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Thermoelectric oxides for high temperature power generation:

Adv. Nat. Sci.: Nanosci. Nanotechnol. 4 (2013) 023002 N N Van and N Pryds

Table 1. Power generation characteristics of present oxide modules as compared with the others reported.

No. of Jointing T AT Wy Pz Legs size Power density
a r e b a n d a S Reference Materials p-n technique (Ky (K) (V) (mW) (mm) (mW cm™2)
g g p Urata et al [61] p-Caz 7Bin3Co0s0¢ 8 Ag 1273 208 1.0 170 5x5 42.5

n-CaMny g Mog 203

1 1 1 Souma et al [64 NaCo,0O 12 Diffusi 034 455 08 525 3x4 18.2
-high melting points A Ty b E S

Matsubara et al [63] p-Caz75Gdp 25C0400 8 Pt paste 773 390 1.0 635 Ix3 441
n-Cag goLag gsMnOs

- arge matenals d|Scovery Space Soumaetal [62]  p-NaCoOs 12 Agdiffision 839 462 08 58 3x4 20.1

n-Zng 93 Alp 20 welding
Shin et al [65] p-Li-doped NiO 4 Sintering 1164 539 04 344 Ix4d 35.8

1 1 1 -Bag Sty sPbO
'ESta b I IS h e d ceramic p rocessin g Urata et al [66] :;-c;(g‘}agf;_;c;é)g 8 Ag paste 897 565 1 170 5x5x45 425

n-CaMny ssMog 203

Noudem et al p-Ca;Co40q 2 Ag paste 990 630 315 4x4x10 49.2
- C h e a p [67] n-Cag g5 Smy gsMnO;
Funahashi ef al [68] p-Cas7Big3Co050¢ 1 Ag paste 1073 500 0.1 94 3.7x445 310
. . . n-LaggBig  NiOs
_Sta b | e O pe rat I O n I n a I r Lim et al [70] p-Ca;Coy0q 1 Ag paste 1175 727 95 8.5x 6.0 93.2
n-Ca, oNdy ;MnO;
Han et al [69] p-Ca;CosgAg;,0q 2 Ag paste 873 523 03 368 3x6x6 49.1
n-Cag gg Smy o MnO; +5 wt% CaMnO,
Funahashi and p-Caz 7Bip21Cos 04 140 Ag paste 1072 551 4.5 1300 1T.3%13x5 31.7
Mikami [71] n-Lag o Big (NiO5
Choi et al [72] p-Ca3Coy0q 44 Ag paste 1100 658 1.8 423 15 x 15 2.1
n-(Zn0)7In, 05
Mele et al [ 73] p-CaszCoy0q 6 Ag 773 260 03 3.7 Sx5x15 =0.1
I'I—Z.flo_qs AIU_G:O
This work p-Cas;Coy0q 8 Ag paste and 906 496 0.7 653 Ix3x8 453
n-Zng oz Alp 2 O foil hot-press

Van, Pryds ANSNN 2013
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Why does this happen, how do you model the stability of oxides in air?
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Materials are unstable in different atmospheres due to Defects

Defects are always present in materials
-Lowering of Gibbs free energy through increased entropy
-It is impossible to make a perfect crystal
-for TE, we need dopants, which lead to defects by definition
-polycrystalline materials are usually used for applications
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Relevance for thermoelectrics:

-Defects compensate donor/acceptor doping, changing carrier concentrations
-True for PbTe, Bi,Te;, SiGe, oxides, etc...



Materials are unstable in different atmospheres due to Defects

Defects are always present in materials
-Lowering of Gibbs free energy through increased entropy
-It is impossible to make a perfect crystal
-for TE, we need dopants, which lead to defects by definition
-polycrystalline materials are usually used for applications

Relevance for thermoelectrics

-Defects compensate donor/acceptor doping, changing carrier concentrations
-True for Bi,Te;, PbTe, SiGe, oxides, etc...

Relevance for oxides “in air”

Defect chemistry changes with prevailing solid-gas equilibrium



Problem: systematically understand stability of oxide thermoelectrics

1. In order to study stability, measure properties as a function of
oxygen partial pressure at fixed T:

pO, =10%*to 1 atm
Air: pO, ~ 0.2 atm

Power Factor

Oxygen content



Problem: systematically understand stability of oxide thermoelectrics

1. In order to study stability, measure properties as a function of
oxygen partial pressure:

pO, =10%*to 1 atm

Air: pO, ~ 0.2 atm

2. Use a thermoelectric oxide with a well-known defect chemistry:
Doped SrTiO; has been studied for more than 40 years and is also a
good thermoelectric.

(lots of literature for different temperature ranges!)




Sr(Ti,Nb)O, is a model system for studying stability

Nb>* replaces Ti** donating electron to CB

n =N, = Nb concentration
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Sr(Ti,Nb)O,

Nb>* replaces Ti**

Conduction Band *
Either: More Oxygen or More electrons Nb donor o

In presence of oxygen, excess accommodated by
lattice (not interstitial),
introducing acceptor Sr vacancies

2 O %33
J J
Q Qo
Q}Qh g Sr vacancy acceptor s ®

0990 |
o%\‘) Q o Valence Band #
cg}

RP mechanism ) .
Compensated doping due to Sr vacancies
QsroTi Qo 3 0 Lee J. Appl. Phys. 06 P Ping

n=1[SrO(SrTiO,)] n=2 [SrO(SrTiO,),]



Sr(Ti,Nb)O,

Nb>* replaces Ti* _

Conduction Band =@l e——

Either: More Oxygen or More electrons Nb donor o
At low oxygen levels, Sr vacancies disappear. 0

vacancy donor . [ @ ] @ S

Instead, oxygen vacancies form, which are double
donors

Oxygen vacancies add further carriers



Overview of Defect Chemistry in Donor doped SrTiO, (Simplified!)

[1] Oxygen Vacancy Formation:
. 1
Of = Vo +2¢'+50(9)

[2] Strontrium Vacancies: Cf. Moos, Hardtl, JACerS 1997

7k r T” Tes
Srg, + Of = Vg, + V() + StOgp

[3] Intentional, extrinsic dopants (Nb)

[4] Electroneutrality (Kroger-Vink notation)

M AT poe :
n+2Vg] =2[Vy| + [Nbpy) + p



Overview of Defect Chemistry in Donor doped SrTiO, (Simplified!)

[1] Oxygen Vacancy Formation:
. |
Of = Vi + 2¢’ + 5()(9)

[2] Strontium Vacancies: Cf. Moos, Hardtl, JACerS 1997

a i ‘r’, 'rll-
SI‘%I, + O'E’) =V qr T \-"'() + StORP
[3] Nb dopants

Key point: these are all
coupled and dependent
upon prevailing oxygen

[4] Electroneutrality (Kroger-Vink notation) partial pressure



M AT poe :
n+2[Vg| = 2[Vol + INbpy| +p

Log concentration

Log pO,
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n +2[Vg,] = 2[VE] + [Nbp] +
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pO, changes carrier concentration, changing transport properties

1 Moos, Hardtl JACeRS 97
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pO, dependent Conductivity and Seebeck coefficient
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Oxygen partial pressure controlled by gas equilibrium: ——
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Oxygen partial pressure controlled by gas equilibrium:

1
Hy + =09 = Hy0
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Isothermal measurements vs. pO,
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Isothermal measurements vs. pO,
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Isothermal measurements vs. pO,
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Isothermal measurements vs. pO,
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Isothermal measurements vs. pO, -
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Isothermal measurements vs. pO,
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Defect Chemistry of Donor-Doped and Undoped Strontium Titanate
Ceramics between 1000° and 1400°C

Universitat Karisruhe, Institut for Werkstoffe der Elektrotechnik, D-76128 Karisruhe, Germany

Defect model, Rate constants
summarized in
Moos, Hardtl JACeRS 1997

Ralf Moos' and Karl Heinz Hirdtl"

Table I. Svstem of Equations, Itz Set of Constants, and Origin of Constants

Equations (mazs-acteon laws) Constants nsed for caloulations F=marks
i e AH,_, E.,=5=10" coo ®bar'? Determmed in this study from
Vil P, =K lT)= Epoqexp | - kT J AH_, = 6.1 &V cun;lur.:ﬁ;ltg Edan qzzunduped single
. f Ey - o = NdID Minor mportant parameter; determined in
[Viln I e ( 01—+ J E 03 meV a related paper.®® Farameter becomes
[Vl TV T Y2 R T Vg-a T U0 M8 important at temperatures <600°C
il
Vi [f Eyf N ﬂ"n“ y = N(T) Lﬁm:';lﬁepdnﬂant :[:;.:I;J:I:I.E‘t&l’; estimated 1
o _ 4 _ a paper.”” Farameter may
_‘L"::-‘ #1 _K‘:c:‘ a1 =P T kT J E""n‘ ;= 3eV

ol

" EJ0E)-g,T"

Ex
[P2)V;] = Ky(T) = K exp (T}]

Ey

T W

Hlb - _ B ( Srx—=l

r;l] _-LVF,,I. hl{n_ivmx ”EHIP -._ kT J

1] W

H:P_ ~ o= ( Sarl—#2
[Ve] _'L"",;,1 a-zi-'n_'L"'H,l 2P T T J
[4')p E,

o alT) =K exp (—ﬁ)

m+ VSl + [V 1+ [A'] = p+ 2[Vi] + [Vi]
+[D7]

Ne(D) = 41 = 10" em (TE)'
N = 3.5 = 10" em™(TK)"
EJ0E) = 317V

Bg = 5.66 = 107 eVIK
E=3=10"m™

E; =25V

K. = N
E,..=14eV

K:-'ﬁ.l a2 I"'".'I:n
Ev .= 01eV

K3 = N(D)
E, = 094 eV

become Important at temperatures
=41 K

E; and B, have been determined m
this study; N was determined in a
related paper,'' and N, was determined
from literature®® but augmented by a
factor of 1 4 for an even-better fit

Determmed i this study from
conductivity data on different
lanthanum-donor-doped ceramics in
oxygen-nch atmospheres

Minor mportant parameter, included for
completeness. Becomes more mmportant
at low temperatures m oxvzen-rich
atmospheres

Minor mportant parameter, included for
complateness. Becomes more mmportant
at low temperatures mm oxyvezen-rich
atmospheres

Minor mportant parameter, included for
completeness. Becomes more mporiant
for acceptor-doped samples at high P,
and low temperature {literatura dam"-"?'

The complate electronewtrality condition
links all charped defects



ey “1/2
Vi) n? pOY* = K,

) 1. Solve for n v. pO,
Vs, l[Vol = K2

_EQ(T)
np = NC’NVG kT

!! . .

T=1173 K
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n+2Vgq|=2[VE] + Nbpy)+p 1. Solve for nv. pO,

2. Find g, S for given n
O =€enuy + epup

N N )
(111 U Ay) (111 ¢ Ac)

o Yo, o n

S =

k|
e

The various transport parameters, such as u, A, A., were previously reported. Cf. Moos, Hardtl
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T=1173K



to2 T T Y] 19% Nb-SrTIO,

Ceramic 10% Nb-SrTiO,

"

+ 2Vl = 2] + b + 7

0 = enpN + epup

[

€

No curve fitting, constants from Moos, Hardtl for SrTiO,
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02 T T T Xigl 1% Nb-SrTio,
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= 107 |
° qo2t -
00 ~  Ceramic is strongly pO, dependent
-200 |- 7 .
o100 | O—cboem | Xtalis not
S N o "
=,-600 | ~ -
7 00 - S o {  Ceramic similar to Equilibrium
.
-1000 4—4HH+H-+HHH+HH++—+—+t++++++=~++1 Simulation
Difference between Xtal/Ceramic:
) Kinetics...
1010'24 10718 10712 10 10° T _ 1173 K

pO,(atm)
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© 102 b Hard to reach equilibrium even at 1 day
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|Grain size
1.7 um

Kinetics for Xtal

Versus Ceramic will be
different due to

Grain boundaries, pores

We need to know
Kinetics too




Oxidation of Donor doped SrTiO;: Sr vacancy migration is rate-limiting step

(b)

© Electron

€ « O Random walk
(A-site)

Unit cell

Meyer et al. PRL (2003) D~ 1 % 10_1901112/8

r=1173 K

St + 0F = Va + Vi) + SrORp
S | Single xtal Nb doped SrTiO,
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..'o —®— 4.7 mol % Nb (520 nm)
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0 1000 2000 3000 4000 5000
TIME [s]

Pasierb et al. JPCS 1999

D ~1x 10~ 2em?/s

rT=1173 K
Ceramic Nb doped SrTiO,



Grain size ~ 2 um

Diffusion enhanced at grain boundaries

gb gb gb gb
X 4, free surface ,L X ¢ free surface i
< <€

L~ ]

Ceramic 400 um 3.5cm

Merkle, Maier, Angew. Chem. 2008 Xtal 03 Hm 24 Hm
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free surface ‘L

Ceramic 10% Nb-SrTiO,

Grain size ~ 2 um

L ~ VDt

Material | 24 hours | 20 years_

10:’4"""""""llllllll.l Ceramlc 400“m 3.5cm

1 0—24 1 0—‘1 8

10712 10® 10°

pO(atm) Xtal 0.3 um 24 um



o2 [T T Y] 19% Nb-SFTIO,

€ 10" | -
g T Ceramic 10% Nb-SrTiO,
— 107 |
© 102 |- d
N Single Xtals are stable in air

Ceramic samples are not

Not easy to use single crystals in
actual applications
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“Nanostructuring” can be incompatible with stability in air...
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Wang et al. APX 2010



Are thermoelectric oxides “stable in air”?

Yes and No

In equilibrium, oxides are not a priori more or less stable than
non-oxides

You need to take into account defect equilibria and kinetics

Temperature matters too.
T<900 K defect kinetics slow down a lot for SrTiO,
(but efficiency is lower)



Other consequences

Are P and N oxides stable under the same conditions at the
same temperatures with the desired ZT?

Interaction of oxide thermoelectrics with other oxygen-
containing materials at the module/systems level?

No clear benefit for systems complexity in general
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~ 1 Xtal 1% Nb-SrTiO,

1024 10718 10712 10®

pO,(atm)

10°

gb gb
free surface ‘L

A

Ceramic 10% Nb-SrTiO,
Grain size ™ 2 um

Donor doped SrTiO3 will be challenging to
use in air environments in ceramic form.

What are the defect reactions and kinetics
relevant for other popular oxide materials?



