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Summary

 Knowledge of the beryllium equation of state is necessary for 
ICF and MagLIF target physics 

 Measured sound velocity along the principal Hugoniot from 
~130-300 GPa
 Data is consistent with Be melting from the HCP phase at ~200 GPa
 HCP-BCC transition not identified from sound velocity data

 Lagrangian technique was developed to relate shock velocity 
measurement to window interface velocity
 Technique used with quartz windows to make wave profile 

measurements in Be

 Shear modulus and yield strength rapidly decrease ~50 GPa 
prior to onset of melt
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Stepped beryllium targets were impacted
with multilayered flyer plates

 Flyer velocities ranged from 
7-13 km/s

 Experiments used 
asymmetric loads to launch 
2 flyers with ~10% different 
velocities per shot
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Flyer velocity, Be transit time, and quartz
shock velocity measured with VISAR
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Longitudinal and bulk sound velocities 
determined from overtake of release wave

 Longitudinal and bulk 
overtake times measured 
for each step

 Overtake times interpolated 
for thickness at which 
overtake occurs

 Sound velocity calculated 
relative to copper layer on 
flyer and target
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Sound velocity results consistent with melt 
occurring at ~200 GPa 

 Sound velocity agrees with Mie-
Grüneisen EOS below melt

 Data above melt in good 
agreement with QMD results
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Comparison with QMD suggests that Be
melts from HCP phase rather than BCC
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A Lagrangian technique was developed to
determine interface profile from shock velocity

 C+ characteristics propagated 
backwards from shock front to 
interface

 Sound velocity at intersection 
of C+ and C- characteristics 
calculated from release at 
Lagrangian coordinate

 Particle velocity at interface 
calculated from Riemann 
invariants: 
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Quartz windows extend the regime where 
wave-profile measurements are possible

 LiF is transparent under 
shock compression to ~200 
GPa
 Be melt ~200 GPa → ~225 

GPa in LiF/quartz

 Shock in quartz reflective 
above 150 GPa
 Quartz sound velocity in 

Lagrangian frame is 
determined from release 
model*
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Beryllium strength estimated from wave
profile measurements

 In-situ velocities 
determined using 
incremental impedance 
match technique*

 Shear modulus calculated 
from sound velocities

 Yield strength determined 
from
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Shear modulus and yield strength
significantly decrease ~50 GPa prior to melt
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Summary

 Knowledge of the beryllium equation of state is necessary for 
ICF and MagLIF target physics 

 Measured sound velocity along the principal Hugoniot from 
~130-300 GPa
 Data is consistent with Be melting from the HCP phase at ~200 GPa
 HCP-BCC transition not identified from sound velocity data

 Lagrangian technique was developed to relate shock velocity 
measurement to window interface velocity
 Technique used with quartz windows to make wave profile 

measurements in Be

 Shear modulus and yield strength rapidly decrease ~50 GPa 
prior to onset of melt
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