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Motivation

Intermittent, diurnal nature requires energy storage
* Increase the duration of electricity generation
* Shift the period of operation to peak demand

Credit California Independent System Operator Corparation
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Enabling technologies are needed to store and deliver thermal energy to high-
temperature (> 1000 ), high-efficiency power cycles, e.g., Air Brayton. The
technology must be low cost ($15/kWh,,), which demands high energy density
solutions.
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PROMOTES

High Performance Reduction/Oxidation Metal Oxides for
Thermochemical Energy Storage
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Innovation
(AH,y = 1500 kJ/kg)
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Thermochemical Energy Storage

Redox-active metal oxides are ideal materials for storage in high
temperature cycles

Materials Concept:

Leverage both sensible heat and heat of reaction for energy storage

Demonstrate chemical and physical stability at extreme temperatures

Operate over a broad range of temperatures and pressures

Develop and tailor materials properties through elegant design and manipulation of metal

oxide chemistry

Advantages of Metal Oxides (MO):

Open or closed configurations

Air can act as both the reactant and heat
transfer fluid

Environmentally benign
No catalyst necessary
No compression required for storage

—_> —> heat
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Amenable to multiple scales and temperature

ranges
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Mixed lonic-Conducting (MIEC) Oxides

e Redox-active materials which efficiently conduct both O% and electrons
* No crystallographic phase change occurs during redox

e Vacancies facilitate oxide ion transport

e Redox activity continuous over variety of T and pO,

° OZ ion can “hop”
/\across vacancies

@“A" cation
0§ cation
Xygen

-vacancy
Parameter Space:
* Energy storage capacity, AH,,, = AH,,,+ C AT =1500 k]/kg
e Cycling between T, of 1000 — 1350 °C and T of 200 °C
e pO, during reduction = 103 atm
* pO, during oxidation = | atm
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Doped LaCoO,

La,Sr,,CoMn  O;; (LSCM) and La,Sr CoFe  (LSCF)

 Known redox-active perovskite materials
e Large solid solubility range
e Crystallize in several perovskite-related space groups

* In general: more symmetric space groups show higher redox capacities

LSCM
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High-Resolution Equilibrium TGA

Used to estimate thermodynamic parameters
Isothermal holds at 600, 800, 950, | 100,and 1250 °C; pO, varied at each

temperature and held until equilibrium
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LSXM Enthalpy

e Partial molar: describes energy to remove a mole of O, at a specific &
* Enthalpies must be integrated over 6 to describe continuous reaction by series
of discrete reactions

BOO f b 50D 00 o p 500
450 5 450 450 3 450
400 @ LSCM1991 400 4001 eLscrassz F 40
250 2 LSCM3791 0 ~ %0 + LSCF3791 350 3
33005 ALSCM3782 " 300 % g ] ALSCF3773 %
E 250 250 % i i
gzoo 200 % < £
150 " - 150
100 A —> 100
50 - 50
0 Pt oo s et . ——————F 0
0 0.1 0.2 03 04 0.5 0.6
o
Material Reduction onset (°C) Maximum 6 Enthalpy at 6., (kJ/kg)
LSCMI991 432 0.434 216
LSCM3791 343 0.460 242
LSCM3782 359 0412 236
LSCF2882 357 0.486 212
LSCF3791 352 0.461 223
LSCF3773 348 0.455 223
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Increasing Reaction Enthalpy

A(sr'ed = AHr‘ed _TASred

e AG,_, = 0is the onset of reduction (equilibrium)
O Assuming entropy term is similar between materials (i.e., constant), a
change in reduction enthalpy necessitates a change in reduction

temperature
0.5 - ;
: P |deal materials show a favorable
e 0.4 @D 4 balance of increased reduction onset
'% 0.3 ] S G:% o temperature without large decrease in
T 0 o | reduction capacity. New compositions
o e o | focus on materials in this window.
w 0.2 - e
] B 1
) i i
So1 e LSCM © \ o
: : o In the LSCX system, materials with
o _© LSCF . @0© Co , ,
N L B B B L B L L high reduction temperatures had low

200 400 600 800 1000 1200 redox capacity (6 < 0.25).
Reduction onset temperature (°C)
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Doped CaMn,,B,0O, 5 Perovskites

e Caisa *2 element, forcing the B-site, e.g. Mn, to adopt a higher
oxidation state (+4)

e (Ca as the main element in the A-site lowers the molecular
weight dramatically (Ca = 40.078 g/mol)

e (Ca more abundant and less expensive than Sr or La
e Calcium-based perovskites reduce at high temperatures,

O Higher reduction temperatures indicative of stronger M-O
bonds, resulting in increased partial molar reduction
enthalpies

e T

g Of CaMnO; = 875 °C (vs.432 °C for LSCMI1991)
O However, decomposes under reducing conditions

O Doping CMO can help stabilize the structure
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Stability Under Reducing Conditions

= CCM28 and CM decompose under 1000 °C Ar anneal
= (CTM28 and CAM28 convert from orthorhombic (blue) to tetragonal (red)
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Total Storage Potential

— 31
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1350* 684 289* 973 "o 500 1000 1500
Temperature (°C)
CTM28 450
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*Values at 1350 °C are extrapolated from & vs T data 0-6

Shot ) e,

.S, Department of Energy Laborataries




Indicators of phase transition from Orthorhombic to Cubic-

like phase at High Temperature (1000 °C to 1200 °C)

Orthorhombic Phase
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CAMZ28 Cyclic Behavior

Extended thermal redox cycling in TGA
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A-Site Doping iIn CaMnQO,

CYM28

e Analogue of CAM28
e Llargeincrease of T, - 1022 °C in air
* Not single phase
* Poor redox capacity
e Y seems to substitute on the A-site (for Ca) rather than on the B-site
O IncreaseinT 4 observed in other A-site doped CaMnO; compositions
O Can A-site doping result in an increased T, while maintaining the higher redox
properties of the parent compound?
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Ca,, Y,MnO, (0<x<0.5)
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e T.q4increases with increasing [Y]
e Corresponding & decreases with increasing [Y]
e Balance between T __, and reduction extent (§)
e At what point does T ., become too high!?
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Multi-cycle TGA CYM910
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e Reduction at 1050 °C/ 10% air:Ar; Oxidation at 400 °C/ air
e Reproducibility over 100 cycles
e Symmetry transition does not seem to affect kinetics
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e Orthorhombic = Cubic transition also observed, but at higher temperature than

CAM28

e Consistent with higher-temperature exotherm and T,

Orthorhombic Phase

red

Indicators of phase transition from
Orthorhombic to Cubic only at highest temp
1100 °C
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Enthalpy of Y-doped CaMnO,

450
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€ 50 - be determined

0 |

0 0.2 0.4
o

While T, eventually becomes impractical, insights gleaned from these
trends can aid in design of future materials with tunable enthalpies and
reduction temperatures
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Initial LSCX investigation provided insight on structural/thermal properties of
TCES perovskites
O Promising AH,,,, values achieved, but reduction extent is adequate, but
reaction enthalpy falls short of 1500 kJ/kg goal
Reduction onset temperature (T .,) was identified as a key indicator of AH_,,
CaMnQO; displays high T ., but decomposes under reducing conditions
B-site doping with non-labile cations (Al, Ti) mitigates decomposition while
maintaining redox properties
0 AH,., approachingl500 kj/kg
O Increase in reaction enthalpy of over 50% compared to LSXM
O To our knowledge these materials outperform any reported oxide TCES material
operating above 1000 °C
A-site doping withY further increases T __,
O Sacrifice redox extent
O What is the ideal balance betweenT_, and 6!
Judicious choice of A- and B- sited dopants in CaMnQOj; can result in effective

TCES materials across a wide range of operating parameters
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