

Z Facility Strategy/Progress on Increasing Shot Rate

Chris Bourdon

Radiation Effects and High Energy Density Sciences Research Foundation External Review, May 15-17, 2018

Progress & Next Steps For Improving Shot Efficiency & Effectiveness

Goals Support Program Needs

Pulsed Power Science & Technology (PPS&T) Strategic Outlook (2016):

- Provide more Z shot opportunities, while maintaining opportunities for innovation and maintaining or improving data quality
- Pursue an increase in the capacity of the Z facility to 250 experiments per year

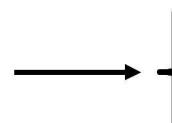
2016 ICF Program Framework:

- Double the number of Z magnetic direct drive experiments by 2019

Presentation Overview:

- **Z program environment**
- **Progress-to-date**
 - **Needs & constraints identified**
 - **Shot rate improvement realized**
 - **Z capabilities group re-structure completed**
 - **Budget and hiring plan progress**
 - **Implementing data-driven decisions**
 - **Planning tool improvement**
- **Path Forward**
 - **Continue next phase of studies and improvements**
 - **Continue development of tools (e.g., planning systems, measures, metrics)**

Demand for Z Shots To Address Weapon Science Needs Remains High



LLNL, LANL, SNL, and the Fundamental Science Community continue to have high demand for Z shots to address important questions

(All are critical stakeholders currently and in the future)

Requests for Z shots average over 3 times the shot capacity per calendar year

Includes Nuclear Counterterrorism requests

CY18 Schedule Statistics

	Days Requested	Days Allocated	Day Fraction
Dynamic Materials	123	43	17%
Containment	49	32	13%
ICF	232	74	30%
SAT/RES	50	33	13%
HEDP	18	12	5%
Fundamental Science	68	15	6%
Facility/Maintenance	15	15	6%
Contingency	26	26	10%
Total:	581	250	

Complexity of Shots is Increasing: Diagnostics are a great example

- Diagnostic fielding increasing; annual average number of diagnostics per experiment increased by ~250% since 2013.
 - Each shot normally supports multiple experiments
 - ICF experiments still the most challenging – we routinely field over 20 diagnostics per shot
 - Multiple new diagnostic capabilities added to Z in 2016 and 2017
 - Extensive capabilities development planned for out-years

Plan for out-year diagnostics development

New Capabilities Added in Last Two Years	
<ul style="list-style-type: none">High-resolution radiation flux: Avalanche Photo DiodesOn axis measurement of x-ray flux from MagLIF targets: Spherical Crystal ImagingAdvancing Power Flow measurements : CIDZ, mini-XRDs, MagSpec, FCAPsNeutron Imaging: One Dimensional Imager of Neutrons (ODIN)In-Chamber, gated pinhole imaging: TiGHER Pinhole CameraTime-resolved Opacity measurements: hCMOS convex crystal spectrometerTritium: ZGTS, Tritium monitoring diagnosticsDifferential Crystal ImagingWarm X-ray imaging: Wolter Imager	

	FY17	FY18	FY19	FY20	FY21	FY22
X-Ray Probe		X-Ray Diffraction		XRD (HE)	XRD (Containment)	XRD Time Resolved
		Gated Crystal BL (2x)	Gated Crystal BL (4x)			
X-Ray Imaging		Wolter	Wolter (time-resolved)	Wolter (higher-energy)		
		In-Chamber, Gated Imaging (TiGHER)		Pulse Dilation, Single Line of Sight		
	2 Crystals		Differential Crystal Imaging (3x)			
X-Ray Spectroscopy	Opacity (t)		In-Chamber, Gated Crystal Spec. (XRS3)	TiGHER (x)		
Neutron		1D → Higher Resolution → 2D		Neutron Imager		
		Compact Recoil Spectrometer			Magnetic Recoil Spectrometer	
			Gamma Reaction History		Top Axial / Far Field nTOF	
Optical Probe	Line VISAR					
		Infrared Pyrometry				
Enabling Capabilities		Continuous improvement. More frames, higher energy, shorter gate times.			hCMOS	
		In-Chamber Motion	In-House CR39			

Progress-to-Date: Needs & Constraints Identified for Increasing Shot Rate

- An internal study evaluated investment options for increasing the shot rate and shot capacity
 - To increase shot rate: increase shot efficiency, increase machine maintenance and decrease non-shot operational days
 - To increase shot capacity: implement new operational model to increase operational days once the shot rate improvements have been realized
- Value is placed on maximizing learning in the Z operational model
 - Flexibility is encouraged to allow for emergent knowledge to influence our plans
 - Duplicate measurements, multiple configurations, flexible timelines employed to build resiliency into a shot/shot series
 - There is a balance (tension) between flexibility and efficiency
- Planning & risk management needs identified to improve shot rate:
 - Scheduling sufficient days for testing and commissioning activities
 - Dynamic allocation of people and building resilience onto operational teams
 - Better understanding and prediction of failure modes for Z pulsed power systems and subsystems
 - Stack damage mitigation through hardware design or mitigation features on MITLS
 - Investing early in the planning process in tools to manage timeline and risk

Progress-to-Date: Shot Rate Improvement

	CY14	CY15	CY16	CY17	CY18
# of Shots¹	156	140	146	147	170²
Shot Efficiency³	0.77	0.70	0.71	0.76	0.82⁴

Goal:
SE > 0.85
annually
by CY19

1. Have average =146 shots per year for CY13 through CY17
2. Currently projecting ability to have 170 shots in CY18
3. Shot Efficiency= (Number of Shots)/(Number of days available to shoot)
4. Year to date

- Current operational model employs ~250 operational days per year
 - ~35 days used for scheduled non-shot activities (containment prep, maintenance, commissioning, 31-cm change-over)
 - Major maintenance activities (i.e., stack rebuild) may use ~15 operational days (typically bi-annually)
 - **Goal: Reduce non-shot activities to 40 or less days per year**
- Quarterly maintenance activities inserted into the annual Z shot schedule (~2 days per quarter) enabled scheduling of critical maintenance activities and improvement to shot efficiency
- Contingency added to the shot timeline by minimizing or eliminating activities (e.g., dive in water section)
- Tools developed and matured to better understand work flow/optimize resources

Progress to Date: Completed Z Experimental Capability Management Group Restructure

Supporting Organizations

1691: Z/ZBL/ Diagnostics Engineering (M. Jones)

1692: Load and Diagnostic Engineering (E. Weinbrecht)

1650 : Pulsed Power Science

1640, 1650, 1680: Embedded Diagnostic Capabilities

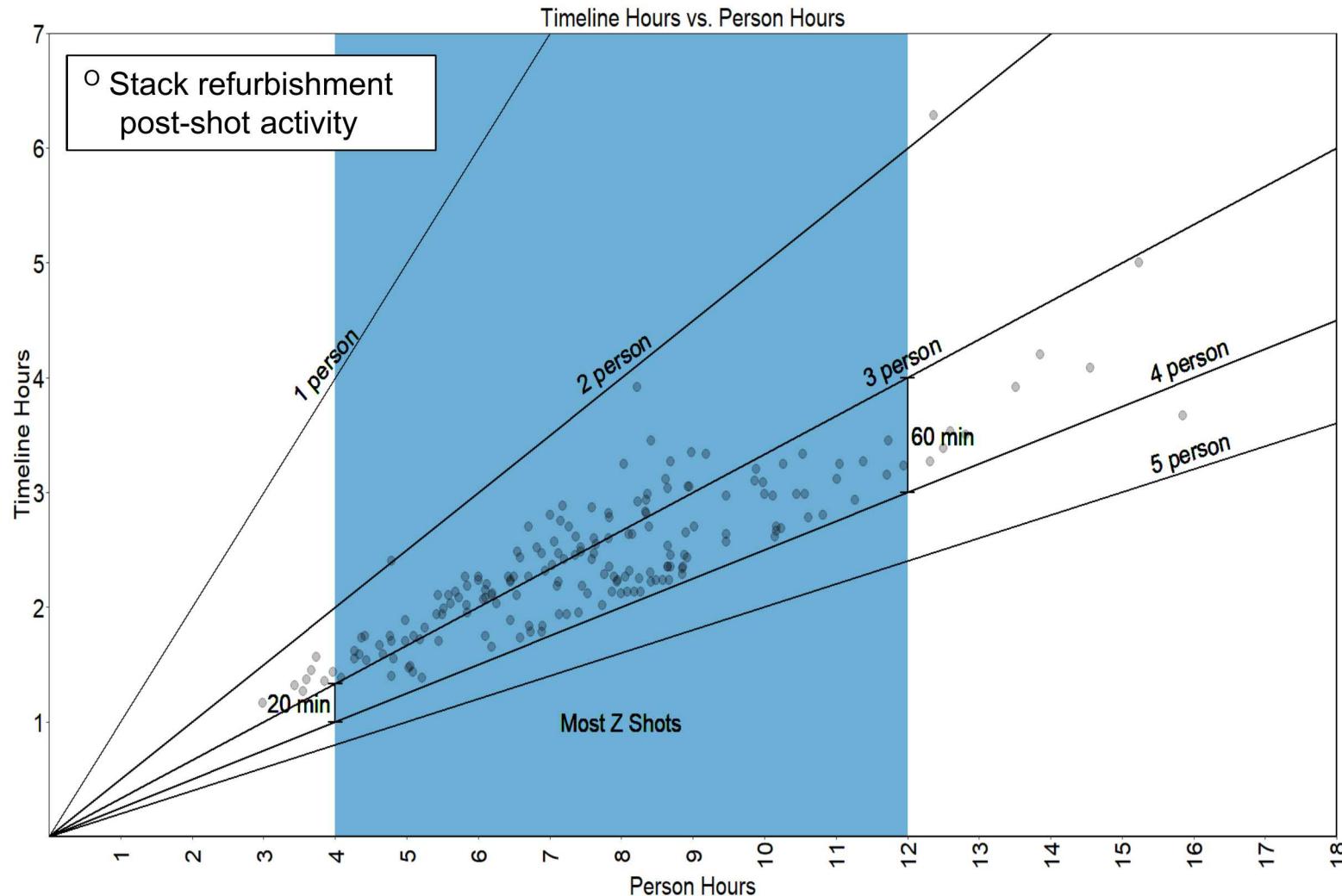
- Engineering Support for Operations
- New Capability Design and Engineering

- Load Hardware
- Hardware Verification
- Target Fabrication
- Containment

- Pulsed Power Systems Stewardship and Expertise

- Specialized Diagnostic Support (Stewardship and Operations)

Progress-to-date: Funding & Staffing Increases in Process



- FY18 funding for Z and operations increased 8% over FY17, targeted at shot efficiency
 - Will further address facility maintenance and deferred maintenance with Omnibus bill passing
- Staffing increases in progress on key teams
 - Hires to center section (+3), systems/industrial engineering (+1), hardware design(+2) teams completed
 - Additional new hires authorized to systems/industrial engineering (+1), hardware design (+2), diagnostics (+2), web tools (+1) teams, to be completed this FY.
 - Staffing also in progress to increase operations robustness/resilience and resolve 1-deep challenges

Progress to date: Implementing recommendations of internal study beginning to demonstrate results

Activity: Stack refurbishment post-shot

- Systems thinking was applied to reassess task workflow and staffing
 - Increasing center section staffing to 12 enables dynamic staffing of activities
 - Also enables team to take scheduled breaks
 - Ops process indicators (e.g., cameras and task indicators) enabled accurate measurement of task duration and person-hours
- Process modifications improved workflow and timeline:
 - 20-40 minute timeline improvements attained for normal refurbishments
 - Hours of time savings are realized when there is heavy stack damage
- Goal: Drive data-driven decision making and process thinking throughout the facility

Progress to date: Improving planning tools and data return

Experiment Shot Reporting

Goal:

- Single-source, archivable, and searchable database
 - Progress this year: New application allows access to all shot related data
 - Configuration documents
 - As loaded pictures
 - Shot data
 - Post shot reports
 - Hazardous /RCRA materials
 - Diagnostic configurations
 - Next Steps:
 - Quality metrics post-shot for science objectives
 - Improving searchability

Diagnostic Measurements

Goals:

- All needed information at the experimenter's fingertips
- Increase quality of diagnostic measurements
 - Progress this year:
 - Developed diagnostic responsibility matrix so roles can be better understood.
 - Adding detailed, online documentation for each of our diagnostic instruments.
 - Improving the fidelity of diagnostics fielded on Z.
 - Integration and commissioning
 - Developing measurement assurance plan
 - Quick look analysis of shot data
 - Reporting of diagnostic health

Graded process for new capability integration implemented

A

Form: ADM_NEW_CAP_ACCEPT_FORM_REV.A
Date: 9/13/2017
Parent: ADM_REQMTSYS_ADPRO

- Established single point of contact for integrating new capabilities onto the facility/into an experiment
- Deployed graded approach for process rigor
- Developed tools to capture capability readiness
- Implemented appropriate level of rigor (“right-sized”) commissioning process for new diagnostic capabilities

System Name / Acronym:	DMP Preheat System				
Responsible Individual:	Justin Brown				
Description	Need to re-commission the DMP preheat system. Currently the preheat shot is on the schedule for Nov. 3rd (might move to Nov. 20th). This experiment the plan is to preheat Cu and Zr.				
Screening	Notes				
Hazards	Electrical Laser Lifting Rad Pressure Thermal Other Electrical - Possibly 120V going into chamber Thermal - Heating target up to 300 Celcius Lifting - Screenbox cranted to mezzanine Be contamination Center Tag Guide might need to be changed				
Operational Notes	Need local network to back of DAS. It appears the feedthru is for the radiation shield (maybe ABZ port can be used) Screenbox will need to craned onto mezzanine				
New Materials in Center	? - Should be captured by Configuration Summary				
Security	NA				
Other	Possible testing in west side BCCA PI is requesting for center section to install cathode with thermocouples installed				
Interfaces					
Electrical	<50 V	110V	220V	>220V	
Network	SRN	ZRN	Local		
DAS	Trigger	High Speed	0	Low Speed	0
Crane	Yes				
Vacuum Section	Bottom Lid	Bottom Spool	LOS Spool	Rad Shield	Top Lid
Location	Center	LOS Spool	Screenbox	Diagnostic Mezz	Other
Other	Yes	No / ?	Craned In	Yes	
Resources Needed	Design	Installation	Ops.	Notes	
Mechanical Electrical ESH					

Next Steps: Pursue Strategy for increasing shot rate and optimizing the use of Z as a center-wide effort

- Holistic approach: Look at the complete life-cycle of experiments and shots
- Focus on 4 areas:
 - Better planning/understanding of experiment & shot preparation and execution
 - More robust hardware and target design, manufacture and procurement processes, and staffing
 - More contingency built (or created) into the work day
 - Strategic activities to address Z systems maintenance needs
- Cross-functional Working Groups will study and make recommendations on:
 - Experiment planning and execution processes (idea to day of shot)
 - Z Sustainment (maintenance, legacy system improvements, Z capability enhancements)
 - Z operational model (for 5- day operations and 7-day operations)
- Aggressively address staffing and investments as budget becomes available
- Identify and pursue game-changing technologies that improve operations (e.g., elimination of debubble dive, automated MITL refurbishment, debris catching features in MITLs)

