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Background ) .

= Context
= Total installed capacity of PV is growing fast
= Large growth expected in distribution systems o 0

" Problem ” )
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= Grid is slow to evolve, we encounter technical
challenges with voltage/frequency regulation,
protection, etc.
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= Unless mitigated, these challenges will make it
increasingly difficult and costly to continue
integrating renewable energy

. . \\\\' J// ...Faster than a tap changer
=  Solution: advanced inverters Wy ¢

= Actively support voltage and frequency by
modulating output

I ...More powerful than a rotating

*1 ~—~ machine

...Able to leap deep voltage sags in a
single bound
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= Have high tolerance to grid disturbances

= |nteract with the system via communications




Distribution Voltage Regulation ) .,
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Voltage regulation on a feeder
without distributed generation.
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Voltage regulation on a feeder
with distributed generation.

Solution: Use DER grid-support functions with reactive power capabilities.
- Cost-effective: no additional equipment required
- Logical: employs devices which are causing voltage rise to mitigate the problem

Images: B. Palmintier, et al., On the Path to SunShot: Emerging Issues and Challenges in Integrating Solar with the Distribution System, NREL/TP-5D00-65331, May 2016. 3
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Options for Voltage Regulation using
Grid-Support Functions

Centralized Control
Function: power factor or reactive power

commands

Pros: Direct influence over DER equipment to

achieve objective

Cons: requires telemetry, knowledge of DER
locations, and state estimator/feeder model

Distributed (Autonomous) Control

Function: volt-var or volt-watt
Pros: Simple, requires little or no

communications, DER locations not needed
Cons: does not reach global optimum

Extremum Seeking Control (ESC)

Function: new grid-support function
Pros: can achieve global optimum

Cons: requires fitness function broadcast,

new inverter functionality
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Extremum Seeking Control Steps

——————————— — —————
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A. Centralized control center collects

data from the power system Bk e wa'l
B. Control center calculates the objective ™" | [ M/\/

function, e.g., J = Z(V; — Vp,)? e
C. Control center broadcasts objective TI !I v
function to all inverters. + L I

D. Individual inverters extract their frequency-specific effect on the
objective function and adjust output to trend toward the global

optimum. :




Prior Experimental Work ) jge,,

= Fixed power factor, volt-var, ESC control soo0 ot Time Domn Respoe Comling s 3 IMTir
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J. Johnson, et al, Experimental Distribution Circuit Voltage Regulation using DER Power Factor, Volt-Var, and Extremum Seeking
Control Methods, IEEE PVSC, 2017. 6




Current Work ) e,

= Team expanded ESC experiments to include an Opal-RT power
hardware-in-the-loop (PHIL) system to simulate larger distribution
circuits.
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Preliminarily Results

= ESC adjusts reactive power to reduce the overvoltage conditions on
the simulated power system buses.

Objective Function, Inverter Reactive Power, and Bus Voltages
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Conclusions ) fee,,

= Extremum seeking control can be used for a range of power system
objectives when speed is not critical and an objective function can
be broadcast to control equipment. Some applications are:
= V\oltage regulation?
= Transmission services?
= Protection assurance
= Microgrid control

= Future work:
= Study limitations of ESC with solar variability
= Increase ESC response time of the control function
=  Run multiple inverters using simulated devices on the other buses
= Run experiments using larger distribution circuit models from utilities.
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