SAND2018- 0855C

Approximate Analytical Solution for Hypersonic Near Wake
Flow Field

Lawrence DeChant! and Ross Wagnild?
Sandia National Laboratories, Albuquerque, NM, 87185-0825

[Abstract] The near wake flow field associated with hypersonic blunt bodies is characterized by a complex
recirculating flow field with associated base pressure and expansion-compression behavior. In spite of this
complexity the near wake can be described by a simple, approximate, closed-form solution. This solution is
obtained using a minimal set of linearized governing equations. Though linear, simple solutions based upon
these governing equations cannot be readily constructed. = As such, an approximate splitting solution
procedure which is analogous to the classical method of variation of parameters from ordinary differential
equation theory is identified. Application of this approach yields two solutions: a recirculating flow field in
the lee of the body and a global diffusive model. The combination of these expressions is valid over the entire
flow domain. The resulting solution yields qualitatively plausible flow field behavior. With access to the
velocity field temperature field, Crocco-Busemann supplemented by a modified recovery factor is used to
estimate the temperature field. Quantitative comparison of centerline velocity and temperature predictions
to the measurements of Martellucci et. al. and Ramaswamy suggest good agreement where Mach number
behavior is reflected in the effective viscosity coefficient and recovery parameter. In a manner analogous to
the classical axisymmetric jet we suggest that by choosing appropriate effective viscosity values, the current
model is valid for both laminar and turbulent flows. Though highly simplified, the current modeling
approach offers useful insight into hypersonic near wake flow physics.
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cross-stream velocity (m/s)
streamwise location (m)

normal location (m)

eigenvalue or separation constant
viscosity (m?/s)

streamfunction (m?/s)

density (kg/m?®)
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Subscripts/superscripts

0 = constant

2d = two dimensional
axi = axisymmetric
dif = diffusive

lam = laminar

rec = recirculation
turb = turbulent

I. Introduction

ake flow behavior for high speed reentry bodies is of considerable importance since radar effects e.g. Radar

Cross Section (RCS), are intimately related to the wake flow behavior!. The so-called far wake, i.e. the wake

flow far from base of the vehicle can often be modeled using self-similar approaches to describe the velocity
defect.. The near wake, however, is complex with a localized recirculation bubble and expansion compression
phenomena. The low base pressure associated in the immediate lee of the body has been the subject of numerous
analytical, experimental and computational investigations. The strong adverse pressure gradient induces the flow
recirculation behavior. The recirculation flow field strength, recirculation bubble length (distance from the body to
the rear stagnation point) and the initial rapid decrease in the velocity defect are complex but essential to
understanding the near field flow and the initial conditions in terms of velocity defect for the far wake behavior.
Applications such as base antenna configuration and operation are usually immersed within the circulation bubble
flow requiring accurate estimates for their application.
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Figure 1. Schematic of hypersonic near wake flow behavior

Though complex, the necessity to be able to accurately describe the near wake flow for reentry applications drove
the development of a series of early analytical models®®.  These models were often based upon asymptotic
expansions, power-series or combined analytical numerical approaches. While undeniably clever, these
approximation were often cumbersome, requiring iteration or other means to connect localized models. Modern
approaches are virtually always computational simulations* which are usually accurate and robust but are rather
opaque relative to the insight provided by analytical expressions.

Here we derive a set of analytical expressions based upon explicit elementary functions that describe the flow field
in the lee of a bluff body. Starting with a highly simplified set of linearized governing equations which can solved
using an approximate splitting procedure one obtains expressions that describe both the diffusive velocity defect and
the recirculation zone. Combination of these solutions yields an expression for the velocity field that is valid over
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the entire domain. A Crocco-Busemann energy integral® supplemented by a modified recovery factor is used to
estimate the temperature field. The resulting solutions are qualitatively plausible flow field behavior. Quantitative
comparison of centerline velocity and temperature predictions to the measurements of Martellucci et. al®. and
Ramaswamy’ suggest good agreement where Mach number behavior is reflected in the effective diffusion
coefficient and recovery parameter. Remarkably utilization of the current analytical model for both laminar and
turbulent near wake flows suggests that by choosing appropriate effective viscosity parameters that this formulation
is valid for either flow regime.

Il. Governing Equations

We begin by considering the linearized approximate momentum equations:

1
uoux +— px :Veffuyy
P

1 €))
UV, +— P, = 0
Y2

Incompressible continuity takes the form: u, +Vv, = 0. To eliminate the pressure, we “cross-differentiate” and

subtract. Further introducing the stream function U=y, ; V=—, to satisfy continuity, we write:

uo (Wyy + Vi ) x = Veit l//yyyy (2)

Equation (2) retains two basic constructs associated wake flow:

1. Velocity defect diffusion
2. Near field recirculation behavior

Though a relatively simple linear partial differential equation, equation (2) can be best analyzed by splitting it into
the two elements described previously.

Equation Splitting Approximation

Splitting an equation into separate pieces and solving the associated expressions provides an avenue to
understanding the approximate functional behavior of the solutions. Let’s consider a trivial example for the ODE:

u"+Au'+A2u =0

@)
The exact solution for this expression is trivial as:
1 K V3
u =exp(—=Ax)| ¢, sin(— Ax) + ¢, cos(— Ax)
2 ) ) “)
Now, let’s consider an approximate solution. Let’s let one of the solutions, say ui be governed by:
u,"+4u,'=0 5)

With solution: U, = C, €Xp(—A4,X) +C, eXp(—A4,X). Inasimilar manner, we could solve the u, problem:
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u,""+4u, =0 ©)

With solution: U, = C, SiN(4,X)+C, C0S(4,X). By inspection one would propose that an approximate solution
might be written:

U = exp(=4,X)(C, SIN(A,X) + C, COS(4,X)) ™

i.e. a form related to: U = U, (X)U, (X) where we have chosen Notice the remarkable similarity to the traditional

method of variation of parameters utilized for inhomogeneous ODE theory®. Obviously, the associated constants Aq
and A, would need to be estimated by other means, e.g. a traditional Galerkin approximation® scheme. Indeed by

introducing a trial function of the form: U, =exp(—A4x)sin(4,X)one can compute the residual

R=u,"+AU,'+4°U, and compute the constraints: R(X = 0) and IR(X)dehich can be solved to exactly
0

1 3 . . .
recover: 21 = 5/1 and A, = 71 whereby an exact solution to the associated expression has been recovered.

Equation Splitting: Wake Flow

Let’s consider a simple splitting applied to the wake flow problem. All variable are non-dimensionalized by bluff
body base height, free-stream velocity and free-stream temperature.  The Reynolds number is based upon:

u_h
Re,=Re, =—.
Veff

Diffusive Wake

The obvious approach would be to model the near field problem as:

_ Vet
Wxxx uo lr//yyyy (8)
while the defect portion is modeled via:
_ Vet
Y yyx U, Y vy 9)

1%
Since the defect portion honors the tradition diffusive wake problem U, = Lﬁuyy , the solution is easily obtained

uO
as:
1 Rel/?(y +1) Rel/?(y —1)
(X, y)==|erf| =h M T apf| o0 M T
Uit (X, Y) Z[er( 2(X)1/2 er Z(X)lIZ (10)
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u
Where Re, = —2 and appropriate constants have been used to enforce a zero flow condition in the lee of the bluff
Vet

X

Vo) = \/ﬂ;eh [em(Reh(é‘?/x_l) j_em[Reh(Xerl) B (11)

Axisymmetric Solution

body. Using the streamfunction formulation we can readily compute the “v” velocity as V = —(j udy), =, :

The preceding solution was based upon a 2-d formulation where a simple analytical solution is well-established.
Unfortunately a similar model for an axi-symmetric formulation is not available. To partially remedy this issue we
propose to retain the cross-stream i.e. “y” variation of equation (10) but modify the streamwise “x” variation.

Indeed, by simply proposing a solution of the form: U(X,Y)=U, (X, ¥)g(X)and substituting into

ou 190 ou
—=—— (L —) evaluated for y=0, one obtains a differential equation for g(x) that can be solved to give:

ox yoy Re, oy

B Re}’?
g(x) =erf [WJ (12)
Whereby:
1 Re}/? Rel/?(y +1) Rel?(y -1)
Ugit_axi (X Y) = > erf (Z(X)hllz J(erf ( (h2x)1’2 —erf W (13)

There is value in ascertaining the behavior associated with the velocity fields described by equations (10) 2-d versus
equation (13) axi-symmetric. The asymptotic behavior for these two expressions can be written:

Uy, (%,0) oc x ™
4 14
udif_axi(xlo) oc X (14)
Which is good agreement with standard diffusive wake theory.
Recirculating Wake
We now consider the second portion of the equation splitting problem. The governing equation takes the form:
— Veff
!//XXX UO l//yyyy (]_5)

Equation (15) is best analyzed by introducing a separable solution as: ¥ = f (y)g(X)yielding the separable
expressions:
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g"-2Ag=0

gy Mo g3 (16)
Vet

Solution to these expressions is straightforward. The streamwise expression ¢'''—A%g = 0 can be solved to give

J3

(we retain a single solution) g oc eXp (—E/Ix)sin(7 AX). In a similar manner that cross stream expression
f''"+k*f =0can be solved to give (again retaining a single solution) f oc sin(ky)cosh(ky)where

u
k* =Re, 2°, where —>=Re, . While this solution would be valid for y<<1 the cosh(ky) term is inherently
Vet

unbounded. A local version of this expression follows by approximating the term: k*f as k*f ~k*f". The
governing equation then becomes: f'''+k?f''=0  The solution to the stream function is then simply:
f oc sin(ky) where now k* =Re, 1.

The associated streamfunction is then written:

7

. 1 . /3
w(X,y) oc —sin(ky) exp(—E/lx)sm(7ﬂx) (17)

There are effectively two degrees of freedom in this procedure:

1. Value for A

2. Value for vesf
2

The cross-stream expression then requires that: K=7and K=7 —> A1 = In a similar manner, we can

Re,
introduce a new length scale, i.e. the recirculation zone have a length, say, L. o where we require that

V3 V3

—ﬂLreo=7z—>Reh=7ﬂLreo. Notice that we can write this in the form:

2
Lee o :77z Re, ~0.367Re,.  We emphasize that the recirculation length model L , estimate is

re

provisional in that it is based upon a single component of the velocity field. As we shall see subsequently, the
global velocity field will exhibit a significantly shorter recirculation length. We examine the recirculation length
model subsequently.

To gain a sense of the behavior associated with this model, let’s notionally define: Le=4H. which is approximately
twice the length of the physically observed. In spite of being longer than expected, this estimate is appropriate
since the complete solution will involve reductions in length due to the diffusive behavior of the complete solution.

V3

With L=4 we estimate that Re, = 77ere ~11 which is grossly consistent with Reynolds numbers associated

with turbulent far-field wakes e.g. Rex=12.5 and Reai=14.1.

Global Wake Solution
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The preceding expressions can be used to build a globally valid flow field. The streamwise velocity u(x,y) can be
constructed as a sum of the near wake solution and the global difussive

Ugion (X, ¥) = L+ )Uyer (X, Y)

Vglab(X’ y) = _l/lxudef (X’ y) (18)
Where:
2
w(X,Y) o —sin(zy) exp(—izx)sin(ﬁzx) A=
2 2 Re,
1 Ret/?(y +1 Ret?(y -1
Uy (X, y) == erf| —2 22— = 01//2 ) —erf| —L 2 (31/2 )
2 2(x) 2(x)
While the axi-symmetric modification is:
1/2 1/2 2ey,
U gef (X, y):ierf Rehllz erf M)I/jl) —erf w
2 2(x) 2(x) 2(x)
We are particularly interested in the centerline velocity and can write an explicit formula for it as:
- 3( 7 1( z? Rel/?
u X)=1-(+sin(—| =— [X)exp(—=| — |x))erf (=2
20 (00 =1 (A SINCE| 2 p@p (=) 2 p)ert i)
(19)
3 P 1( 72 Rel/2
u (X)=1-(1+sin(— X) exp(— = x))erf 2 (—
Cent_aX|( ) ( ( 2 Reh ) Xp( 2 Reh )) (2X1/2)

Though the 2d and axisymmetric solutions behave in a similar manner the axisymmetric flow has a decreased
recirculation length and increase in recovery of the defect velocity as compared to the 2d flow which is consistent
with equation (14). We compare the two solutions in figure 2.
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— Axisymmetric Theory, Re_H=10
2-d Theory, Fe_H=10

0.51

u(0)/u
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Figure 2. Comparison between axisymmetric and 2d centerline velocity for Re,=10. Notice the decreased
recirculation length and more rapid recovering of the velocity defect.

The centerline velocity expressions developed in equation (19) include within them estimates for the location of the
rear stagnation point i.e. the recirculation zone length L. Indeed, L is simply the x location which yields a zero
velocity: U, (X=1L,,)=0. While formally described by this expression the actual inversion of equation (19) is
tedious. A simpler procedure is to simply compute roots of equation (19) for a family of Reynolds numbers and

then fit an expression to the curve suing simple regression. The result of this procedure for the axisymmetric model
in equation (19) is depicted in figure 2. As the figure suggests, a simple proportionality relationship

L,. = 0.228Re,, provides a good description of the recirculation bubble lengths.

| O Root Equ. 19 Fegression 0.228Re_l—l|
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Figure 3. Recirculation bubble length as function of Reynolds number for axi-symmetric wakes using equation (19).
Regression of lengths gives L., = 0.228 Re,, which is consistent with localized theory for L, but is shorter.
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The temperature behavior is also of interest. As a first approximation we can estimate the temperature field
behavior by utilizing the Crocco-Busemann relationship as:

2
T _ (7/_1) 2 u
i_“rTM‘” 1- I (20)

Where “r” is the recovery factor. While one would typically correlate the recovery factor with a Prandtl number

based expression, e.g. I = Pr/2we recognize that a reduced recovering is more correctly associated with local heat
transfer in the lee of the bluff body whereby we propose that the recovery is on the order of 2/3 though we will
permit the use of an empirical estimate derived from the magnitude of the temperature in the immediate lee of the
bluff body. Martellucci et. al'®. show a total temperature ratio of 0.6 for x<<1 for their M=6 measurements which is
consistent with our approximations.

Laminar Versus Turbulent

To this point in our development we have not explicitly stated whether the model approach is valid for a mean
turbulent flow or a laminar flow. We contend that the near wake formulation is largely the same whether the flow is
laminar or turbulent with the exception of the magnitude of the supporting parameters e.g. Ren. The concept that
the mean turbulent flow for a problem and the laminar flow could be governed by equivalent governing equations is
not unique to this flow class. An example where laminar and mean turbulent solution forms are analogous would
be the classical axi-symmetric jet problem where the flow solutions are precisely the same except for the supporting
coefficients. For example, the laminar flow solution is shown to be®:

) 1/2
b x 1oz VXV o o[ 3 ] _oaoRe,
am am g am 16,07TV|im (21)

Where J = 27zp.|.u2rdr and Req for transition is O(10-20) while the turbulent solution is:
0

) \2
- 77U|' .
Uy € X 1[1+ Clu t4bj ; Cup=v152~3.9 22

Notice that the turbulent solution is of course, Reynolds number invariant. These two expressions for both laminar
and turbulent axisymmetric jets are both structurally similar and supported by comparable Reynolds number
parameters.

Although we will discuss comparison of the analytical models with data in the next section, there is value in
examining the near wake centerline velocity for a slender cone Mach 8 cone flow as measured by Schmidt and
Crescit!. Their measurements are notable in that they were able to control Reynolds number for their flow such that
for one wake flow was laminar while the second, due to turbulent boundary layer on the cone body, had a turbulent
near wake. The resulting measurements and simulations where the Reynolds number has been varied are presented
in figure 4. As can be seen in the figure, the flow behavior is similar between the laminar and turbulent flows with
the difference being one of rate of recovery of the velocity deficit The turbulent flow recovers more quickly
relative to the laminar flow due its more energetic behavior. In a similar manner, the analytical solutions from
equation (19) are successful in describing these behaviors using the same solution with modified parameters. Thus,
we cautiously suggest that the current near field model is a viable model for both laminar and turbulent mean flows
where the effective Reynolds number for the turbulent flows is approximately % of the laminar value. We
emphasize, however, that the coincidence between laminar and turbulent flow solutions is valid for the near wake
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only. Far wake behavior is characterized by a marked difference in length scales associated with laminar and
turbulent flows.

O  Laminar, M=7.7: Schmidt and Cresci 1967
O Turbulent, M=7.7: Schmidt and Cresci 1967
— Laminar Theory, Re_H=8, r=0.275
— Turbulent Theory, Re_H=5, r=0275

5
4 _,rff
_ 3 f’j/ ,.——-:‘)"f
S ] ,,9/66 b
{t’ D'LJ'
g/
&// 4 : 0 1P
_1 z/H
'

Figure 4. Centerline velocity for a slender cone Mach 8 cone flow as measured by Schmidt and Cresci 1967.
Laminar and turbulent flows are successfully modeled using the same analytical solution, e.g. equation (19) but with
different parameters.

I1l. Results

The preceding analytical development provides flow field and temperature field estimates for near wake flows. The
overall flow field associated with equation (18) with Red=13 is given in figure 5:

0 2 4 6 8
X

Figure 5. Axisymmetric wake flow field, Rex=13
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Quantitative comparisons between the simple model developed here and near field wake measurements is readily

performed by considering data for centerline velocity and temperature fields. Martellucci 1966 provides both Mach
8 and Mach 10 results as described by figures 6 and 7:

O Data M=10: Martellucci 1966
— Theory;, Re_H=125
— Theory, Re_H=10

O Data M=10: Martellucci 1966
— Theory, Fe_H=125, r=06
— Theory;, Re_H=10, r=0.67

157
o O
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5 os o 10+ e
=] 7
iy
=)
[_‘
5_
O Iy
0 . . .
0 2 4 6 8 10
-0.5- %/H
Figure 6. Turbulent centerline velocity for 10 degree (half angle) cone, M=10 from Martellucci et. al. 1966.
Analytical solutions using equation (19) with Ren=12.5 and a recovery factor r=0.6 yield overall reasonable
conmparison.
O Data M=8 Martellucci 1965 O Data M=10: Martellucci 1966
— Theory, Re_H=8 —— Theory;, Re_H=8, r=0.75
— Theory, Fe_H=10 —— Theory;, Re_H=10, r=067
1 15.
2
S 05 =
= i
e
S
[_4
O b T T T T )
4 & 8 10
®/H
0 T ! 1
0 2 4 5} b 10
_0_5.

x/H

Figure 7. Turbulent centerline velocity for 10 degree (half angle) cone, M=8 from Martellucci et. al. 1966.
Analytical solutions using equation (19) with Ren=12.5 and a recovery factor r=0.6 yield overall reasonable
conmparison.
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Data for a 2-d circular cylinder is obtained by Ramaswamy’. The centerline velocity for a turbulent circular
cylinder is described in figure 8.

O Data M=8, Ramaswamy 1971
= Theory, Fe_H=8
— Theory, Fe_H=10

1.
=2 (0]
S 0.57 S
=
O
O . 4
o 4 6 3 10
%/H
-0.5-

Figure 8. Turbulent centerline velocity for cicular cylinder, M=6 from Ramaswamy 1971. Analytical solutions
using equation (19) with Rer=8 suggesting resonable comparion. Notice that the analytical model significantly over
predicts the strength of the recirculation zone due to the lake of a well defined recirculation zone for a cylindrical
body.

Add here additional comparison with computational simulation results. Use computational models to better
correlate Ren and recovery r with flow Mach number and geometry.

IVV. Conclusion

Here we have developed an approximate closed form analytical near wake solution. This solution is obtained using
a set of linearized momentum equations along with continuity. Though linear, explicit closed form solutions based
upon these governing equations cannot be readily constructed.  As such, an approximate splitting solution
procedure which is analogous to the classical method of variation of parameters from ordinary differential equation
theory is identified. Application of this approach yields two solutions: a recirculating flow field in the lee of the
body and a global diffusive model. The combination of these expressions is valid over the entire flow domain. The
resulting solution yields qualitatively plausible flow field behavior capturing buth the recirculation zone and the
wake velocity defect. With access to the velocity field temperature field, Crocco-Busemann supplemented by a
modified recovery factor is used to estimate the temperature field.  Quantitative comparison of centerline velocity
and temperature predictions to the measurements of Martellucci et. al®., Ramaswamy’ and Schmidt and Cresci'!
suggest good agreement with centerline velocity and temperature data. Mach number behavior is reflected in the
effective viscosity coefficient and recovery parameter used to represent these flows. In a manner analogous to the
classical axisymmetric jet we suggest that by choosing appropriate effective viscosity values, the current model is
valid for both laminar and turbulent flows. Though highly simplified, the current modeling approach offers useful
insight into hypersonic near wake flow physics.
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VII. Appendix: A Preliminary

The analysis developed here depends on being able to obtain approximate solutions to linear partial differential
equations. There is value in considering the splitting solution approach for a typical partial differential equation
initial value problem. We consider the linear PDE:

U, =uy, +U, (A1)

where the initial conditions are analogous to the wake flow problem.  Though simple, equation (A.1) is not
immediately solvable but requires an extension of classical heat equation methods by including a travelling wave
term f(z). An exact solution flows as:
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u=fZw(xy) ; z=x+ay (A2)

By substituting equation (A.2) into (A.1) we can collect a series of expressions that will help us to determine f(z), o
and w(x,y). These expressions are:

W, =W,
f'=a? frof
20t '+ =0 (A3)

These equation can be readily solved to give:

y+1
2X1/2

u=f(2)w(xy)= e><|o(—%(><+ 2y))[erf () —erf( y_l)} (A4)

2X1/2

Direct substitution reveals that equation (A.4) is indeed a solution for equation (A.1).

Solution of equation (A.1) by splitting is relatively simple. Indeed the split system can be written:

Uy = Uy,

(A5)
0=u,, +U,,

Although we usually prefer to retain the highest order derivative in the splitting procedure a third possibility for the
split equation is the first order PDE: U, = Uj,

The U, = u1yy is obviously directly related to the w(x,y) expression with U, = W(X,Y). The second expression:
0= Upyy +Uyy is immediately integrable by introducing the change in variables:

u,=f(z) ; z=9(X)+a,y . The governing equation can be written: 0 = cr, f "'+ f ' whereby the solution
is computed as:

u, =exp(—ai)=exp(g(x)—y) (A6)

2

We do not have sufficient information from this expression to compute the value for g(x), hence we turn to the third
split equation as: U,, = Usy . This PDE is solvable in a number of ways. As an initial value problem one would
solve:

Uy = 0— uso(é:)

(A.6)
ﬂ:—l—>y:§—x—>§:x+y
dx
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Alternatively one could compute a separable solution as: Uy =exp(—A(X+Y)).

Obviously, the split equation provides a solution family that is largely analogous to the exact solution equation
(A.4). A generalized (through unknown coefficients A abd B) solution takes the form:

1 -1
U = exp (AX + By)W(x, y) = exp (AX + By){erf (ZVXJ[,Z )—erf (23’)(1,2 )} ~

Notice that the w(x,y) expression is precisely the same as the exact solution.  The split solution offers an
approximate solution functional form. Unknown parameters can be estimated using several possible approaches
e.g. Galerkin etc. Here we use an unknown coefficient approach to compute the coefficients A and B. One can

substitute the expression eXp(AX + By)w(X, y) into the complete governing equation (A.1) and collect terms in
w:

_Rp2
A=B°+B (A8)

and terms in wy as:

1
O=ZB+1—>B:—E (A8)

and B=-1/4. Thus, we have recovered the exact solution though to be fair, we have used a procedure that largely
mimics the original solution procedure. That said, however, we have justified the functional form associated with
the exact solution by solving simple portions of the problem.
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