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In situ TEM
microscopy has
recently undergone
significant growth
allowing for dynamic
observation of
structural evolution
that occurs due to
exposure to various
extreme
environments
relevant to nuclear
applications
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“Investigating the nm Scale to Understand the km Scale
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needs

Microscopy (I3M)
Bombarding nano
samples with various

particles and observing
the changes in real time

to understand how
materials will behave in

extreme environments.

The IBL has a unique and comprehensive ion
beam capability set including and In situ lon
Irradiation Transmission Electron Microscopy.

Radiation Effects
Microscopy (REM)

Using ion emissions to determine the
Radiation hardness of microelectronics,

identifying potential weaknesses.
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In situ lon Irradiation TEM Facility
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IBIL from a quartz stage inside the TEM

Sandia’s Concurrent In situ lon
Irradiation TEM Facility

Collaborator: D.L. Buller

10 kV Colutron - 200 kV TEM - 6 MV Tandem

Direct real time observation
of ion irradiation,
ion implantation, or both
with nanometer resolution

lon species & energy introduced into the TEM

50 |
B o H o Ni
45/: ® He Cu L
o~ ¥ A B X Ga T
% 15 ¥ C o Ge
B (0] 4 Nb
E = 4 Ne ¥ Mo N
> # Al o Ag
9 10 ® Si # Sn
Q * Ti B W
i, : il
- 8
= :
o ::%' E DA g o * B ;
0o am
0 40 80 120 160 200

Atomic Mass
Sandia National Laboratories




Wide Range of Damage Rates

Collaborators: C. Chisholm & A. Minor

7.9 x 10%ions/cm?/s 6.7 x 107 ions/cm?/s

Improved vibrational and ion beam stability permits us to work at 120kx
or higher permitting imaging over a wide range of damage rates

Sandia National Laboratories




In situ Successive Implantation & Irradiation

Collaborators: C. Chisholm & A. Minor

Successive Au?* then Hel?

ad

Successive Hel* then Au?*
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« « In situ Concurrent Implantation & Irradiation

Collaborators: C. Chisholm & A. Minor

Hel* implantation and Au#* irradiation of a gold film

() sania National Laboratores



-~ 2.8MeVAu*+10keV He*/D}

Collaborators: D.C. Bufford

= Approximate fluence:
- Au 1.2 x 1013 jons/cm?
- He 1.3 x 10 jons/cm?
- D 2.2 x10% jons/cm?

m Cavity nucleation and
disappearance

In-situ triple beam He, D,, and Au beam irradiation
has been demonstrated on Sandia’s ISTEM.
Intensive work is still needed to understand the
defect structure evolution that has been observed.




Heterogeneous Bubble Formation under
Some Radiation Environments

Collaborator: B. Muntifering & J. Qu

He*then Ni3*

1017 He*/cm? 0.7 dpa Ni3*irradiation

Visible damage to the sample High concentration of cavities along
grain boundaries




Cavity Growth during In-situ Annealing of 10 keV He*

'51’& Implanted and then 3 MeV Irradiated Ni3*

Average Diameter (nm)

Temperature ("C)

Bubble to
cavity
transition and
cavity
evolution can
be directly

studied
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Cavities in
helium
implanted,
self-ion
irradiated,
nc nickel film
annealed to
400 °C

Cavities
span
multiple
grains at
identified
grain
boundaries

Precession Electron Diffraction
Reveals Hidden Grain Structure




- Single lon Strikes:

o

46 keV Au™ ions into 5 nm Au nanoparticles

Collaborator: D.C. Bufford
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Single lon Effects with 46 keV Aut-ions: 20 nm

Collaborator: D.C. Bufford
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Irradiation of Amorphous Hf Oxide Nanoparticles with
10-nA of 3 MeV Cu Resulted in No Obvious Changes

Before After

)

Sample was placed in tomography
holder, tilted to 80°, and irradiated for
an additional 2.5 h. No obvious
changes.

3 hour irradiation: no obvious changes.

Ty 8o




__Additional Concurrent 3 MeV Cu/ 10 keV He Irradiation
for4.5 h Caused Swelling of the Hf Oxide Nanoparticles

‘ Nanoparticles after 5.5 h of 3 MeV Cu Irradiation | ‘ Nanoparticles after He + Cu Dual Beam Irradiation |

(1) sandia National Laboratories



Future I’TEM Modifications and Upgrades
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* Schematic of the In situ SEM Beamline

Collaborators: D.L. Buller & S. Briggs
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- Crack Propagation during Fatigue Testing of
S il Nanocrystalline Ni-40Fe

Collaborators: N. Heckman & B. Boyce

10-60 nm grains, 10 ym notch milled in specimen. 30 Hz load frequency, 4000 cycles/image

130

120

110 h-ﬂa

=
=

!

Stress Amplitude (Aa/2)

5@5

14 16 18

:,Ir %108

SEM is operational and in-situ mechanical testing is in progress! Mating to accelerator beam
line will allow for advanced studies of radiation creep and other radiation-induced phenomena. @ Sandia National Laboratories




— 7 Summary

= Sandia’s I3’TEM is one of only two facilities in the US
= Only facility in the world with a wealth of dual in situ ion irradiation capabilities
= In situ high energy ion irradiation from H to Au
= In situ gas implantation
= 11 TEM stages with various capabilities

= Currently applying the current FTEM
capabilities to various material systems in
combined environmental conditions and
expand the capabilities

Sandia’s I’'TEM although still under ;—-:—‘———-‘ '
development is providing a wealth & o= Al
of interesting initial observations .- o
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Thank you for your attention.

Access to the ISTEM and associated facilities is now available through both the
Nuclear Science User Facilities (NSUF) and the Center for Integrated
Nanotechnologies (CINT).

@ nSUI-' https://nsuf.inl.gov

/ Nuclear Science
\&/ User Facilities

http://cint.lanl.gov

111/ Sandia National Laboratories
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m
\ i atic of the In situ TEM Beamline

. Collaborators: M.T. Marshall J.A. Scott, & D.L. Buller
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)

Cavity Number Density (X102 m--

H, He, and Displacement Damage Synergy

Cavity Size (nm)

He+H

Void Swelling (%)

T. Tanaka et al. “Synergistic effect of helium and hydrogen for defect
evolution under milt-ion irradiation of Fe-Cr ferritic alloys”

J. of Nuclear Materials 329-333 (2004) 294-298

Coupling Effect

H and He are produced as
decay products

The relationship between
the point defects present, the
interstitial hydrogen, and the
He bubbles in the system
that results in the increased
void swelling has only been
theorized.

The mechanisms which
governs the increased void
swelling under the presence
of He and H have never been
experimental determined

Difficulty of performing
triple-beam irradiation
has resulted in a limited
number of facilities
world wide




In situ Successive Implantation & Irradiation

Collaborators: C. Chisholm & A. Minor

Successive Au?* then Hel*
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Successive Hel* then Au®*



In situ Concurrent Implantation & Irradiation

Collaborators: C. Chisholm & A. Minor

Hel* implantation and Au#* irradiation
of a gold thin film




Uranium Oxide Formation in Different Sintering
Environments

Collaborators: S.A. Briggs, R. Hess, and B. Klamm

Air-sintered }-_3"':,-?.?% #| Argon-sintered | Nanoparticles prepared from
1hr, 1000C if;“i""‘ 5*‘;; 1hr, 1000C solution of UO,(NO,),, PEI, and

EDTA

Ar-sintered specimen phase
diffraction patterns map to
fluorite/FCC structure
characteristic of UO,

- Larger lattice parameter
suggests hypostoichiometric
uranium-dioxide phase (UO,,)

| e
y

Air-sintered specimens do not
map to fluorite/FCC

- Likely a hyperstoichiometric
uranium-oxide phase (U;04, U,Og)

Characterization of ion-irradiation
response is work-in-progress

(1) Sandia National Laboratories
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U-10Mo Depleted Samples from INL

Collaborators: C.M. Barr, A. Aitkaliyeva, R. Dingreville
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* Local average fission density: 4.42 x 10%! (fiss/cm3)
* Samples from AFIP-6MKII Reduced Enrichment for Research and Test Reactors (RERTR)

experiments at Idaho National Laboratory (INL)
* The average gas superlattice bubble diameter distribution: 3.5 = 0.25 nm diameter

(1) Sania National Laboratoris



Precession Electron Diffraction (PED) Microscopy

Collaborators: K.J. Ganesh, S. Rajasekhara, & P.J. Ferreira
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Advantages
* <10 nm spatial resolution

* Near kinematical electron
diffraction

_.-'___- SRR - Symmetry ambiguities are
et e B resolved
* Fast and automated acquisition

» ~200 grains in 15 min.

- 17| Sandia National Laboratories
Chris Own, PhD Dissertation, Northwestern University, 2004 Slide courtesy: K. J. Ganesh, K. Hattar



In-situ TEM straining observation of dislocations —
coherent twin boundary in 304SS

Contributors: C.M. Barr

* Precession enhanced TEM orientation map (left) used to examine change in the twin boundary
misorientation after straining observed in kinematic BF-TEM (right) during in-situ TEM experiment.

* Effortisto link in-situ dislocation-GB interactions during straining with changes in local grain boundary

structure
BF-TEM Image: Precession enhanced TEM orientation map:
; s
'Y <111> # P
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Electron Tomography Provides 3D Insight

Collaborators: S.H. Pratt & T.J. Boyle

In situ lon Irradiation TEM (I’TEM) Aligned Au NP. tilt series - Unirradiated Au NP model
unirradiated

&""

Irradiated Au NP model

Aligned Au NP tilt series -
irradiated

Hummingbird
tomography stage

"==_@

The application of advanced
microscopy techniques to

extreme environments provides
exciting new research directions



In situ Quantitative Mechanical Testing

Contributors: J. Sharon, B. L. Boyce, C. Chisholm, H. Bei, E.P. George, P. Hosemann, A.M. Minor, & Hysitron Inc.
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Hysitron PI95 In Situ Nanoindentation TEM Holder
- Sub nanometer displacement resolution

- Quantitative force information with uN resolution
m Concurrent real-time imaging by TEM
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«Next Steps: In situ TEM Quantitative Mechanical Testing

Contributors: C. Chisholm, H. Bei, E.P. George, P. Hosemann, & A.M. Minor

Intermediate 1.61 x 1014
dislocation disloc./m2
density

Work has started by looking
' sequentially at the quantitative
effects of ion irradiation on
mechanical properties utilizing
In-situ ion irradiation TEM and
In-situ TEM straining.
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N

In situ TEM Quantitative Fatigue Testing

Contributors: D.C. Bufford, D. Stauffer, W. Mook
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= PG FCC Pt after laser heating

Contributors: C.M. Barr, P. Price, D. Adams, M. Abere
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 PED Coupled with
BF-TEM after
annealing

« Pt after in-situ TEM
laser heating

« Orientation texture
indicates a strong,
deviated {111} fiber

max = 8.735 texture
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