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Uncertainty quantification for HF models

Energy (ASCR, EERE, NE)

Wind turbines, nuclear reactors

Characterize effect of uncertainty on HF models

Severe simulation budge
« High dimensional PDEs
+ Large-scale computing resources

Significant dimensionality, driven by model

complexity
Higher-fidelity models = UQ more important

 Less available runs, less study and analysis

* Nonlinearities become more important
. Incr_eased effect of r_n_odel errors, wrong initial conditions, wrong Climate (SCIDAC. CSSEE. ACME
environmental conditions Ice sheets, CISM, CESM, ISSM, CSDMS
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Uncertainty quantification is expensive

Sampling methods

« Monte Carlo methods need order of magnitude increase in samples for
every digit of accuracy

- Generally don’t account for additional structure, e.g., smoothness, sparsity,
compressibility, decomposability

Surrogate based methods like PCE or Gaussian process regression
Take advantage of smoothness or compressibility
Suffer from curse of dimensionality
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Leveraging multiple models for better accuracy

Potential Flow

- Hierarchy of fidelities

- Ensemble of peer models

« Discretization levels / resolution controls
« Multi-physics and multi-scale

‘ o A
Hybrid RANS/LES
Potential Flow model

Reynolds *
Averaged Navier- equation equation ess RANS
Stokes (RANS) RANS model RANS model model

Hybrid
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Challenges to managing multiple models
Model fusion

- Models with different inputs/outputs
« Legacy data collected separately for each model

- Simulation codes may not have assumed relationship
«  Corrupted evaluations, unconverged grids, unexplored parameters, validation
only for some parameter settings
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RANS nozzle aerodynamics

Analytic or

(a) X47B UCAS (b) Nozzle close-up
Figure 1: Northrop Grumman X-47B UCAS and close up of its nozzle.?*

http://www.northropgrumman.com/MediaResources/Pages/MediaGallery.aspx ?Productld=UC-10028 nterer
1-D Heat Transfer

D(x)
2t(x)

\ Simplified hoop stresses / KCoarse FEM structural modej FEM structural model

LOW FIDELITY MEDIUM FIDELITY HIGH FIDELITY

a(x) = P(x)
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Multilevel Monte Carlo and Control Variates
Variance reduction techniqgues assume model relationships

L1 s . 2
Monte Carlo V=3 Var[V] = O-WY
1=1
. L
Multilevel Monte Carlo E[Vy] = E[Yo] + S E[Y; — Y 1] i
Giles 2008 pt vl o oA
: : Var {YL ] = —+ Z l
Relies on decay of variance of ) ) L Ny Ny
discrepancies yME =Y, + Z A =1
=1

Control Variates oy e 1 [
Most general, considers correlations YL =YL — ZL,iLZ:L,:L {YL — K [YL]}
between all models

.o . ~ ~ L ~
Multifidelity Monte Carlo YMIEMC 5y, — > (Yg —E [Yg])
Peherstorfer 2016

Approximates CV with sparse precision
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Exploiting structure within simulations
Co-kriging or Gaussian Process Regression

« Co-kriging fuses information from multiple sources
Bayesian regression, builds a distribution over functions
Exploits smoothness properties of information source using kernels (nonparametric) or
basis functions (parametric)

« Recursive Co-Kriging for Multifidelity Models™
Usage for hierarchies of models
High-fidelity GP is written as a sum of the lower fidelity GP and a new variation term

Yi(2) = pr—1(2)Yr-1(z) + oL (2)
(

pL-1(T) = gr—1 ZE)TﬁL—l
Y1 ~GP(m(z),o(x))
or, ~ gP(mCSL(LU)O-CsL (ZU))

Qian and Wu 2004, Gratiet and Garnier 2014, Perdikaris et. al. 2015



Main ldea

Fuse multiple models by learning their
statistical relationships using networks of
latent variables

Low-fidelity peers Hierarchy High-fidelity peers
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Latent variable models
Hidden relationships between complex models

« Introduce hidden variables to explain observed data (surrogate, emulator, etc)

Parametric: polynomial chaos expansions, deep networks
Nonparametric: Gaussian process regression

«  Single fidelity UQ: learn latent variable model — propagate uncertainty through LVM

Single fidelity training
Inputs red& @
Outputs y € R"” e Maximum Likelihood
D Least squares

Latent Vars 0 cR e Regularization MAP estimate @

. . nXxXp « Ridge Regression (L)
Mapping ¢ A = R « Sparse Regression (L1 or Lo)
LVM Yy = gb(g;)@ « Fully Bayesian

EY] ~E[¢(2)6] = E[¢(x)]0 ()

N
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Latent variable networks
Graphs encode interpretable structure

- Peer low fidelity models
Example: Model 1 has a composite turbulence models, second two models have components

- Distinct model hierarchies
Example: refined discretization as in a multilevel scheme

p(01,02,03) = p(61)p(02(01)p(6362)

« Peer high fidelity models:

Example: independent high-fidelity models with an overlapping prediction

p(01,02,03) = p(61)p(02]61)p(63]61)

p(01,02,03) = p(61)p(02)p(0s]01,02)
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Learning network structure from data
(o) (o) (o) (o)

Can we distinguish between (1) (¥) and () (¥:)

&

<

1. Learn model structure and transition probabilities by maximizing some score
e AIC, BIC, etc.

2. Learn only parameters of a given structure
 Fix a parametric family for conditional probabilities
e Include uncertainty over CPD parameters — hierarchical Bayes

Independent model, different data sets Independent model, shared data
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Why learn network structure?

« Can learn when models are related and when they are not
Related Models Unrelated Models

~100 —075 -050 —025 000 025 050 075 1.00 Z100 075 -050 —025 000 025 050 075 100

« Reduction in uncertainty for related models, no degradation for unrelated
models

- Efficient learning of correlations between models
- Don’t consider all possible correlations
- Don’t assume a specific set of correlations to consider

12
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Computational complexity

- Learning the general structure of M models must consider ©2"") graphs
- We can make two common assumptions
1. Known variable ordering: certain models cannot be lower-fidelity than
others

j>1 = 0, ¢ parents(;)

+  Now “only” 0(2") candidates
2. Limit number of parents of each node

@) (kz Gj)) = O (kM*1)
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Maximum likelihood UQ for joint normality
Relationship to control variates

Recall 1-1 mapping of MC estimate of mean and solution of a least
squares system

. - 1 > 1
argminly — ¢(x)0] = (6(x)"¢(x)) “6(x)'y  d(x)=1 = 0= N;y”
We have derived a similar result for joint Gaussian LVN
T I R et
Likelihood model

e N (] e0) 0= 2

OMEE = pMIE = {¢1 (x)" Ay (X)} - $1(x)" A [y1 — cra(x)ea(x) 7 [ye — d2(x)pel]

Under a constant basis a MLE with LVN is multivariate control variates

Computationally challenging, need to estimate entire covariance
matrix and invert large scale matrix
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Bayesian UQ for networked models
From Bayesian Monte Carlo* to UQ through Bayesian LVNs

- Bayesian Monte Carlo

Set prior for output of function (i.e., for its parameters)
Update prior from data
Propagate posterior through integrals

0 ~N(m,C) = Y ~ N (E[¢(z)]m,E[¢(x)] CE [¢(z)"])

- Bayesian Latent Networks

Set prior distribution over network Parameters
Update distribution or find MAP using data
Propagate uncertainty though HF model
i EEN
| e
i Output

Inputs

*See Bayesian Monte Carlo by Ghahramani and Rasmussen 2003
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Examples

- Distinguish between three graphs: peers, recursive, and independent
- Use Legendre polynomial basis, total order in multivariate

 Prior on coefficients an multivariate normal with a diagonal covariance
and decaying entries

f(x) =) 01000 (@1) ... Pay(za) 0

A1 ~ N (0,diag [wr., ..., wp]) (&) (9:)
6)]' N./\/'(mjﬁz-,cjl)

y;j ~ N (o(x)0;,1;)

16
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Related models

« 10th order polynomials

- [5, 9, 16] evaluations per model

- Taking advantage of smoothness
yields better accuracy than MC

fr(x) =exp [—10 (x — 0.5)2}
fu(x) = fr(x) + sin(5x)
fu(@) = fu(z) +2°

Peer: Learned hyperparameters LL=1.5398440145988648
Multilevel regression Constant

2500
2000 i
1500 4 i

1000 1 i

500 4 :

-2 1 T T T T 0-1—— T r T T T
-0.50 -0.25 0.00 0.25 0.50 0.75 1.00 1.25

Independent: Learned hyperparameters LL=-5.378645832621789
Multilevel regression Constant

3000 +
2500 A
2000
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1000 -

500 4 @

21 : : : : oL
-1.0 -0.5 0.0 0.5 1.0 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00 1.25

Recursive: Learned hyperparameters LL=1.5397001573636082
Multilevel regression Constant

2500 i
2000
1500 4 :

1000 4

500 4 :

21 : : : : oL
-1.0 -0.5 0.0 0.5 1.0 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00 1.25
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Related models
UQ comparison: Recursive Network vs MLMC vs MFMC

o Compare convergence MLMC, MFMC, and LVN estimators
e Multiplier of [5, 10, 15] samples per fidelity

e Repeat each experiment 20 times

e« MLMC and MFMC have very similar performance

e LVN has much tighter bounds and faster convergence

Multiplier Recursive Peer Independent € ol
1 7 13 0 E
2 7 13 0 E
3 11 9 0 g0
4 5 15 0 5
5 9 11 0 g 021
6 10 10 0 e
7 6 14 0 5o1q
8 17 0
9 6 14 0 1 2 3 4 5 6 7 8 9

Number of training points multiplier
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Unrelated models

Indep: Learned hyperparameters LL=9.080624427533209

. 10th order pOlynOmials 20— Multilevel regressioin : r Constant
- [10, 20, 40] evaluations per model 159 ) Aodo |
« Restricted bounds on hyperparameters [y |

fr(x) = sin(5x) °* ! E N

far(x) = cos(10x) exp(10x) " . |

. 0 t———
-1.0 -01 00 01 02 03 04 05 06

fru(x) = exp (—10 (x — 0.5)2) g

Peer: Learned hyperparameters LL=0.6256860306509244 Recursive: Learned hyperparameters LL=-35.11132988763346
Multilevel regression Constant Multilevel regression Constant
2.0 . . 2.0
1 250 A : 1
i —H i | 250 1
1.5 i R I 5 i i
! 200 - I i\ ! |
i il i i 200
1.0 Va H 1.0 [ H
! J o 1
(1 1 150 ,, 1 150 4
0.5 4 1 0.5 i '
Y / :
! 100 - ) |
0.0 - i 0.0 ! 100
i i
— H i 50 : : H
-0.5 : : : —0.5 - H 50 1
1 : : 1
—L H i
-1.0 T L 0 T -1.0 L . : 0- T T T T T T
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Cardiovascular flow

Based on work by Fleeter, C. Geraci, G. et. al. CCR Proceedings 2017

- Hemodynamic modeling

- Complex workflow

- Medical image data — vascular anatomy
- Numerical solutions of equations governing blood flow in elastically deformable vessels

« Avariety of intermediate models

* Uncertainties are prevalent
- Spatial variability of material properties
- Uncertain anatomy

Pressure at Right Renal outlet Flow at Celiac Trunk outlet

@
s}

350
o, —0D —0D
300 Y ==1D 25 =1D
=50l £ ww3DRigid .. R 3D Rigid
= - =3D FSI 20 3D FSI
1

Flow [cm/s]

% 0.2 0.4 0.6 0.8 o 0.2 0.4 0.6 0.8
time (s) time (s)
350 Pressure at Right Internal lliac outlet 70 Flow at Right lliac outlet
S —0D —ob
300 ¢ ==1D -=1D
250 § wSn RS :
:ézoo \
/ (AT RPN
% 0.2 0.4 0.6 0.8
- - time (s)
() 3D model. (b) 1D model. () OD model. Fig. 5.1: Flows and pressure comparisons between model fidelities at selected out-
lets of aorto-femoral model with pulastile inlet flow and resistance outlet boundary
Fig. 6.2: Schematic view of the three model fidelities for the aorto-femoral model. conditions.
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Learning the network

Preliminary results

Nine uncertain parameters (outlet resistances)
N =[100, 2000, 10000] available runs

All models yield approximately same mean
Does not seem to be enough evidence to use
recursive or peer over independent

Log Odds Ratio

N Rec
10/20/40 0.11

20/40/80 0.7

40/80/160 0.5

Cost
Solver | (1 simulation)

Effective Cost
(No. 3D Simulations)

3D
1D
0D

96 hr
11.67 min
5 sec

1
2E-3
1.45E-5

Indep
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Summary and Future work

Takeaways

Described a modeling framework for fusing multiple simulation models
Parametric latent variable network can be learned, even from minimal data.
Learning relationships instead of assuming them yields robustness
Learning is important to take advantage of smoothness while avoiding
errors made from model relationships

Future work

Leverage a wide variety of new high dimensional Gaussian latent factor
learning algorithms

Use Bayesian score

Use this framework within optimization, design, and control
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