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‘ Cancer Detection I

Cancer Detection in Mammograms
“Tech Maturation Funds” and LDRD:
Image analysis and decision trees to
detect spiculated lesions.
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‘ASC and NW Simulation Support'

Scientific Data Management, Data
Discovery, Feature Characterization
DOFE ASC': Scalable machine learning
methods for analysis of physical simulation

data.
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‘Production Deployment for NIF Optics Inspection'

NIF Optics Inspection

Informal Consultation: Support AVATAR
machine learning for production use at
LLNL’s National Ignition Facility
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Text Analysis

Classifier Train OOB Ivoting Score Easy/Hard Tokens

115 4 0.67 Hard Russia , , Britain , Australia , Canada , Indonesia have sent observers exercise northeast Singapore .
116 v 0.67 Hard Russia Britain , Australia , Canada Indonesia have sent observers exercise northeast Singapore .
117 0.67 Hard Russia , Britain , Australia , Canada , Indonesia have sent observers exercise northeast Singapore .
118 0.67 Hard Russia Britain , Australia , Canada Indonesia have sent observers exercise northeast Singapore .
119 0.67 Hard Russia Britain , Australia , Canada Indonesia have sent observers exercise northeast Singapore .
120 0.67 Hard Russia Britain , Australia , Canada Indonesia have sent observers exercise northeast Singapore .
121 0.77 Easy Russia Britain , Australia , Canada Indonesia have sent observers exercise northeast Singapore .
122 0.77 Easy Russia Britain , Australia , Canada Indonesia have sent observers exercise northeast Singapore .
123 0.77 Easy Russia , , Britain , Australia , Canada , Indonesia have sent observers exercise northeast Singapore .

0.77 Easy Russia Britain , Australia , Canada Indonesia have sent observers exercise northeast Singapore .

Network and Ensemble Enabled Entity Extraction in Informal Text (NEEEEIT)

LDRD: Combine conditional random fields (CRFs) and ensemble methods.

Topic Modeling

LDRD and collaboration with LLNL: Study selection of the number of topics in LSA, LDA, and NMF.
Labeling of multilingual text

LDRD: Detect sentiment or ideology in multilingual text without translation.
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‘Machine Learning Methods Research'

Data Discovery
ASC: SMOTE, Bozos/Bites, Hellinger trees,
ensemble auto-sizing.

Random Forest Accuracy Analysis

LDRD: Predictively analyze RF accuracy as a

function of ensemble size.

Extrapolation Risk

LDRD: Help ML systems understand when they
are not competent to have an opinion.

DLEDT

Informal Consultation: Investigate a hybrid of

deep learning and ensembles of decision trees.
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Applications

Border Gateway Protocol Analysis

SPP: Use BGP traffic for early detection of Kachina/Questa

network disruptions. SPP: Build machine learning methods robust
Mountain Creek to terrible input data.

SPP: Analyze e-commerce transaction data for In Situ Machine Learning

early warning of bad actors. DOE ASCR: Use ML to analyze simulation
PANTHER data while the simulations are in process.
LDRD: Predict properties of aircraft trajectories.
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Counter Adversarial Data Analysis'

Counter Adversarial Machine Learning
(CADA)

LDRD: Attack and defend machine learning
Counter Adversarial Graph Analytics
LDRD: Use ML to detect attacks around
community detection or node labeling
CADA++

Program Development: Internal and external

program development
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Not Machine Learning

ARM/WSI
DOE: Whole Sky Imagery image analysis in support of

atmospheric radiation measurement

CARGIO

ASC: “Clustering of Attributed Relational Graphs for
Information Organization”

Networks Grand Challenge

LDRD: Graph analytics for national security problems
Senior Scientist

Division Overhead: Internal and external data science

advocacy and strategic planning
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