014 Siegel et al., 2017
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Growth Temperature

● Evolution of near band 
edge emission

● Transition from defect 
bound to free exciton 
emission at 1500 ˚C

Growth Temperature Effect

Room Temperature PL
High NH3 samples

arice@sandia.gov



MOVPE (2016)

PL (10K) 

TEB / NH3

Sapphire

Room Temperature PL

Photoluminescence Results

5.590 eV
221.8 nm

~5.9 eV
~210 nm

5.742 eV
215.9 nm

arice@sandia.gov 33

(no FE from BN 
on sapphire)

1350°C

MBE (2017)

PL (8K) 

B / RF-N2

on HOPG



hBN PL

● Near band edge emission 
dominated by exciton behavior

● Number of phonon replica

● Still unclear about 
direct/indirect nature of hBN

34

hBN Photoluminescence

Bulk BN Low temp CL Pierret, 2014

Cassabois et al., 2016

Free 
Exciton

Defect-bound 
excitons

Arnaud et al., 2006

Exciton probability density (5.78 eV)

Phonon replica

arice@sandia.gov



• 1600C

• 5 min at 0.75 umol/min 
borazine

• 1500C

• 5 min at 0.37 umol/min 
borazine

• 60 min at 0.13 umol/min 
borazine

• 1450C

• 60 min at 0.13 umol/min 
borazine

• 1700C

• 1 min at 3.6 umol/min 
borazine

• Get “nuclei” with any of 
the below:

1450C 1500C

1700C1600C



• 1600C

• 30 min at 0.75 umol/min 
borazine

• 1500C

• 60 min at 0.37 umol/min 
borazine

• 1450C

• 240 min at 0.13 umol/min 
borazine

• 1700C

• 5 min at 3.6 umol/min 
borazine

• Get “wrinkles” with any of 
the below:

1450C
~25 ML

1500C

1700C
~16.6 ML

1600C



AFM
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AFM
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Topograph Phase Contrast
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AFM
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SNL ~2 ML BN

AFRL - Siegel et al. 
1 ML with additional ML islands

arice@sandia.gov
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• Thick hBN films B to N ratio ~0.95

• ~1 monolayer hBN appear N rich

• Surfaces exposed to sub-critical borazine flows show N but not B

XPS

Many ML

~1 ML

No BN

Many ML

~1 ML

No BN



Film Deposition
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• Deposition rate is not constant with time

Expanded view of insert to the left

Increasing 
borazine flow and 
temperature



Film Deposition

42arice@sandia.gov

• Change in deposition behavior at ~2 monolayers

• Sapphire surface acting as an inhibitor? 

Slope 2
Slope 1

Crossover

1450 °C

1500 °C

1600 °C



Separating Nucleation and Growth

43arice@sandia.gov

Nucleation

• Threshold determined by 
supersaturation

• Must over come an energetic 
barrier to nucleate

Deposition

• Net mass flux to growth 
surface must be positive

• Just need a higher input 
partial pressure than 
equilibrium partial pressure



44

• “Nucleation step” is 5 minutes at 0.37 µmol/min borazine

• Growth at 0.13 µmol/min borazine
arice@sandia.gov

Separating Nucleation and Growth

Nucleation Flow

Growth Flow



Nucleation with Temperature

arice@sandia.gov 45

1600 ˚C1450 ˚C

• BN deposition rate does not depend on nuclei density, 
nuclei size, or deposition temperature

These are those films!


