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Motivation
Intermittent, diurnal nature requires energy storage

• Increase the duration of electricity generation
• Shift the period of operation to peak demand

Enabling technologies are needed to store and deliver thermal energy to high-
temperature (> 1000 ℃), high-efficiency power cycles, e.g.,  Air Brayton.  The 
technology must be low cost ($15/kWhth), which demands high energy density 
solutions.  
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PROMOTES

High Performance Reduction/Oxidation Metal Oxides for 
Thermochemical Energy Storage

5. High Temp/High 
Efficiency Air Brayton 
Power Cycle. 

2. Solar Receiver 
Reduction Reactor

3. Particle Storage at 
T > 1000 ºC

4. Pressurized oxidation 
reactor Air acts as 
reactant and heat transfer 
fluid.  Open cycle – no 
gas storage.

1. Materials Enabled 
Innovation 
(∆Htotal ≥ 1500 kJ/kg) 
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Thermochemical Energy Storage

Materials Concept:
• Leverage both sensible heat and heat of reaction for energy storage
• Demonstrate chemical and physical stability at extreme temperatures
• Operate over a broad range of temperatures and pressures
• Develop and tailor materials properties through elegant design and manipulation of metal 

oxide chemistry 

heat + MOx 

MOx-δ + δ/2 O2

MOx-δ + δ/2 O2 

heat + MOx

O2

heat

air

Redox-active metal oxides are ideal materials for storage in high 
temperature cycles

Advantages of Metal Oxides (MO):
• Open or closed configurations
• Air can act as both the reactant and heat 

transfer fluid
• Environmentally benign
• No catalyst necessary
• No compression required for storage
• Amenable to multiple scales and temperature 

ranges
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Mixed Ionic-Conducting (MIEC) Oxides
• Redox-active materials which efficiently conduct both O2- and electrons
• No crystallographic phase change occurs during redox
• Vacancies facilitate oxide ion transport
• Redox activity continuous over variety of T and pO2

O-vacancy
Oxygen
“A” cation
“B” cation

− δ

+ δ

O2- ion can “hop” 
across vacancies

Parameter Space:
• Energy storage capacity, ∆Htot = ∆Hrxn+ Cp∆T =1500 kJ/kg 
• Cycling between TH of 1000 – 1350 °C and TL of 200 °C
• pO2 during reduction  ≥ 10-3 atm
• pO2 during oxidation ≤ 1 atm
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Doped LaCoO3

• Known redox-active perovskite materials
• Large solid solubility range
• Crystallize in several perovskite-related space groups
• In general: more symmetric space groups show higher redox capacities

LaxSr1-xCoyMn1-yO3-δ (LSCM) and LaxSr1-xCoyFe1-y (LSCF)

20 30 40 50 60 70
2q (degrees)

LSCF9128 - Rhombohedral

LSCF3773 - Cubic

20 30 40 50 60 70

2q (degrees)

LSCM1991 - Tetragonal

LSCM3782 - Cubic

LSCM8237 - Rhombohedral

LSCM LSCF
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High-Resolution Equilibrium TGA
• Used to estimate thermodynamic parameters
• Isothermal holds at 600, 800, 950, 1100, and 1250 ºC; pO2 varied at each 

temperature and held until equilibrium
• Thermodynamic parameters extracted by van’t Hoff approach:

ln 𝑝𝑝𝑂𝑂2 = 2
−∆𝐺𝐺𝑟𝑟𝑟𝑟𝑟𝑟
𝑅𝑅𝑅𝑅

= 2
1
𝑇𝑇
�
−Δ𝐻𝐻𝑟𝑟𝑟𝑟𝑟𝑟

𝑅𝑅
+
Δ𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟
𝑅𝑅

• Enthalpy determined by slope, entropy by intercept for each value of δ
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LSXM Enthalpy

Material Reduction onset (°C) Maximum δ Enthalpy at δmax (kJ/kg)

LSCM1991 432 0.434 216
LSCM3791 343 0.460 242
LSCM3782 359 0.412 236
LSCF2882 357 0.486 212
LSCF3791 352 0.461 223
LSCF3773 348 0.455 223

• Partial molar: describes energy to remove a mole of O2 at a specific δ
• Enthalpies must be integrated over δ to describe continuous reaction by series 

of discrete reactions
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Increasing Reaction Enthalpy
ΔGred = ΔHred – TΔSred

• ΔGred = 0 is the onset of reduction (equilibrium)
o Assuming entropy term is similar between materials (i.e., constant), a 

change in reduction enthalpy necessitates a change in reduction 
temperature

In the LSCX system, materials with 
high reduction temperatures had low 
redox capacity (δ < 0.25).

Ideal materials show a favorable 
balance of increased reduction onset 
temperature without large decrease in 
reduction capacity. New compositions 
focus on materials in this window.
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Doped CaMn1-yByO3-δ Perovskites

• Ca is a +2 element, forcing the B-site, e.g. Mn, to adopt a higher 
oxidation state (+4)

• Ca as the main element in the A-site lowers the molecular 
weight dramatically (Ca = 40.078 g/mol)

• Ca more abundant and less expensive than Sr or La
• Calcium-based perovskites reduce at high temperatures, 

o Higher reduction temperatures indicative of stronger M-O 
bonds, resulting in increased partial molar reduction 
enthalpies

• Tred of CaMnO3 = 875 ºC (vs. 432 ºC for LSCM1991) 
o However, decomposes under reducing conditions
o Doping CMO can help stabilize the structure
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Stability Under Reducing Conditions
 CCM28 and CM decompose under 1000 ⁰C Ar anneal
 CTM28 and CAM28 convert from orthorhombic (blue) to tetragonal (red)
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Total Storage Potential

Temperature (°C) Sensible (kJ/kg) Latent (kJ/kg) Total (kJ/kg)
1100 536 192 728
1200 595 225 820

1350* 684 289* 973

LSCM3791

Temperature (°C) Sensible (kJ/kg) Latent (kJ/kg) Total (kJ/kg)
1100 826 293 1119
1200 918 351 1269

1350* 1056 450* 1506

CAM28

Temperature (°C) Sensible (kJ/kg) Latent (kJ/kg) Total (kJ/kg)
1100 793 290 1083
1200 881 362 1243

1350* 1013 481* 1494

CTM28

* Values at 1350 ºC are extrapolated from δ vs T data

∆Htot = ∆Hrxn+ Cp∆T

Latent heat assumes pO2 swing of 0.001 to 0.9
Sensible heat assumes  Cp = 15R, TL = 200 ºC



HT XRD results for: Cam28 low_pO2

CAM28 In-situ XRD

Indicators of phase transition from Orthorhombic to Cubic-
like phase at High Temperature (1000 ⁰C to 1200 ⁰C )Orthorhombic Phase
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CAM28 Cyclic Behavior

Elapsed time (minutes)
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A-Site Doping in CaMnO3

CYM28
• Analogue of CAM28
• Large increase of Tred - 1022 ºC in air
• Not single phase
• Poor redox capacity 
• Y seems to substitute on the A-site (for Ca) rather than on the B-site

o Increase in Tred observed in other A-site doped CaMnO3 compositions
o Can A-site doping result in an increased Tred while maintaining the higher redox 

properties of the parent compound? 
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Ca1-xYxMnO3 (0<x<0.5)

0

200

400

600

800

1000

1200

1400

Te
m

pe
ra

tu
re

 (°
C

)

96.5

97.5

98.5

99.5

100.5

W
ei

gh
t (

%
)

150 200 250 300
 

                SAM1-138-01:CYM82––– –––
                SAM1-138-02:CYM73––– –––
                SMB1-88-01: CYM91––– –––

   

––– CYM910
––– CYM820          
––– CYM7300

200
400
600
800

1000
1200
1400

0 1 2 3 4

Tr
ed

 (C
)

[Y] in CYM

• Tred increases with increasing [Y] 
• Corresponding δ decreases with increasing [Y]
• Balance between Tred and reduction extent (δ)
• At what point does Tred become too high?



Multi-cycle TGA CYM910
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Universal V4.5A TA Instruments

• Reduction at 1050 °C/ 10% air:Ar; Oxidation at 400 °C/ air
• Reproducibility over 100 cycles
• Symmetry transition does not seem to affect kinetics
• Post-cycle XRD shows no structural change



Indicators of phase transition from 
Orthorhombic to Cubic only at highest temp 
1100 ⁰C

Orthorhombic Phase

In-situ XRD CYM910
• Orthorhombic  Cubic transition also observed, but at higher temperature than 

CAM28
• Consistent with higher-temperature exotherm and Tred

In-situ X-ray diffraction of CYM910 under pO2 = 500 ppm
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Enthalpy of Y-doped CaMnO3-δ

(b) • Y-doping improves enthalpy over 
CAM28

• CYM910 ΔH ~ 400 kJ/kg
• Potential of higher enthalpy with 

increasing [Y] if effective δ can 
be increased

• Tradeoffs between higher 
enthalpy and costs of [Y] must 
be determined

While Tred eventually becomes impractical, insights gleaned from these 
trends can aid in design of future materials with tunable enthalpies and 

reduction temperatures
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Conclusions
• Initial LSCX investigation provided insight on structural/thermal properties of 

TCES perovskites
o Promising ΔHtotal values achieved, but reduction extent is adequate, but 

reaction enthalpy falls short of 1500 kJ/kg goal
• Reduction onset temperature (Tred) was identified as a key indicator of ΔHrxn
• CaMnO3 displays high Tred but decomposes under reducing conditions
• B-site doping with non-labile cations (Al, Ti) mitigates decomposition while 

maintaining redox properties
o ΔHtotal approaching1500 kJ/kg
o Increase in reaction enthalpy of over 50% compared to LSXM 
o To our knowledge these materials outperform any reported oxide TCES material 

operating above 1000 °C
• A-site doping with Y further increases Tred

o Sacrifice redox extent
o What is the ideal balance between Tred and δ?

• Judicious choice of A- and B- sited dopants in CaMnO3 can result in effective 
TCES materials across a wide range of operating parameters 



Acknowledgements

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and
Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S.
Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525

o The PROMOTES Team (Georgia Tech, King Saud University,  Arizona 
State University)

o Peter Loutzenhiser (Georgia Institute of Technology)
o Ellen Stechel (Arizona State)
o Shannon McKean (USNA)
o Bonnie McKenzie (Sandia)
o Mark Rodriguez (Sandia)
o Travis Anderson (Sandia)
o National Solar Thermal Test Facility at Sandia National Labs



Grazie 
Thank You
Danke
ευχαριστώ
Gracias
ти благодарам
Merci
Спасибо
ありがとうございました


	Slide Number 1
	Motivation
	PROMOTES
	Thermochemical Energy Storage
	Mixed Ionic-Conducting (MIEC) Oxides
	Doped LaCoO3 
	High-Resolution Equilibrium TGA
	LSXM Enthalpy
	Increasing Reaction Enthalpy
	Doped CaMn1-yByO3-δ Perovskites
	Stability Under Reducing Conditions
	Total Storage Potential
	CAM28 In-situ XRD
	CAM28 Cyclic Behavior
	A-Site Doping in CaMnO3
	Ca1-xYxMnO3 (0<x<0.5)
	Multi-cycle TGA CYM910
	In-situ XRD CYM910
	Enthalpy of Y-doped CaMnO3-δ
	Conclusions
	Acknowledgements
	Slide Number 22

