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Uncertainty quantification for HF models
• Characterize effect of uncertainty on HF models
• Severe simulation budge

• High dimensional PDEs
• Large-scale computing resources

• Significant dimensionality, driven by model 
complexity

• Higher-fidelity models → UQ more important  
• Less available runs, less study and analysis
• Nonlinearities become more important
• Increased effect of model errors, wrong initial conditions, wrong 

environmental conditions

2

Pareto-informed

Uniform

0.0

0.2

0.4

0.6

0.8

1.0

-3.00 -1.50 0.00 1.50 3.00 4.50 6.00 7.50 9.00

Pr
ob
ab
ili
ty

Activation!Energy!(eV)

Energy (ASCR, EERE, NE) 
Wind turbines, nuclear reactors

Climate (SciDAC, CSSEF, ACME) 
Ice sheets, CISM, CESM, ISSM, CSDMS



• Sampling methods
• Monte Carlo methods need order of magnitude increase in samples for 

every digit of accuracy
• Generally don’t account for additional structure, e.g., smoothness, sparsity, 

compressibility, decomposability
• Surrogate based methods like PCE or Gaussian process regression

• Take advantage of smoothness or compressibility 
• Suffer from curse of dimensionality 

Uncertainty quantification is expensive
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Leveraging multiple models for better accuracy

• Hierarchy of fidelities
• Ensemble of peer models
• Discretization levels / resolution controls
• Multi-physics and multi-scale
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Challenges to managing multiple models
Model fusion
• Models with different inputs/outputs
• Legacy data collected separately for each model
• Simulation codes may not have assumed relationship

• Corrupted evaluations, unconverged grids, unexplored parameters, validation 
only for some parameter settings
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(a) X47B UCAS (b) Nozzle close-up

Figure 1: Northrop Grumman X-47B UCAS and close up of its nozzle.24

Parameter Value

Span (m) 18.93

Empty weight (Kg) 6, 350

TOGW (Kg) 20, 215

Payload (Kg) 2, 040

L/D|
cruise

12.62-15.58

Cruise Mach 0.45

Top speed high subsonic

Range (nm) 2, 100

Endurance (hr) 6

Service Ceiling (ft) 40, 000

Table 1: Geometry and estimated performances for X-47B.8

methods are the most popular means of generating samples from the posterior distribution. However MCMC
is too expensive to perform with high-fidelity computational models, since the evaluation of the likelihood
requires running the high-fidelity simulation at candidate parameter values O(104 � �106) times. Several
approaches to this challenge employ low-cost surrogates in place of the expensive forward model.3,18,21,28

Within SEQUOIA, we utilize our multilevel-multifidelity strategies to draw samples from the posterior
distribution of a high-fidelity model. Specifically we construct multilevel-multifidelity emulators for the
forward map using a series of polynomial approximations of the model discrepancies. These emulators
provide analytic derivative information (gradients and Hessians), allowing for full-Newton pre-solves for the
point of maximum a posteriori probability (MAP) followed by Hessian-based proposal densities for generating
Markov chain samples that are informed about the local shape of the posterior distribution. These emulators
can subsequently be adaptively refined in regions of high posterior density.

Multilevel-multifidelity methods are also under investigation for optimization as described in 22. Similar
concepts arise with respect to the tailoring of algorithms to multilevel hierarchies of discretization levels
and multifidelity hierarchies of model forms. In this case, multigrid optimization algorithms are specifi-
cally tailored for multilevel hierarchies, and trust-region model management algorithms can be expanded to
recursively address deep multifidelity hierarchies of varying model forms.

This paper is organized as follows. We summarize our previous approaches to multilevel-multifidelity
forward UQ with sampling methods in §II and expansion methods based on rate estimation in §III. Applica-
tion problems are described in §IV and associated numerical results in §V, motivating additional algorithm
developments described in §VI and summary remarks in §VII.
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Multilevel Monte Carlo and Control Variates
Variance reduction techniques assume model relationships
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Exploiting structure within simulations
Co-kriging or Gaussian Process Regression
• Co-kriging fuses information from multiple sources

• Bayesian regression, builds a distribution over functions
• Exploits smoothness properties of information source using kernels (nonparametric) or 

basis functions (parametric)
• Recursive Co-Kriging for Multifidelity Models*

• Usage for hierarchies of models
• High-fidelity GP  is written as a sum of the lower fidelity GP and a new variation term
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Qian and Wu 2004, Gratiet and Garnier 2014, Perdikaris et. al. 2015

YL(x) = ⇢L�1(x)YL�1(x) + �L(x)

⇢L�1(x) = gL�1(x)
T�L�1

Y1 ⇠ GP(m(x),�(x))

�L ⇠ GP(m�L(x)��L(x))
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Main Idea 

Fuse multiple models by learning their 
statistical relationships using networks of 

latent variables
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• Introduce hidden variables to explain observed data (surrogate, emulator, etc)
• Parametric: polynomial chaos expansions, deep networks
• Nonparametric: Gaussian process regression

• Single fidelity UQ: learn latent variable model → propagate uncertainty through LVM

Latent variable models
Hidden relationships between complex models 
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Single fidelity training

• Maximum Likelihood 
• Least squares 

• Regularization MAP estimate 
• Ridge Regression (L2) 
• Sparse Regression (L1 or L0) 

• Fully Bayesian



Latent variable networks
Graphs encode interpretable structure
• Peer low fidelity models

• Example: Model 1 has a composite turbulence models, second two models have components

• Distinct model hierarchies
• Example: refined discretization as in a multilevel scheme

• Peer high fidelity models: 
• Example: independent high-fidelity models with an overlapping prediction
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1. Learn model structure and transition probabilities by maximizing some score 
• AIC, BIC, etc. 

2. Learn only parameters of a given structure 
• Fix a parametric family for conditional probabilities 
• Include uncertainty over CPD parameters → hierarchical Bayes

Independent model, different data sets Independent model, shared data
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Why learn network structure?

• Can learn when models are related and when they are not

• Reduction in uncertainty for related models, no degradation for unrelated 
models

• Efficient learning of correlations between models
• Don’t consider all possible correlations
• Don’t assume a specific set of correlations to consider
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Framework provides a rich learning environment

I Compare predictions for high-fidelity model using

I single fidelity latent variable model

I multifidelity latent variable network

I Related models vs unrelated models

I Unrelated models do not corrupt estimates (unlike in MLMC)

Related models Unrelated models

Reduction in uncertainty for related models

Related Models Unrelated Models



• Learning the general structure of M models must consider           graphs
• We can make two common assumptions

1. Known variable ordering: certain models cannot be lower-fidelity than 
others

• Now “only”            candidates 
2. Limit number of parents of each node

Computational complexity
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• Recall 1-1 mapping of MC estimate of mean and solution of a least 
squares system

• We have derived a similar result for joint Gaussian LVN

• Likelihood model

Maximum likelihood UQ for joint normality
Relationship to control variates
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Under a constant basis a MLE with LVN is multivariate control variates
Computationally challenging, need to estimate entire covariance 
matrix and invert large scale matrix



Bayesian UQ for networked models
From Bayesian Monte Carlo* to UQ through Bayesian LVNs
• Bayesian Monte Carlo

• Set prior for output of function (i.e., for its parameters)
• Update prior from data
• Propagate posterior through integrals

• Bayesian Latent Networks
• Set prior distribution over network
• Update distribution or find MAP using data
• Propagate uncertainty though HF model
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*See Bayesian Monte Carlo by Ghahramani and Rasmussen 2003
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Examples

• Distinguish between three graphs: peers, recursive, and independent
• Use Legendre polynomial basis, total order in multivariate
• Prior on coefficients an multivariate normal with a diagonal covariance 

and decaying entries
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Related models
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• 10th order polynomials
• [5, 9, 16] evaluations per model
• Taking advantage of smoothness 

yields better accuracy than MC

fL(x) = exp
h
�10 (x� 0.5)2

i

fM (x) = fL(x) + sin(5x)

fH(x) = fM (x) + x3



Related models
UQ comparison: Recursive Network vs MLMC vs MFMC
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• Compare convergence MLMC, MFMC, and LVN estimators 
• Multiplier of [5, 10, 15]  samples per fidelity 
• Repeat each experiment 20 times 
• MLMC and MFMC have very similar performance 
• LVN has much tighter bounds and faster convergence

Multiplier Recursive Peer Independent

1 7 13 0

2 7 13 0

3 11 9 0

4 5 15 0

5 9 11 0

6 10 10 0

7 6 14 0

8 3 17 0

9 6 14 0



Unrelated models
• 10th order polynomials
• [10, 20, 40] evaluations per model
• Restricted bounds on hyperparameters
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Cardiovascular flow
Based on work by Fleeter, C. Geraci, G. et. al. CCR Proceedings 2017

• Hemodynamic modeling
• Complex workflow

• Medical image data → vascular anatomy
• Numerical solutions of equations governing blood flow in elastically deformable vessels
• A variety of intermediate models

• Uncertainties are prevalent
• Spatial variability of material properties
• Uncertain anatomy

20

C.M. Fleeter, G. Geraci, D.E. Schiavazzi, A.M. Kahn, M.S. Eldred, and A.L. Marsden 13

(a) Multifidelity. (b) Multilevel. (c) Multilevel-Multifidelity.

Fig. 6.1: Schematics of multifidelity and multilevel UQ approaches.

6.1. Aorto-Femoral model results. The aorto-femoral model is a patient-
specific model of a healthy abdominal aorta with iliac and femoral arteries, character-
ized by nine outlet branches. This model has no unusual/pathologic anatomical fea-
tures such as stenosis or aneurysm, and has long, straight, quasi-cylindrical branches
without large area di↵erences at the outlets. The three model fidelities were generated
as discussed in the sections above, illustrated in Figure 6.2.

(a) 3D model. (b) 1D model.
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Fig. 6.2: Schematic view of the three model fidelities for the aorto-femoral model.

The relative cost of solving these models is reported in Table 6.2. The di↵erence
in computational cost between 0D-1D and 1D-3D simulation time is very significant,
i.e., several orders of magnitude. After examining the computational cost, outputs

C.M. Fleeter, G. Geraci, D.E. Schiavazzi, A.M. Kahn, M.S. Eldred, and A.L. Marsden 11

Fig. 5.1: Flows and pressure comparisons between model fidelities at selected out-
lets of aorto-femoral model with pulastile inlet flow and resistance outlet boundary
conditions.

6. Multilevel/Multifidelity Uncertainty Propagation. This section dis-
cusses uncertainty propagation on two hemodynamic models of the aorto-femoral and
coronary circulation, respectively, under steady-state flow and resistance boundary
conditions. A steady inflow waveform of 83.333 mL/s was prescribed at the aortic in-
let for both models, consistent with the cardiac output of a healthy subject. The total
outlet resistance was tuned to give a physiologic average pressure of 90 mmHg, again
typical of an healthy subject, distributed proportionally to the outlet area (Murray’s
law, see, e.g., [24]). Thus, outlet resistance can be expressed as a vector R 2 R9 for
the aorto-femoral model (9 outlets) and R 2 R10 for the coronary model (10 outlets).

After setting their reference values, the outlet resistances were considered as un-
certain, leading to an input random vector ⇠ ⇠ U [0.7 · R, 1.3 · R], i.e., with values
drawn from uniform distributions of ±30% of the reference outlet resistance. More-
over, steady-state flows and pressures at the outlets were considered as our output
quantities of interest. Wall shear stress (WSS) quantities were also considered for the
coronary model.

The reduction in variance for these quantities of interest was compared for seven
di↵erent estimators: “vanilla” Monte Carlo estimator (three-dimensional model only),
two multifidelity estimators, three multilevel estimators, and one multilevel/multifidelity
estimator, each discussed in Section 2. Schematics showing the relationship between
the models in each method are shown in Figure 6.1, while a summary of the formulas
for expected value and variance of our quantities of interest is provided in Table 6.1.

A fixed number of forward solutions associated with uniform realizations ⇠(i) were
generated for this uncertainty propagation task. Specifically, 100 three-dimensional,
2 000 one-dimensional and 10 000 zero-dimensional simulations were used. Note how
the first realizations are overlapping for the three model fidelities, i.e., the first 100
simulations were performed using the same random inputs for all fidelities, whereas
the same 2 000 simulations were run for the one- and zero-dimensional models. All
results were used in computing the estimators discussed above.



Learning the network
Preliminary results

• Nine uncertain parameters (outlet resistances)
• N = [100, 2000, 10000] available runs
• All models yield approximately same mean
• Does not seem to be enough evidence to use 

recursive or peer over independent
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14 Cardiovascular Flow Under Uncertainty

Cost E↵ective Cost
Solver (1 simulation) (No. 3D Simulations)

3D 96 hr 1
1D 11.67 min 2E-3
0D 5 sec 1.45E-5

Table 6.2: Simulation cost needed to generate aorto-femoral model results using var-
ious hemodynamic solvers.

were compared to determine their degree of similarity/correlation across model fi-
delities. This is illustrated in Figure 6.3, with histograms and box plots comparing
one representative flow and pressure QoI for the three-, one- and zero-dimensional
models. These plots show a certain similarity in the distributions and ranges of the
QoIs. These similarities, together with a remarkable di↵erence in computational cost,
confirms a MLMF estimator to be particularly well-suited for this case.

(a) Aorto-Femoral MC flow distribution. (b) Aorto-Femoral MC flow statistics.

(c) Aorto-Femoral MC pressure distribution. (d) Aorto-Femoral MC pressure statistics.

Fig. 6.3: Di↵erences in distributions for flow and pressure QoIs in 3D, 1D and 0D
aorto-femoral model.

N Rec Peer Indep

10/20/40 0.11 0.11 1

20/40/80 0.7 0.7 1

40/80/160 0.5 0.5 1

Log Odds Ratio



Summary and Future work

• Described a modeling framework for fusing multiple simulation models
• Parametric latent variable network can be learned, even from minimal data.
• Learning relationships instead of assuming them yields robustness
• Learning is important to take advantage of smoothness while avoiding 

errors made from model relationships
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Takeaways

• Leverage a wide variety of new high dimensional Gaussian latent factor 
learning algorithms

• Use Bayesian score
• Use this framework within optimization, design, and control

Future work


