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e Motivation

eDeposition with TEB + NH,

e Deposition with borazine (B;H¢N,)




Why hBN?

2D applications

e Substrate for high mobility graphene
e Chemical and thermal stability

e Single photon emitters, gas sensing,

hyperbolic optics

Bulk applications
e Thermal neutron detection

e UV optoelectronics

T
h-1"BN ¢43 um

Maity et al., 2016

nanotechweb.org

UV AlGaN LED and how hBN could help
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Why CVD? High temperature?

M OCVD ” : Nakamura, 1986
o
e Scalable to large area St
e Proven industrial technique
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H lgh Tem pel' d tUI‘ e Deposition temperature,”C -
- - Experimental data 29 9g 7°
e Semiconductor or oxide substrates — el
Peak Sum

Chubarov,2012

e Prior reports of improving
crystallinity with increasing
temperatures
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Effects of Deposition Temperature and Ammonia
Flow on MOCVD Hexagonal Boron Nitride




Prior Literature
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MOCVD System The authors would like to thank Prof. Z. Sitar
. N . at NCSU for sharing reactor chamber design
e Refitted existing MOCVD with new chamber 2 o

e Cold walled, RF heated

e Temperatures up ~1900 °C

e In situ reflectance monitor

Growth Conditions

e c-sapphire
e 50 Torr
e N, diluent and carrier gas
e Triethylboron (TEB) at 22 pmol/min
e NH, varied 2 sccm to 5000 sccm
e V/lil ratio 5 to 10,000
e Temperatures varied 1100 °C to 1800 °C




Temperature and NH, Space
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e Growth rate is weakly e Critical NH; threshold exists
temperature dependent for all temperatures
e ~2.5 time change over 600 °C e 2-3 orders of magnitude

change in growth rate




Langmuir-Hinshelwood Model

Langmuir-Hinshelwood

e Competitive absorption of species that
react on a surface

e Controlling reactions:
kp
Bgas + OPensurface < Bsurface

e Model captures large decrease in growth
rate from microns to monolayers per hour

N
Ngas + Opensurrace < Nsurrace
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Photoluminescence Regimes

PL Regimes

NH ; Partial Pressure (Torr)

e No exciton emission 0.01 0.1 L 10
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Photoluminescence Results

Room Temperature PL
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TEB + NH,

e Monolayer hBN with room temperature free exciton emission

e Required temperatures over 1500 'C and with Py,; = ~5 Torr

e Damaged substrate surfaces
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Deposition of Hexagonal Boron Nitride by Borazine




Why Borazine?

Pros
e Literature reports of BN deposition

e High vapor pressure

”\
e Liquid source H N _ S N%

e Single source growth B‘

N
A
Cons H/ \B/ N

e Literature reports are mostly on metal
e Stability of source |
e Purity of source H

e Single source growth

(NH)3(BH),
- aice@sandagov 15




Nucleation Theory

Nucleation Theory

e Control of nucleation is critical
for heteroepitaxy

e Classical Nucleation:

N = Ce—AG/kT

A
Nuclei Density

Adatom Density

Temperature

e Would expect:
e More temperature = Less nuclei

e More precursor = More nuclei

T
0.0 1: Height

BN nuclei on sapphire
Deposition at 1450 °C




Nucleation with Temperature

1450 "C 1600 C

* Fixed flux and dosage of borazine
— 5 min at 0.37 ymol/min + 15 min at 0.13 ymol/min

* Nuclei density decreases with increasing temperature




Nucleation with Flux

20 mm 30 nm 3.0nm

1: Height 5.0 pm 1: Height 5.0 pm 1: Height 5.0 um

2 min at 1.5 pmol/min 5 min at 0.75 pmol/min 5 min at 0.37 ymol/min +
15 min at 0.13 ymol/min

* Fixed temperature of 1600 "C
* Nuclei density decreases with decreasing flux




Nucleation Theory

100 ‘ ‘
‘E‘ ® Nucleation Occurs
(o]
= ¥ No Nucleation
= 10 ® .,/
7/
A 7
o 1 o $ 000 0
a /7
— rd
(1]
'E o /./
(1] ./
e y
Q 0.1
c / X
N /7
1] /7
| -
o]
(a ]
0.01
1200 1300 1400 1500 1600 1700 1800
Temperature (°C)

 Critical borazine partial pressure for nucleation
- aice@sandagov 19




Characterization...

Characterization issues
o AFM

e Huge numbers of artifacts
e XPS

e Still have nitridation of surface
e Raman

e BN signal ~10 time less intense
than graphene signal

1
nan 1: Height 20pm

BN mode overlaps sapphire mode
* P PP ~1 ML of BN on sapphire




FTIR Differential Reflectance

FTIR

e Large difference between BN and
sapphire extinction coefficients Sapphire = n,

e 3 layer differential reflectance model hBN =n,
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Film Deposition
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« Change in deposition behavior at ~2 monolayers




Film Deposition
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« Change in deposition behavior at ~2 monolayers
« Sapphire surface acting as an inhibitor?




Morphology

20 nm HTA0424 : 5.|:| nm HAD453 =

1 monolayer or less 1 to 3 monolayers 3 monolayers or more
RMS roughness ~0.2 nm  RMS roughness ~0.5 nm RMS roughness >1 nm

* Morphology dependent only on film thickness
Temperature and borazine flux impact only nucleation




e Successful hBN deposition on sapphire

e Room temperature free exciton emission with
high temperature and high NH; flows

e Borazine much less destructive than TEB + NH,

e FTIR differential reflectance very powerful for BN
on semiconductor or oxide substrates

e Can still have monolayer thickness control on
non-catalytic substrates
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Estimation of Thickness of hBN Films

Typical Raman Spectrum BN Raman peak ratio (Igy/l;,,,)
vs. Pulse Cycles

- Apply calibration from thicker films
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Potential for Self-limiting Growth at high T,

PL Measurements Results from Raman Measurements
T T T T T T T T
121T=300K 6 hour T
& 3 hour '
S 10
S 1600 0.25 0.1 ~1
S g 1600 3 0.09 ~1
2
[ 1600 3 0.18 ~2
£ 61 1600 6 0.16 =2
= 1600 24 0.26 ~3
4_
] AFM Measurements
2 T T T T T T T :I:Kgg; 100.0
52 54 56 58 6.0 0.33 hr 0.971 nm RMS g 24 hr 14.1 nm RMS

Energy (eV)

* Relatively little change in PL intensity over a
large range of growth times

 Raman ratio (hBN/Sapphire) suggests only a
few MLs even for 24 hours of growth

* Films roughen, with increased number of e Ktk )
larger particulates, with longer growth times | —M ———— T




Challenge with High Temp Growth:

Nitridization of Sapphire Substrate

Nitrided Sapphire Substrate PL comparison: BN on Sapphire vs. Nitrided Sapphire
1600°C growth conditions but
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* High temperature NH; exposure causes nitridization of
sapphire surface (AIN peak seen by Raman)

* Lower crystalline quality than original sapphire, impacts
BN morphology

Contributes strong deep level emission at ~ 3.1 eV




Surface Passivation by NH,

Surface Passivation

e DFT suggest NH is the most stable adsorbate
e Adsorption energy (E.): -2.2 eV or -2.4 eV
e Balancing impingement rate with desorption rate
® =R
P
V2mkT

e Our results consistent with E, = -2.0 £ 0.5 eV

A A

»-
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B. O O O
EO ’oAc 0 o
o‘&’o OA

Tang et al., 2014 Siegel et al., 2017




Growth Temperature Effect

Growth Temperature

e Evolution of near band
edge emission

e Transition from defect
bound to free exciton
emission at 1500 °C
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Photoluminescence Results
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hBN Photoluminescence

Bulk BN Low temp CL Pierret, 2014
hBN PL Wavelength (nm)
240 230 220 210

e Near band edge emission
dominated by exciton behavior

Free
Exciton

e Number of phonon replica

e Still unclear about
direct/indirect nature of hBN

Normalized CL intensity
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1: Height

2.0 pm

1: Height

2.0 pm

Get “nuclei” with any of
the below:

1450C

60 min at 0.13 umol/min
borazine

1500C

5 min at 0.37 umol/min
borazine

60 min at 0.13 umol/min
borazine

1600C

5 min at 0.75 umol/min
borazine

1700C

1 min at 3.6 umol/min
borazine




10.0 nm 10.0 nim

Get “wrinkles” with any of
the below:

1450C

240 min at 0.13 umol/min
borazine

1500C

60 min at 0.37 umol/min
borazine

5.0 pm

HIAOLE3

1600C

30 min at 0.75 umol/min
borazine

1700C

5 min at 3.6 umol/min
borazine
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5.0 nm

B 200 | AFRL - Siegel et al.
SNL ~2 ML BN 1 ML with additional ML islands
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« Thick hBN films B to N ratio ~0.95
 ~1 monolayer hBN appear N rich
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« Surfaces exposed to sub-critical borazine flows show N but not B




Film Deposition
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« Deposition rate is not constant with time




Film Deposition
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« Change in deposition behavior at ~2 monolayers
« Sapphire surface acting as an inhibitor?




Separating Nucleation and Growth
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Separating Nucleation and Growth
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* “Nucleation step” is 5 minutes at 0.37 ymol/min borazine
* Growth at 0.13 ymol/min borazine




Nucleation with Temperature

0.13 umol/min borazine
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These are those films! i 1: Height 0 pm o0 1: Height & 0 pm
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« BN deposition rate does not depend on nuclei density,
nuclei size, or deposition temperature




