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Summary e

= Knowledge of the beryllium equation of state is necessary for
ICF and MagLIF target physics

= Measured sound velocity along the principal Hugoniot from
~130-300 GPa
= Datais consistent with Be melting from the HCP phase at ~200 GPa
= HCP-BCC transition not identified from sound velocity data
= Lagrangian technique was developed to relate shock velocity
measurement to window interface velocity

= Technique used with quartz windows to make wave profile
measurements in Be

= Shear modulus and yield strength rapidly decrease ~50 GPa
prior to onset of melt
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Stepped beryllium targets were impacted o,
with multilayered flyer plates

= Flyer velocities ranged from

7-13 km/s
cu = Experiments used
|/ impact .
| surface asymmetric loads to launch
e 2 flyers with ~10% different
velocities per shot
Cu/Al
/flyer
¥ Cu/Al flyer (fast)
1 mm
gap 1.4 mm

Cu/Al flyer (slow)




Flyer velocity, Be transit time, and quartz = e
shock velocity measured with VISAR
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Longitudinal and bulk sound velocities
determined from overtake of release wave

55

= Longitudinal and bulk -
overtake times measured
for each step

Velocity (km/s)
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= QOvertake times interpolated
for thickness at which
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Sound velocity results consistent with melt
occurring at ~200 GPa
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Comparison with QMD suggests that Be
melts from HCP phase rather than BCC
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A Lagrangian technique was developed to
determine interface profile from shock velocity

2b

C* characteristics propagated o0 |

backwards from shock front to
interface

Velocity
=

Sound velocity at intersection
of C* and C characteristics
calculated from release at
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Lagrangian coordinate

Particle velocity at interface
calculated from Riemann

invariants:
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Quartz windows extend the regime where o,
wave-profile measurements are possible
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Beryllium strength estimated from wave
profile measurements
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= In-situ velocities T s
determined using 2.l
incremental impedance E
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Shear modulus and yield strength )
significantly decrease ~50 GPa prior to melt
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= Knowledge of the beryllium equation of state is necessary for
ICF and MagLIF target physics

= Measured sound velocity along the principal Hugoniot from
~130-300 GPa
= Datais consistent with Be melting from the HCP phase at ~200 GPa
= HCP-BCC transition not identified from sound velocity data
= Lagrangian technique was developed to relate shock velocity
measurement to window interface velocity

= Technique used with quartz windows to make wave profile
measurements in Be

= Shear modulus and yield strength rapidly decrease ~50 GPa
prior to onset of melt
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