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[Abstract] The near wake flow field associated with hypersonic blunt bodies is characterized by a complex 

recirculating flow field with associated base pressure and expansion-compression behavior.   In spite of this 

complexity the near wake can be described by a simple, approximate, closed-form solution.  This solution is 

obtained using a minimal set of linearized governing equations.  Though linear, simple solutions based upon 

these governing equations cannot be readily constructed.   As such, an approximate splitting solution 

procedure which is analogous to the classical method of variation of parameters from ordinary differential 

equation theory is identified.   Application of this approach yields two solutions: a recirculating flow field in 

the lee of the body and a global diffusive model.   The combination of these expressions is valid over the entire 

flow domain.  The resulting solution yields qualitatively plausible flow field behavior.  With access to the 

velocity field temperature field, Crocco-Busemann supplemented by a modified recovery factor is used to 

estimate the temperature field.    Quantitative comparison of centerline velocity and temperature predictions 

to the measurements of Martellucci et. al. and Ramaswamy suggest good agreement where Mach number 

behavior is reflected in the effective viscosity coefficient and recovery parameter.  In a manner analogous to 

the classical axisymmetric jet we suggest that by choosing appropriate effective viscosity values, the current 

model is valid for both laminar and turbulent flows. Though highly simplified, the current modeling 

approach offers useful insight into hypersonic near wake flow physics. 

 

 

 Nomenclature 

 

 

h=H = bluff base body height or radius 

M = Mach number 

p = pressure (Pa) 

r = recovery factor 

R = Residual 

u = streamwise velocity (m/s) 

U=U∞ = freestream velocity (m/s) 

v = cross-stream velocity (m/s) 

x = streamwise location (m) 

y = normal location (m) 

λ =  eigenvalue or separation constant 

ν = viscosity (m2/s) 

ψ = streamfunction (m2/s) 

ρ = density (kg/m3) 
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Subscripts/superscripts 

 

0 = constant 

2d = two dimensional 

axi = axisymmetric 

dif = diffusive 

lam =  laminar 

rec = recirculation 

turb = turbulent 

 

I. Introduction 

ake flow behavior for high speed reentry bodies is of considerable importance since radar effects e.g. Radar 

Cross Section (RCS), are intimately related to the wake flow behavior1.   The so-called far wake, i.e. the wake 

flow far from base of the vehicle can often be modeled using self-similar approaches to describe the velocity 

defect..   The near wake, however, is complex with a localized recirculation bubble and expansion compression 

phenomena.   The low base pressure associated in the immediate lee of the body has been the subject of numerous 

analytical, experimental and computational investigations.   The strong adverse pressure gradient induces the flow 

recirculation behavior.   The recirculation flow field strength, recirculation bubble length (distance from the body to 

the rear stagnation point) and the initial rapid decrease in the velocity defect are complex but essential to 

understanding the near field flow and the initial conditions in terms of velocity defect for the far wake behavior.   

Applications such as base antenna configuration and operation are usually immersed within the circulation bubble 

flow requiring accurate estimates for their application. 

 

 
Figure 1. Schematic of hypersonic near wake flow behavior 

 

Though complex, the necessity to be able to accurately describe the near wake flow for reentry applications drove 

the development of a series of early analytical models2,3.   These models were often based upon asymptotic 

expansions, power-series or combined analytical numerical approaches.  While undeniably clever, these 

approximation were often cumbersome, requiring iteration or other means to connect localized models.  Modern 

approaches are virtually always computational simulations4 which are usually accurate and robust but are rather 

opaque relative to the insight provided by analytical expressions. 

 

Here we derive a set of analytical expressions based upon explicit elementary functions that describe the flow field 

in the lee of a bluff body.  Starting with a highly simplified set of linearized governing equations which can solved 

using an approximate splitting procedure one obtains expressions that describe both the diffusive velocity defect and 

the recirculation zone.   Combination of these solutions yields an expression for the velocity field that is valid over 
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the entire domain. A Crocco-Busemann energy integral5 supplemented by a modified recovery factor is used to 

estimate the temperature field.  The resulting solutions are qualitatively plausible flow field behavior.  Quantitative 

comparison of centerline velocity and temperature predictions to the measurements of Martellucci et. al6. and 

Ramaswamy7 suggest good agreement where Mach number behavior is reflected in the effective diffusion 

coefficient and recovery parameter.  Remarkably utilization of the current analytical model for both laminar and 

turbulent near wake flows suggests that by choosing appropriate effective viscosity parameters that this formulation 

is valid for either flow regime. 

II. Governing Equations 

 

We begin by considering the linearized approximate momentum equations: 

 

0
1

1

0

0





yx

yyeffxx

pvu

upuu






      (1) 

Incompressible continuity takes the form: 0 yx vu .   To eliminate the pressure, we “cross-differentiate” and 

subtract.   Further introducing the stream function xy vu   ;  to satisfy continuity, we write: 

 yyyyeffxxxyyu   )(0       (2) 

Equation (2) retains two basic constructs associated wake flow: 

 

1. Velocity defect diffusion 

2. Near field recirculation behavior 

 

Though a relatively simple linear partial differential equation, equation (2) can be best analyzed by splitting it into 

the two elements described previously. 

 

Equation Splitting Approximation 

 

Splitting an equation into separate pieces and solving the associated expressions provides an avenue to 

understanding the approximate functional behavior of the solutions.   Let’s consider a trivial example for the ODE: 

 
0''' 2  uuu 

      (3) 

The exact solution for this expression is trivial as: 

 



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



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cos()

2

3
sin()
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1
exp( 21 xcxcxu 

      (4) 

Now, let’s consider an approximate solution.   Let’s let one of the solutions, say u1 be governed by: 

 
0''' 111  uu 

      (5) 

With solution: )exp()exp( 11111 xcxcu   .   In a similar manner, we could solve the u2 problem: 
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0'' 2

2

22  uu 
      (6) 

With solution: )cos()sin( 22212 xcxcu   .   By inspection one would propose that an approximate solution 

might be written: 

 
 )cos()sin()exp( 22211 xcxcxu  

      (7) 

i.e. a form related to: )()( 21 xuxuu  where we have chosen   Notice the remarkable similarity to the traditional 

method of variation of parameters utilized for inhomogeneous ODE theory8.   Obviously, the associated constants λ1 

and λ2 would need to be estimated by other means, e.g. a traditional Galerkin approximation9 scheme.   Indeed by 

introducing a trial function of the form: )sin()exp( 21 xxut  one can compute the residual 

ttt uuuR 2'''   and compute the constraints: )0( xR and 


0

)( dxxR which can be solved to exactly 

recover: 
2

1
1  and 

2

3
2  whereby an exact solution to the associated expression has been recovered. 

 

Equation Splitting: Wake Flow 

 

Let’s consider a simple splitting applied to the wake flow problem.   All variable are non-dimensionalized by bluff 

body base height, free-stream velocity and free-stream temperature.   The Reynolds number is based upon: 

eff

Hh

hu


 ReRe . 

 

Diffusive Wake 

 

The obvious approach would be to model the near field problem as: 

 yyyy

eff
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u





0


      (8) 

while the defect portion is modeled via: 

 yyyy
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
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
0


      (9) 

Since the defect portion honors the tradition diffusive wake problem yy

eff

x u
u

u
0


 , the solution is easily obtained 

as: 
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Where 

eff

h

u


0Re   and appropriate constants have been used to enforce a zero flow condition in the lee of the bluff 

body.   Using the streamfunction formulation we can readily compute the “v” velocity as 
xxdyuv   )( : 
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Axisymmetric Solution  

 

The preceding solution was based upon a 2-d formulation where a simple analytical solution is well-established.   

Unfortunately a similar model for an axi-symmetric formulation is not available.  To partially remedy this issue we 

propose to retain the cross-stream i.e. “y” variation of equation (10) but modify the streamwise “x” variation.   

Indeed, by simply proposing a solution of the form: )(),(),( 2 xgyxuyxu d and substituting into 

)
Re

(
1

y

uy

yyx

u

h 











evaluated for y=0,  one obtains a differential equation for g(x) that can be solved to give: 

 








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)(2
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)(

x
erfxg h

      (12) 

Whereby: 
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
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x
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axidif       (13) 

There is value in ascertaining the behavior associated with the velocity fields described by equations (10) 2-d versus 

equation (13) axi-symmetric.  The asymptotic behavior for these two expressions can be written: 

 1

_

2/1

)0,(

)0,(









xxu

xxu

axidif

dif

      (14) 

Which is good agreement with standard diffusive wake theory. 

 

 

Recirculating Wake 

 

We now consider the second portion of the equation splitting problem.   The governing equation takes the form: 

 yyyy

eff

xxx
u





0


      (15) 

Equation (15) is best analyzed by introducing a separable solution as: )()( xgyf yielding the separable 

expressions: 
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3





f
u

f
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




      (16) 

Solution to these expressions is straightforward.   The streamwise expression 0''' 3  gg  can be solved to give 

(we retain a single solution) )
2

3
sin()

2

1
exp( xxg  .   In a similar manner that cross stream expression 

0'''' 4  fkf can be solved to give (again retaining a single solution) )cosh()sin( kykyf  where 

34 Re hk  , where h

eff

u
Re0 


.  While this solution would be valid for y<<1 the )cosh(ky  term is inherently 

unbounded.   A local version of this expression follows by approximating the term: fk 4
as ''24 fkfk  .   The 

governing equation then becomes: 0'''''' 2  fkf    The solution to the stream function is then simply: 

)sin(kyf   where now hk Re2  . 

 

 

The associated streamfunction is then written: 

 
)

2

3
sin()

2

1
exp()sin(),( xxkyyx  

      (17) 

There are effectively two degrees of freedom in this procedure: 

 

1. Value for λ 

2. Value for νeff 

The cross-stream expression then requires that: k and 

h

k
Re

2
  .   In a similar manner, we can 

introduce a new length scale, i.e. the recirculation zone have a length, say, Lre_0 where we require that 

0_0_
2

3
Re

2

3
rehre LL   .   Notice that we can write this in the form: 

hhreL Re367.0Re
2

3
0_   .   We emphasize that the recirculation length model 0_reL  estimate is 

provisional in that it is based upon a single component of the velocity field.   As we shall see subsequently, the 

global velocity field will exhibit a significantly shorter recirculation length.   We examine the recirculation length 

model subsequently. 

 

To gain a sense of the behavior associated with this model, let’s notionally define: Le=4H. which is approximately 

twice the length of the physically observed.   In spite of being longer than expected, this estimate is appropriate 

since the complete solution will involve reductions in length due to the diffusive behavior of the complete solution.  

With Lre=4 we estimate that 11
2

3
Re  reh L  which is grossly consistent with Reynolds numbers associated 

with turbulent far-field wakes e.g. Re2d=12.5 and Reaxi=14.1.    

 

Global Wake Solution 
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The preceding expressions can be used to build a globally valid flow field.  The streamwise velocity u(x,y) can be 

constructed as a sum of the near wake solution and the global difussive 

 ),(),(

),()1(),(
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yxuyxu

defxglab
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
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      (18) 

Where: 
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While the axi-symmetric modification is: 
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We are particularly interested in the centerline velocity and can write an explicit formula for it as: 
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Though the 2d and axisymmetric solutions behave in a similar manner the axisymmetric flow has a decreased 

recirculation length and increase in recovery of the defect velocity as compared to the 2d flow which is consistent 

with equation (14).  We compare the two solutions in figure 2. 
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Figure 2.   Comparison between axisymmetric and 2d centerline velocity for Reh=10.   Notice the decreased 

recirculation length and more rapid recovering of the velocity defect. 

 

 

The centerline velocity expressions developed in equation (19) include within them estimates for the location of the 

rear stagnation point i.e. the recirculation zone length Lre.   Indeed, Lre is simply the x location which yields a zero 

velocity: 0)(  recent Lxu .   While formally described by this expression the actual inversion of equation (19) is 

tedious.   A simpler procedure is to simply compute roots of equation (19) for a family of Reynolds numbers and 

then fit an expression to the curve suing simple regression.   The result of this procedure for the axisymmetric model 

in equation (19) is depicted in figure 2.   As the figure suggests, a simple proportionality relationship 

hreL Re228.0  provides a good description of the recirculation bubble lengths. 

 

 
Figure 3. Recirculation bubble length as function of Reynolds number for axi-symmetric wakes using equation (19).   

Regression of lengths gives hreL Re228.0 which is consistent with localized theory for 0erL   but is shorter. 
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The  temperature behavior is also of interest.   As a first approximation we can estimate the temperature field 

behavior by utilizing the Crocco-Busemann relationship as: 

 

 

































2

2 1
2

1
1

u

u
Mr

T

T 
      (20) 

Where “r” is the recovery factor.  While one would typically correlate the recovery factor with a Prandtl number 

based expression, e.g. 
2/1Prr we recognize that a reduced recovering is more correctly associated with local heat 

transfer in the lee of the bluff body whereby we propose that the recovery is on the order of 2/3 though we will 

permit the use of an empirical estimate derived from the magnitude of the temperature in the immediate lee of the 

bluff body.  Martellucci et. al10. show a total temperature ratio of 0.6 for x<<1 for their M=6 measurements which is 

consistent with our approximations. 

 

Laminar Versus Turbulent 

 

To this point in our development we have not explicitly stated whether the model approach is valid for a mean 

turbulent flow or a laminar flow.  We contend that the near wake formulation is largely the same whether the flow is 

laminar or turbulent with the exception of the magnitude of the supporting parameters e.g. Reh.   The concept that 

the mean turbulent flow for a problem and the laminar flow could be governed by equivalent governing equations is 

not unique to this flow class.   An example where laminar and mean turbulent solution forms are analogous would 

be the classical axi-symmetric jet problem where the flow solutions are precisely the same except for the supporting 

coefficients.   For example, the laminar flow solution is shown to be5: 

 d
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Where rdruJ 



0

22  and Red for transition is O(10-20) while the turbulent solution is: 

 
9.32.15;
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
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








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turbturb CCxu


      (22) 

Notice that the turbulent solution is of course, Reynolds number invariant.   These two expressions for both laminar 

and turbulent axisymmetric jets are both structurally similar and supported by comparable Reynolds number 

parameters. 

 

Although we will discuss comparison of the analytical models with data in the next section, there is value in 

examining the near wake centerline velocity for a slender cone Mach 8 cone flow as measured by Schmidt and 

Cresci11.   Their measurements are notable in that they were able to control Reynolds number for their flow such that 

for one wake flow was laminar while the second, due to turbulent boundary layer on the cone body, had a turbulent 

near wake.   The resulting measurements and simulations where the Reynolds number has been varied are presented 

in figure 4.   As can be seen in the figure, the flow behavior is similar between the laminar and turbulent flows with 

the difference being one of rate of recovery of the velocity deficit   The turbulent flow recovers more quickly 

relative to the laminar flow due its more energetic behavior.   In a similar manner, the analytical solutions from 

equation (19) are successful in describing these behaviors using the same solution with modified parameters.   Thus, 

we cautiously suggest that the current near field model is a viable model for both laminar and turbulent mean flows 

where the effective Reynolds number for the turbulent flows is approximately ½ of the laminar value.   We 

emphasize, however, that the coincidence between laminar and turbulent flow solutions is valid for the near wake 
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only.   Far wake behavior is characterized by a marked difference in length scales associated with laminar and 

turbulent flows. 

 

 

 
Figure 4.  Centerline velocity for a slender cone Mach 8 cone flow as measured by Schmidt and Cresci 1967.  

Laminar and turbulent flows are successfully modeled using the same analytical solution, e.g. equation (19) but with 

different parameters. 

 

 

 

III. Results 

 

The preceding analytical development provides flow field and temperature field estimates for near wake flows.  The 

overall flow field associated with equation (18) with Red=13 is given in figure 5: 

 

 
Figure 5.   Axisymmetric wake flow field, Reh=13 
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Quantitative comparisons between the simple model developed here and near field wake measurements is readily 

performed by considering data for centerline velocity and temperature fields.   Martellucci 1966 provides both Mach 

8 and Mach 10 results as described by figures 6 and 7: 

 

   
 

Figure 6. Turbulent centerline velocity for 10 degree (half angle) cone, M=10 from Martellucci et. al. 1966.   

Analytical solutions using equation (19) with Reh=12.5 and a recovery factor r=0.6 yield overall reasonable 

conmparison. 

 

 

  
 

Figure 7. Turbulent centerline velocity for 10 degree (half angle) cone, M=8 from Martellucci et. al. 1966.   

Analytical solutions using equation (19) with Reh=12.5 and a recovery factor r=0.6 yield overall reasonable 

conmparison. 
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Data for a 2-d circular cylinder is obtained by Ramaswamy7.   The centerline velocity for a turbulent circular 

cylinder is described in figure 8. 

 
 

Figure 8. Turbulent centerline velocity for cicular cylinder, M=6 from Ramaswamy 1971.   Analytical solutions 

using equation (19) with Reh=8 suggesting resonable comparion.   Notice that the analytical model significantly over 

predicts the strength of the recirculation zone due to the lake of a well defined recirculation zone for a cylindrical 

body. 

 

Add here additional comparison with computational simulation results.   Use computational models to better 

correlate Reh and recovery r with flow Mach number and geometry. 

 

 

IV. Conclusion 

 

Here we have developed an approximate closed form analytical near wake solution.  This solution is obtained using 

a set of linearized momentum equations along with continuity. Though linear, explicit closed form solutions based 

upon these governing equations cannot be readily constructed.   As such, an approximate splitting solution 

procedure which is analogous to the classical method of variation of parameters from ordinary differential equation 

theory is identified.   Application of this approach yields two solutions: a recirculating flow field in the lee of the 

body and a global diffusive model.   The combination of these expressions is valid over the entire flow domain.  The 

resulting solution yields qualitatively plausible flow field behavior capturing buth the recirculation zone and the 

wake velocity defect.  With access to the velocity field temperature field, Crocco-Busemann supplemented by a 

modified recovery factor is used to estimate the temperature field.    Quantitative comparison of centerline velocity 

and temperature predictions to the measurements of Martellucci et. al6., Ramaswamy7 and Schmidt and Cresci11 

suggest good agreement with centerline velocity and temperature data.  Mach number behavior is reflected in the 

effective viscosity coefficient and recovery parameter used to represent these flows.  In a manner analogous to the 

classical axisymmetric jet we suggest that by choosing appropriate effective viscosity values, the current model is 

valid for both laminar and turbulent flows. Though highly simplified, the current modeling approach offers useful 

insight into hypersonic near wake flow physics. 
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VII. Appendix: A Preliminary  

 

The analysis developed here depends on being able to obtain approximate solutions to linear partial differential 

equations.   There is value in considering the splitting solution approach for a typical partial differential equation 

initial value problem.   We consider the linear PDE: 

 yyyx uuu 
      (A.1) 

where the initial conditions are analogous to the wake flow problem.   Though simple, equation (A.1) is not 

immediately solvable but requires an extension of classical heat equation methods by including a travelling wave 

term f(z).   An exact solution flows as: 
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yxzyxwzfu  ;),()(

      (A.2) 

By substituting equation (A.2) into (A.1) we can collect a series of expressions that will help us to determine f(z), α 

and w(x,y).   These expressions are: 
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ww yyx
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      (A.3) 

These equation can be readily solved to give: 
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      (A.4) 

Direct substitution reveals that equation (A.4) is indeed a solution for equation (A.1). 

 

Solution of equation (A.1) by splitting is relatively simple.   Indeed the split system can be written: 

 

yyy

yyx

uu

uu

22

11

0 



      (A.5) 

Although we usually prefer to retain the highest order derivative in the splitting procedure a third possibility for the 

split equation is the first order PDE: yx uu 33   

The 
yyx uu 11  is obviously directly related to the w(x,y) expression with ),(1 yxwu  .   The second expression: 

yyy uu 220  is immediately integrable by introducing the change in variables: 

yxgzzfu 22 )(;)(   . The governing equation can be written: '''0 2 ff  whereby the solution 

is computed as: 

 
))(exp()exp(

2

2 yxg
z

u 
       (A.6) 

We do not have sufficient information from this expression to compute the value for g(x), hence we turn to the third 

split equation as: yx uu 33  .   This PDE is solvable in a number of ways.   As an initial value problem one would 

solve: 

 

yxxy
dx

dy

uu x
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Alternatively one could compute a separable solution as: ))(exp(3 yxu   . 

 

Obviously, the split equation provides a solution family that is largely analogous to the exact solution equation 

(A.4).   A generalized (through unknown coefficients A abd B) solution takes the form: 
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      (A.7) 

Notice that the w(x,y) expression is precisely the same as the exact solution.   The split solution offers an 

approximate solution functional form.   Unknown parameters can be estimated using several possible approaches 

e.g. Galerkin etc.  Here we use an unknown coefficient approach to compute the coefficients A and B.   One can 

substitute the expression ),()exp( yxwByAx  into the complete governing equation (A.1) and collect terms in 

w: 

 
BBA  2

      (A.8) 

and terms in wy as: 

 2

1
120  BB

      (A.8) 

and B=-1/4.   Thus, we have recovered the exact solution though to be fair, we have used a procedure that largely 

mimics the original solution procedure.   That said, however, we have justified the functional form associated with 

the exact solution by solving simple portions of the problem. 

 

 


