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Abstract

Quantum game theory offers a new paradigm by which to analysis both cooperative and non-cooperative
behaviors in a formal setting. Quantum game theory provides several prominent distinctions from con-
ventional approaches, in whic players may select strategies that employ both quantum and classical
resources. We review theoretical and experimental developments in quantum games, including a histori-
cal recounting of its formal development since the inception of the subject circa 1999. We will also offer
a narrative on the controversy that surrounded the subject in its early days, and how this controversy has
affected the development of the subject.

1 Introduction

Quantum games represent an extension of conventional game theory to contexts in which players have
access to quantum resources [?]. The purpose of these efforts is to better understand how choices made
by the players, e.g., Alice and Bob, are influenced by entanglement or other uniquely quantum behaviors.
As originally presented by Eisert, Wilkens, and Lewenstein, quantum strategies for games make use of
quantum resources [?], and this approach has identified new Nash equilibria that are not available using
uncorrelated classical resources. This has raised outstanding questions about how quantum games may
impact the current use of game theory for strategic studies and how these results arise from the principles of
quantum information.

With its roots in quantum information, quantum game theory incorporates the uncertainty or entropy of
information with the uncertainty inherent in quantum mechanical processes [1, 2]. The central role of uncer-
tainty in both theories serves as a natural link codified in terms of probability distributions. More precisely,
a general state of an m-state quantum object is an element of the m-dimensional complex projective Hilbert
space CPm, say

v = (v1, . . . , vm) . (1)
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Upon measurement of this state with respect to the observable states of the quantum object (which are the
elements of an orthogonal basis of CPm), v will produce the probability distribution

1∑m
k=1 |vk|2

(
|v1|2, . . . , |vm|2

)
(2)

over the observable states. Hence, a notion of quantum entropy or uncertainty may be defined that coincides
with the corresponding notion in classical information theory [3].

Quantum information theory was further developed as the theory of quantum computation by Feynman
and Deutsch [4, 5]. Feynman outlines a primitive version of what is now known as an n qubit quantum
computer [3], that is, a physical system that emulates any unitary function

Q : ⊗ni=1CP 1
i −→ ⊗ni=1CP 1

i , (3)

where CP 1 is the two-dimensional complex projective Hilbert space modeling the two-state quantum system
or the qubit, in a way that Q can be expressed as a tensor product

Q = ⊗nj=1Qj (4)

of unitary functions Qj (also known as quantum logic gates) that act only on one or two qubits [6, 7, 8].
Feynman’s argument showed that it is possible to simulate two-state computations by Bosonic two-state
quantum systems.

Quantum computers crossed the engineering and commercialization thresholds in this decade with the
Canadian technology company D-wave producing and selling a quantum annealing based quantum com-
puter, and establish technology industry giants like IBM, Intel, Google, and Microsoft devoting financial
resources to initiate their own quantum computing efforts. More generally, quantum information theory
has made great strides starting in the 1980’s in form of quantum communication protocols where, roughly
speaking, one studies the transmission of quantum information over channels and applications. A milestone
of quantum information theory is provably secure public key distribution which uses the uncertainty inher-
ent in quantum mechanics to guarantee the security. This idea was first proposed by Charles Bennett and
Gilles Brassard in 1984 at a conference in Bengaluru, India, and recently appeared in a journal [9]. Several
companies including Toshiba and IDquantique offer commercial devices that can used to set up quantum
cryptography protocols. While the literature on quantum information theory is vast, we refer the reader to
books[10, 11] for further survey of quantum information theory.

In the emerging quantum information technology niche, optimal implementation of quantum informa-
tion processes will be of fundamental importance. To this end, the classic problem of optimizing a function’s
value will play a crucial role, with one looking to optimize the functional description of the quantum pro-
cesses, as in [12], for example. Generalizing further, solutions to the problem of simultaneous optimization
of two or more functions will be even more crucial given the uncertainty inherent in quantum systems. This
generalized, multi-objective optimization problem forms the essence of non-cooperative game theory, where
notional players are introduced as having the said functions as payoff or objective functions. The original
single-objective optimization problem can also be studied as a single player game or what is also known as
a dynamic game.

We will give a mathematically formal discussion of non-cooperative games and their quantum mechan-
ical counterparts in sections 2 and 3, followed by a discussion in section 4 on the history of how such
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quantum games have been viewed and criticized in the literature in the context of the optimal implementa-
tion of quantum technologies as well the quantum mechanical implementation of non-cooperative games. In
section 4.1 we contrast cooperative and non-cooperative games, and in section4.2, we introduces a new per-
spective on quantum entanglement as a mechanism for establishing social equilibrium. Section 5 concerns
Bell’s inequalities and their role in quantum Bayesian games, and sections 6 through 9 concern classical and
quantum versions of stochastic and dynamic games. We give the current state-of-affairs in the experimental
realization of quantum games in section 10, followed by section 11 that predicts the future applications of
quantum games.

2 Non-cooperative games

Non-cooperative game theory is the art of making optimal decisions in competitive situations based on
available information. The written philosophical foundations of Game Theory trace back to at least the
great works of Sun Tsu (The Art of War), circa 500 BCE in China, and Chanakya (Arthashastra), circa 250
BCE in India. Sun Tsu captures the essence of game-theoretic thinking in the following (translated [13])
lines from The Art of War:

Knowing the other and knowing oneself, In one hundred battle no danger,
Not knowing the other and knowing oneself, One victory for one loss,
Not knowing the other and not knowing oneself, In every battle certain defeat (Denma transla-
tion).

In short, each competitor or player, in the competitive situation or game, should know the preferences
of each player over the outcomes of the game, and knowing this information is sufficient for each player
to make optimal decisions or strategic choices. The word “optimal” requires further elaboration. In non-
cooperative game theory, there are two ways to utilize it.

First is via the notion of Nash equilibrium, proposed by Nobel Laureate John Nash [14], where a player’s
strategic choice, given the strategic choices of all the other players, produces an outcome of the game that
best approximates the player’s preferences over the outcomes. In other words, unilateral deviation by the
player to another strategic choice will produce an outcome which is less preferable to the player. Further yet,
one can say that each player’s strategic choice is a best response to every other. The second way the word
“optimal” is used in game theory is via the notion of Pareto-optimality where the strategic choices made
by the players produce an outcome of the game that best approximates the preferences of every player. In
other words, a unilateral deviation by any one player to some other strategic choice will produce an outcome
which is less preferred by some player. If the adversely affected player is also the one who unilaterally
deviated, then the Pareto-optimal outcome is also a Nash equilibrium. Note that Nash equilibrium is a more
likely outcome in a non-cooperative game than a Pareto-optimal one.

Formalizing, we say that an N player, non-cooperative game in normal form is a function Γ

Γ :
N∏
i=1

Si −→ O, (5)

with the additional feature of the notion of non-identical preferences over the elements of the set of outcomes
O, for every “player” of the game. The preferences are a pre-ordering of the elements of O, that is, for

3



l,m, n ∈ O

m � m, and l � m and m � n =⇒ l � n. (6)

where the symbol � denotes “of less or equal preference”. Preferences are typically quantified numerically
for the ease of calculation of the payoffs. To this end, functions Γi are introduced which act as the payoff
function for each player i and typically map elements of O into the real numbers in a way that preserves
the preferences of the players. That is, � is replaced with ≤ when analyzing the payoffs. The factor Si in
the domain of Γ is said to be the strategy set of player i, and a play of Γ is an n-tuple of strategies, one per
player, producing a payoff to each player in terms of his preferences over the elements of O in the image of
Γ.

A Nash equilibrium is a play of Γ in which every player employs a strategy that is a best reply, with
respects to his preferences over the outcomes, to the strategic choice of every other player. In other words,
unilateral deviation from a Nash equilibrium by any one player in the form of a different choice of strategy
will produce an outcome which is less preferred by that player than before. Following Nash, we say that a
play p′ of Γ counters another play p if Γi(p

′)≥Γi(p) for all players i, and that a self-countering play is an
(Nash) equilibrium.

Let Cp denote the set of all the plays of Γ that counter p. Denote
∏n
i=1 Si by S for notational con-

venience, and note that Cp ⊂ S and therefore Cp ∈ 2S . Further note that the game Γ can be factored as

Γ : S
ΓC−−→ 2S

E−→ O (7)

where to any play p the map ΓC associates its countering set Cp via the payoff functions Γi. The set-valued
map ΓC may be viewed as a pre-processing stage where players seek out a self-countering play, and if one is
found, it is mapped to its corresponding outcome in O by the function E. The condition for the existence of
a self-countering play, and therefore of a Nash equilibrium, is that ΓC have a fixed point, that is, an element
p∗ ∈ S such that p∗ ∈ Cp∗ .

In a general set-theoretic setting for non-cooperative games, the map ΓC may not have a fixed point.
Hence, not all non-cooperative games will have a Nash equilibrium. However, according to Nash’s theorem,
when the Si are finite and the game is extended to its mixed version, that is, the version in which random-
ization via probability distributions is allowed over the elements of all the Si, as well as over the elements
of O, then ΓC has at least one fixed point and therefore at least one Nash equilibrium.

Formally, given a game Γ with finite Si for all i, its mixed version is the product function

Λ :

n∏
i=1

∆(Si) −→ ∆(O) (8)

where ∆(Si) is the set of probability distributions over the ith player’s strategy set Si, and the set ∆(O) is
the set of probability distributions over the outcomes O. Payoffs are now calculated as expected payoffs,
that is, weighted averages of the values of Γi, for each player i, with respect to probability distributions in
∆(O) that arise as the product of the plays of Λ. Denote the expected payoff to player i by the function Λi.
Also, note that Λ restricts to Γ. In such n-player games, at least one Nash equilibrium play is guaranteed to
exist as a fixed point of Λ via Kakutani’s fixed-point theorem [15].
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Kakutani’s fixed-point theorem: Let S ⊂ Rn be nonempty, bounded, closed, and convex, and let F : S →
2S be an upper semi-continuous set-valued mapping such that F (s) is non-empty, closed, and convex for all
s ∈ S. Then there exists some s∗ ∈ S such that s∗ ∈ F (s∗).

To see this, make S =
∏n
i=1 ∆(Si). Then S ⊂ Rn and S is non-empty, bounded, and closed because

it is a finite product of finite non-empty sets. The set S is also convex because its the convex hull of the
elements of a finite set. Next, let Cp be the set of all plays of Λ that counter the play p. Then Cp is non-
empty, closed, and convex. Further, Cp ⊂ S and therefore Cp ∈ 2S . Since Λ is a game, it factors according
to (7)

Λ : S
ΛC−−→ 2S

EΠ−−→ ∆(O) (9)

where the map ΛC associates a play to its countering set via the payoff functions Λi. Since Λi are all
continuous, ΛC is continuous. Further, ΛC(s) is non-empty, closed, and convex for all s ∈ S (we will
establish the convexity of ΛC(s) below; the remaining conditions are also straightforward to establish).
Hence, Kakutani’s theorem applies and there exists an s∗ ∈ S that counters itself, that is, s∗ ∈ ΛC(s∗),
and is therefore a Nash equilibrium. The function EΠ simply maps s∗ to ∆(O) as the product probability
distribution from which the Nash equilibrium expected payoff is computed for each player.

The convexity of the ΛC(s) = Cp is straight forward to show. Let q, r ∈ Cp. Then

Λi(q) ≥ Λi(p) and Λi(r) ≥ Λi(p) (10)

for all i. Now let 0 ≤ µ ≤ 1 and consider the convex combination µq + (1− µ)r which we will show to be
in Cp. First note that µq + (1− µ)r ∈ S because S is the product of the convex sets ∆(Si). Next, since the
Λi are all linear, and because of the inequalities in (10) and the restrictions on the values of µ,

Λi(µq + (1− µ)r) = µΛi(q) + (1− µ)Λi(r) ≥ Λi(p) (11)

whereby µq + (1 − µ)r ∈ Cp and Cp is convex. Going back to the game Γ in (5) defined in the general
set-theoretic setting, certainly Kakutani’s theorem would apply to Γ if the conditions are right, such as when
the image set of Γ is pre-ordered and Γ is linear.

Kakutani’s fixed-point theorem can be generalized to include subsets S of convex topological vector
spaces, as was done by Glicksberg in [16]. The following is a paraphrased but equivalent statement of
Glicksberg’s fixed-point theorem (the term “linear space” in the original statement of Glicksberg’s theorem
is equivalent to the term vector space):

Glicksberg’s fixed-point theorem: Let H be nonempty, compact, convex subset of a convex Hausdorff
topological vector space and let Φ : H → 2H be an upper semi-continuous set-valued mapping such that
Φ(h) is non-empty and convex for all h ∈ H . Then there exists some h∗ ∈ H such that h∗ ∈ Φ(h∗).

Using Glicksberg’s fixed-point theorem, one can show that Nash equilibrium exists in games where the
strategy sets are infinite or possibly also un-countably infinite.

Non-cooperative game theory has been an immensely successful mathematical model for studying sci-
entific and social phenomena. In particular, it has offered key insights into equilibrium and optimal behavior
in economics, evolutionary biology, and politics. As with any established subject, game theory has a vast lit-
erature available. However, we refer the reader to [17, 18]. Given the successful interface of non-cooperative
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Figure 1: Quantum circuit for the EWL quantization scheme. The two qubit gate to the left of the players’ quantum
strategies maximally entangles the two qubits employed to play the game. The two qubit gate appearing after the
quantum strategies dis-entangles the qubits.

game theory with several other subjects, it is no wonder then that physicist have explored the possibility of
using Game Theory to model physical processes as games and study their equilibrium behaviors. The first
paper that the author’s are aware of in which aspects of quantum physics, wave mechanics in particular,
were viewed as games is [19].

3 Non-cooperative quantum games

A formal merger of non-cooperative game theory and quantum computing was initiated in [20] by D. Meyer,
who was motivated to study efficient quantum algorithms, and to this end, proposed a game-theoretic model
for quantum algorithms. To this end, his focus of study was the situation where in a particular two player
game, one of the players had access to quantum strategies. Meyer in fact did not introduce the notion of a
quantum game in his work; rather, this was done by another group of authors whose work will be discussed
shortly. Meyer defined a quantum strategy to be a single qubit logic gate in the quantum computation
for which the game model was constructed. The other player only had access to a classical strategy set
identified with components of the quantum computation. A similar two player game model was also applied
to quantum algorithms such as Simon’s and Grover’s algorithms. Meyer showed that in this setting, the
player with access to a proper quantum strategy (and not simply a classical one residing inside a quantum
one) would always win this game. He further showed that if both players had access to proper quantum
strategies, then in a strictly competitive or zero-sum game (where the preferences of the players over the
outcomes are diametrically opposite), a Nash equilibrium need not exist. However, in the case where players
are allowed to choose their quantum strategies with respect to a probability distribution, that is, employ
mixed quantum strategies, Meyer used Glicksberg’s fixed point theorem to show that in this situation Nash
equilibrium would always exist. Meyer’s work provides a way to study equilibrium behavior of quantum
computational mechanisms.

The term quantum game appears to have been first used by Eisert, Wilkens, and Lewenstein in their
paper [21] which was published soon after Meyer’s work. These authors were interested in, as they put it,
“... the quantization of non-zero sum games”. At face value, this expression can create controversy (and
it has), since quantization is a physical process whereas a game is primarily an abstract concept. However,
Chess, Poker, and Football are examples of games that can be implemented physically. It becomes clear
upon reading the paper that the authors’ goal is to investigate the consequences of a non-cooperative game
implemented quantum physically. More accurately, Eisert et al. give a quantum computational implemen-
tation of Prisoner’s Dilemma. This impementation is reproduced in Figure 1. Eisert et al. show that in their
quantum computational implementation of the non-strictly competitive game of Prisoner’s Dilemma, when
followed by quantum measurement, players can achieve a Nash equilibrium that is also Pareto-optimal. One
should view the “EWL quantization protocol” for Prisoner’s Dilemma as an extension of the original game
to include higher order randomization via quantum superposition followed by measurement [22] similar to
the way game theorists have traditionally extended (or physically implemented) a game to include random-
ization via probability distributions. And indeed, Eisert et al. ensure that their quantum game restricts to the
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original Prisoner’s Dilemma. Before discussing the impact of Meyer and Eisert et al.’s work on the subject
of quantum game theory, it is pertinent to introduce a mathematically formal definition of a non-cooperative
quantum game in normal form that is consistent with both these authors’ perspectives.

An n-player quantum game in normal form arises from (5) when one introduces quantum physically
relevant restrictions. We declare a pure strategy quantum game (in normal form) to be any unitary function

Q : ⊗ni=1CP di −→ ⊗ni=1CP di (12)

where CP di is the di-dimensional complex projective Hilbert space of pure quantum states that constitutes
player i’s pure quantum strategies, as well as the set of outcomes with a notion of non-identical preferences
defined over its elements, one per player [23]. A mixed quantum game would then be any function

R : ∆
(
⊗ni=1CP di

)
−→ ∆

(
⊗ni=1CP di

)
(13)

where ∆ represents the set of probability distributions over the argument. Our definition of a quantum game
in both (12) and (13) is consistent with Meyer’s perspective in the sense that it allows one to constrained
optimize a quantum mechanism by defining payoff functions before measurement, and it is consistent with
the EWL perspective if one a defines the payoff functions after measurement as expected value.

As mentioned at the end of section 4, Meyer used Glicksberrg’s fixed point theorem to establish the
guarantee of Nash equilibrium in the mixed quantum gameR. This is not surprising given that probabilistic
mixtures form a convex structure, which is an essential ingredient for fixed-point theorems to hold on “flat”
manifolds such as Rn. However, it was only very recently that two of the current authors showed that Nash
equilibrium via fixed-point theorem can be guaranteed in the quantum gameQ [24]. These authors used the
Riemannian manifold structure of CPn to invoke John Nash’s other, mathematically more popular theorem
known as the Nash embedding theorem:

Nash embedding theorem: Every compact Riemannian manifold can be (isometrically) embedded into Rm
for a sufficiently large m.

The Nash embedding theorem tells us that CPn is diffeomorphic to its image under a length preserving map
into Rm. With suitable considerations in place, it follows that Kakutani’s theorem applies to the image of
CPn in Rm. Now, tracing the diffeomorphim back to CPn guarantees the existence of Nash equilibrium in
the pure quantum game Q.

Another key insight established in [24] is that just as in classical games, linearity of the payoff functions
is a fundamental requirement for guaranteeing the existence of Nash equilibrium in pure quantum games.
Hence, quantization of games such as the EWL protocol, in which the payoff is the expected value computed
after quantum measurement, cannot guarantee Nash equilibrium. On the other hand, the problem of pure
state preparation, when viewed as a quantum game with the overlap (measured by the inner-product) of
quantum states as the payoff function, guarantees Nash equilibrium.

4 Criticism of quantum games - a discussion

In [25], van Enk et al. state that the output of the EWL protocol for a specific and finite set of quantum
strategies, after measurement, produces a function that is an extension of Prisoner’s Dilemma but is entirely

7



non-quantum mechanical. These authors argue that since this post measurement function emulates the
results of the EWL quantization protocol, the quantum nature of the latter is redundant. However, if this
criticism is taken seriously, then extensions of Prisoner’s Dilemma via probability distributions can also be
restricted to specific, finite mixed strategy sets to produce a larger game that is entirely non-probabilistic
and which has a different structure than the original game!

The source of this criticism appears to be a confusion between descriptive and prescriptive interpre-
tations of game theory. For the mixed game should not be understood as a feature of descriptive game
theory that one utilizes to generate piece-wise larger, non-probabilistic games. Rather, the reasoning behind
extending to a mixed game is prescriptive, allowing one to design a mechanism that identifies probability
distributions over the players’ mixed strategies, which when mapped to probability distributions over the
outcomes of the game via the product function, produce an expected outcome of the game as Nash equilib-
rium. From this point of view, the EWL protocol is a perfectly valid higher order mechanism for extending
Prisoner’s Dilemma.

Another criticism by van Enk et al. of the EWL quantization protocol is that it does not preserve the
non-cooperative nature of Prisoner’s Dilemma due to the presence of quantum entanglement generated cor-
relations. Eisert et al. have argued that entanglement can be viewed as an honest referee who communicates
to the players on their behalf. But van Enck et al. insist that introducing communication between the players
“...blurs the contrast between cooperative and non-cooperative games”. Once again, this criticism is based
on a misunderstanding of how game extensions work. Bringing in an honest referee into a game is just
another form of game extension known as mediated communication [26] which, to be fair, can easily be
mistaken as a form of cooperation. In fact however, such games are non-cooperative and Nash equilibrium
still holds as the suitable solution concept. It is only when one tries to relate the Nash equilibrium in the
extended game (with mediated communication) to a notion of equilibrium in the original game that the
broader notion of correlated equilibrium arises. The motivation for introducing mediated communication
in games comes from the desire to realize probability distributions over the outcomes of a game which are
not in the image of the mixed game. From this perspective, the EWL protocol could be interpreted as a
higher order extension of Prisoner’s Dilemma to include quantum mediated communication. An excellent,
mathematically formal explanation of the latter interpretation can be found in [22].

Finally, in [27], Benjamin et al. argue that Nash equilibrium in the EWL protocol, while game-
theoretically correct, is of limited quantum physical interest. These authors proceed to show that when
a naturally more general and quantum physically more meaningful implementation of EWL is considered,
the quantum Prisoner’s Dilemma has no Nash equilibrium! However, once randomization via probability
distributions is introduced into their quantum Prisoner’s Dilemma, a Nash equilibrium that is near-optimal,
but still better paying than the one available in the classical game, materializes again in line with Glicksberg-
Meyer theorem. This criticism was in fact addressed by Eisert and Wilkens in a follow up publication [28].
Benjamin et al. give a discrete set of strategies that could be employed in a classical set-up of the game that
gives the same solution to the dilemma. Eisert et al’s strategy set is then just the continuous analogue of this
discrete set.

Given that EWL is ultimately a game-theoretic result, its criticism should be contextualized as follows:
the EWL quantization protocol is not a robust enough quantum computational implementation of Prisoner’s
Dilemma. It does not properly use quantum mechanics in the sense that in a quantum mechanical setting a
player would be expected to be allowed to use any unitary operation to modify her qubits, and furthermore,
a player could trace out a qubit, create a new one, use ancillary systems, etc. On the other hand, one can
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argue that such complete access to quantum mechanical processes is an ideal scenario that is not always
practical. When it comes to technological implementations of theoretical quantum mechanical protocols,
one typically limited by the state of the art in the technology being used to implement the protocol. A
good example of this situation would be the quantum computing hardware architectures which are limited
in quantum mechanical scope. This limitations in does not imply that the architectures and the efforts that
went in to producing them are futile. The same goes for the EWL quantization protocol.

In summary, non-cooperative quantum games do not constitute a new form of game theory. Rather,
they are either applications of non-cooperative game theory to quantum information processing, or, they are
attempt to solve classical games via a quantum physical implementation. Also, while a quantum game is
a different mathematical structure than the classical game on which it may be based, the analogy between
the two can be useful in that it may inform and inspire potential applications of the quantum version of
the game.And while the popular EWL game quantization protocol offers limited insights into the quantum
physical implementation of games, it is just one of many possible quantization protocols. Consequences of
other quantum computational implementations of games used in economics, evolutionary biology, and any
other subject where game theory is applicable, appear to be largely unexplored.

4.1 Quantum games: cooperative versus non-cooperative

In the almost two decades since the inception of the theory of quantum games, the EWL quantization proto-
col has taken on the role of a working definition for non-cooperative quantum games for physicists. Several
notable results on the quantum physical implementation of games followed Eiset et al.’s work, such as
[29, 30, 31, 32, 33, 34, 35, 36, 37, 38]. This may seem odd as one would think that the physics community
would be more interested in the equilibrium or optimal behavior of quantum systems than the quantum phys-
ical implementation of games. On the other hand, this scenario makes perfect sense from a practical point
of view because with the advent of technological realizations of quantum computers and quantum commu-
nication systems, the playability of games quantum computationally would be of fundamental importance
for financial and economic decision making.

Research activity in Meyer’s approach to quantum games, which may be referred to as (non-cooperatveily)
gaming the quantum [39] versus the EWL quantization of games (we note that it may be possible that re-
sults motivated by quantizing games also make sense in the context of gaming the quantum, as in when
the source and target categories are equivalent), has had a comparatively less eventful development. Some
recent efforts by one of the authors of the current work to game quantum computations as non-cooperative
games at Nash equilibrium appear in [39, 23], and are reminiscent of work in concurrent reachability games
[40, 41] and control theory in general. However, the approach of Meyer to search for quantum advantage as
an equilibrium in a quantum games remains largely unexplored. The main reason for this is most likely the
hitherto absence of an equilibrium guarantee in pure quantum games.

There is however, a considerable body of work in which the authors claim to cooperatively game the
quantum. Several authors in the early 2000’s, such as [42, 43, 44, 45, 46, 47], gamed quantum commu-
nication protocols or studied complexity classes for quantum processes by considering the protocols as
cooperative games of incomplete information. While most authors of such work have mainly focused on
identifying quantum advantages similar to the one Meyer identified in his paper, the source of motivation for
their work is different. For example, in [42], the authors state: “Formally, a quantum coin flipping protocol
with bias ε is a two-party communication game in the style of [15]...” where the citation provided is to Chi-
Chi Yao’s paper titled Quantum circuit complexity [48]. Despite the fact that cooperative game theory is the
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motivation for the latter and other similar work, a formal discussion of cooperative games together with a
formal mapping of the relevant physics to the requisite cooperative game is almost always missing. In fact,
it would be accurate to say the the word “game” is thrown around in this body of literature as frivolously as
the headless carcass of a goat is thrown around in the Afghan game of Buzkashi; but the beef is nowhere to
be found. This is not surprising since beef comes from cows! The point of this somewhat macabre analogy
is that one should be just as disturbed when hearing the word “game” used for an object that isn’t one, as
one surely is when hearing the word “beef” used for a goat carcass.

Cooperative games are sophisticated conceptual and mathematical constructs. Quoting Aumann [49]
(the quote is taken from [50])

Cooperative (game) theory starts with a formalization of games that abstracts away altogether
from procedures and . . . concentrates, instead, on the possibilities for agreement . . . There are
several reasons that explain why cooperative games came to be treated separately. One is that
when one does build negotiation and enforcement procedures explicitly into the model, then the
results of a non-cooperative analysis depend very strongly on the precise form of the procedures,
on the order of making offers and counter-offers and so on. This may be appropriate in voting
situations in which precise rules of parliamentary order prevail, where a good strategist can
indeed carry the day. But problems of negotiation are usually more amorphous; it is difficult to
pin down just what the procedures are. More fundamentally, there is a feeling that procedures
are not really all that relevant; that it is the possibilities for coalition forming, promising and
threatening that are decisive, rather than whose turn it is to speak. . . . Detail distracts attention
from essentials. Some things are seen better from a distance; the Roman camps around Metzada
are indiscernible when one is in them, but easily visible from the top of the mountain.

More formally, a cooperative game allows players to benefit by forming coalitions, and binding agree-
ments are possible. This means that a formal definition of a cooperative game is different than that of a
non-cooperative one, and instead of Nash equilibrium, cooperative games entertain solution concepts such
as a coalition structure consisting of various coalitions of players, together with a payoff vector for the
various coalitions. Optimality features of the solution concepts are different than those in non-cooperative
games as well. For instance, there is the notion of an imputation which is a coalition structure in which every
player in a coalition prefers to stay in the coalition over “going at it alone”. While aspects of cooperative
games are certainly reminiscent of those of non-cooperative games, the two types of games are very different
objects in very different categories. Because the body of literature that purports to utilize cooperative games
to identify some form of efficient or optimal solutions in quantum information processes does so via unclear,
indirect, and informal analogies, one could argue that it remains unclear as to what the merit, game-theoretic
or quantum physical, of such work is. What is needed in this context is a formal study of quantum games
rooted in the formalism of cooperative game theory.

Another interesting situation can be observed during the early years of quantum game theory (2002 to
be exact) when Piotrowski [51] proposed a quantum physical model for markets and economics which are
viewed as games. His ideas appear to be inspired by Meyer’s work. In fact, Eisert et al.’s paper does not
even appear as a reference in this paper. In a later paper [52] however, Piotrowski states “We are interested
in quantum description of a game which consists of buying or selling of market good” (the emphasis is
our addition). Note that from the terminology used in both of Piotrowski’s papers, it seems that the author
wants to implement games quantum physically, even though his initial motivation comes from gaming the
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quantum! This goes to show that in the early years of quantum game theory, the motivation for merging
aspects of quantum physics and game theory was certainly not clear cut.

Finally, there are offenders in the quantum physics community who use the word “game” vacuously, that
is, they use it in no game-theoretically meaningful way. An example can be found in [53]. Such vacuous
usage of the word “game” can only be to the detriment of serious studies in quantized games and gaming
the quantum, cooperative or not, and should be strongly discouraged.

Literature on quantum games is considerable. A good source of reference is the Google Scholar page
on the subject [54] which contains a wealth of information on past and recent publications in the area. The
survey paper by Guo et al. [55] is an excellent precursor to our efforts here.

4.2 Quantum entanglement: Nash versus social equilibrium

Entanglement in a quantum physical system implies non-classical correlations between the observable of
the system. While Eisert et al. showed that their quantum computational implementation of Prisoner’s
Dilemma produced non-classical correlations and resolved the dilemma (Nash equilibrium is also optimal),
in [56], Shimumura et al. establish a stronger result that entanglement enabled correlations always resolve
dilemmas in non-zero sum games, and that classical correlations do not necessarily do the same. Quantum
entanglement is clearly a resource for quantum games.

In this section, we offer here a new perspective on the role of quantum entanglement in quantum games.
We consider quantum entanglement in the context of Debreu’s [57] “social equilibrium”. Whereas Nash
equilibrium is the solution of a non-cooperative game in which each player’s strategy set is independent
of all other players’ strategy sets, social equilibrium occurs in a generalization (not extension) of non-
cooperative games where the players’ strategy sets are not independent of each other. These generalized
games are also are known as abstract economies. Take for instance the example of a supermarket shopper
(this example is paraphrased from [58]) interested in buying the basket of goods that is best for her family.
While in theory she can choose any basket she pleases, realistically, she must stay within her budget which
is not independent of the actions of other players in the economy. For instance, her budget will depend on
what her employer pays her in wages. Furthermore, given her budget, which baskets are affordable will
depend on the price of the various commodities, which, in turn, are determined by supply and demand in
the economy.

In an abstract economy, a player is restricted to playing strategies from a subset of his strategy set,
with this limitation being a function of the strategy choices of all other players. More formally, in an
abstract economy with n players, let Si be the ith player’s strategy set and let s−i represent the (n − 1)-
tuple of strategy choices of the other (n − 1) players. Then player i is restricted to play feasible strategies
only from some γi(s−i) ⊆ Si where γi is the “restriction” function. In social equilibrium, each player
employs a feasible strategy, and no player can gain by unilaterally deviating to some other feasible strategy.
Debreu gives a guarantee of the existence of a social equilibrium in [57] using an argument that also utilizes
Kakutani’s fixed point theorem.

Recall that the EWL quantization of Prisoner’s Dilemma utilizes maximally entangled qubits. Rather
than as a quantum mechanism for mediated communication, we interpret the entanglement between qubits
as a restriction function, restricting the players’ strategy sets to feasible strategy subsets which Eisert et
al. call the two-parameter strategy sets. It is exactly in this restricted strategy set that the existence of a
dilemma-breaking, optimal Nash equilibrium is established.

The point of note here is that the resource that quantum entanglement affords the players in the EWL
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quantization (and possibly others) can be interpreted in two different ways: one, as an extension to mediated
quantum communication that produces a near-optimal Nash equilibrium in the quantum game, and the other
as a generalization of Prisoner’s Dilemma to a quantum abstract economy with social equilibrium. In the
former interpretation, Nash equilibrium is realized in mixed quantum strategies; in the latter interpretation,
social equilibrium is realized via pure quantum strategies. Whereas the Nash equilibrium is guaranteed by
Glicksberg’s fixed point theorem, the question of a guarantee of social equilibrium in pure strategy quantum
games is raised here for the first time. We conjecture that the answer would be in the affirmative, and that it
will most likely be found using Nash embedding of CPn into Rm similar to the one appearing in [24].

Finally, the interpretation of quantum entanglement as a restriction function also addresses van Enck et
al’s criticism of the EWL quantization as blurring the distinction between cooperative and non-cooperative
games.

5 Bell’s inequalities and quantum games

The interpretation of the role of entanglement in quantum games has been long debated. The interpretation
usually given is that the entanglement between players acts as a type of mediated communication, advice, or
contract between the players. The objection goes further under the notion that many quantum games have
been formulated with more strategy choices than in the classical version. It is possible to simply reformulate
a classical game to incorporate more strategy choices so that the classical game has the same equilibria as the
quantum counterpart, as was shown with the quantum Prisoner’s Dilemma [25]. However, as is discussed
below, this is not always the case. The study of Bayesian quantum games addresses these objections and
has elucidated the role of entanglement in quantum games as well as the possible advantages of a quantum
game by relating them to Bell’s inequalities.

The connection between Bell’s inequalities and Bayesian quantum games was first recognized in the
similarities between the form of a Bell’s inequality and the payoff function of a Bayesian quantum game.
It was found that by casting a quantum Bayesian game in a certain way, the payoff function can resemble a
form of a Bell’s inequality so that in the presence of quantum correlations, i.e. entanglement, the inequality
will be broken and the quantum game will have a higher payoff than the classical version. In the analogy,
a direct parallel can be drawn between the measurements and measurement outcomes in a Bell’s inequality
experiment to the player types and player actions in a Bayesian quantum game [59].

In Bayesian games, the players have incomplete information about the payoff matrix of the game. This
can be formulated by assigning the players different types characterized by different payoff matrices. When
making their strategy choice, the players know their own type, but not that of their opponent [60]. This
is also noted that this is related to the conditions in non-local games [43], the condition that the players
cannot communicate during a game, and the concept of the no-signaling in physics. A correspondence can
be drawn between the condition of locality, used in deriving a Bell’s inequality, and the condition that the
players do not know the type of the other player. This condition can be described mathematically for a two
player, two strategy game for example, by labeling the player types as X,Y and the strategy choices as x, y
with the following equation[61]:

P (x, y|X,Y ) = P (x|X)P (y|Y ) (14)

That is, the probability of the joint actions x, y given that the player types are X and Y is equal to
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the probability that a player of type X plays x multiplied by the probability that a player of type Y plays
y. The factorizability of the joint probability distribution is a statement that the players action cannot be
influenced by the type of their opponent. It has been noted previously by Fine [62] that a sufficient condition
for the breaking of a Bell’s inequality is that the joint probability distribution is non-factorizable. For
example, if there are two players (X and Y), with two possible strategy choices (x and y), the joint probability
distribution of a mixed-strategy where both players choose each strategy with a 50% probability is given by:

X|Y (x) (y)

(x) 0.25 0.25
(y) 0.25 0.25

If, however, the players can base their strategy choice on the measurement of some quantum state, such
as the entangled state 1√

2
(|xy〉+ |yx〉), it is possible to realize the probability distribution:

X|Y (x) (y)

(x) 0 0.5
(y) 0.5 0

This probability distribution, when analyzed for an individual player still has a 50% probability of either
strategy. The difference is that the strategy choices of X and Y are perfectly correlated. This probability
distribution is not possible with classical mixed strategies without some form of communication between
the players or advice.

Thus it is possible to formulate a Bell’s inequality from a given Bayesian quantum game and vice
versa[63, 64]. The objection that the strategy choices available to a quantum player are greater than that of
the classical player was addressed by Iqbal and Abbott [65]. They formulated a quantum Bayesian game
using probability distributions rather than on state manipulations. The condition of factorizability of these
probability distributions produces constraints on the joint probability distributions of the players, which can
in turn be formulated as Bell’s inequalities. The advantage in this case is that the strategies available to the
classical players are identical to those of the quantum players. The difference is that in the classical case, the
players are given an entangled input, while in the classical case they are given a product state. Within this
formalism the solution to the Prisoner’s Dilemma is identical in the quantum and classical case, whereas in
other games, the violation of Bell’s inequality can lead to a quantum advantage, as in the matching pennies
game.

This analysis can be taken further to incorporate the player’s receiving advice in a classical game. In
a classical non-local game, the players are allowed to formulate strategies before the game and may be the
recipients of some form of common advice, but the advice cannot depend on the state of nature. This has
led to the refinement of Nash equilibrium in classical games known as a correlated equilibrium [26]. As we
also noted in section ??, correlated equilibrium allows for the possible realization of more general proba-
bility distributions over the outcomes that may not be compatible with the player’s mixed strategies. More
precisely, a mixed strategy Nash equilibrium is a correlated equilibrium where the probability distribution
is a product of two mixed-strategies. In quantum games, these non-factorizable probability distributions are
provided by entanglement or mediated quantum communication.
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Brunner and Linden[59] incorporated the correlations that can be produced from classical advice into
their analysis of quantum games. In this case, the joint probability distribution can be described by:

P (x, y|X,Y ) =

∫
dλρ(λ)P (x|X,λ)P (y|Y, λ) (15)

Where the variable λ represents the advice, or information distributed ot the players according to the
prior ρ(λ). This type of probability model accurately describes the behavior of players under shared classical
advice. This condition is precisely the condition that is used to derive a Bell’s inequality, and the history
of violation of Bell’s inequalities shows that quantum correlations arising from entanglement can break
the inequalities derived from equation 15. Thus, entanglement produces joint probability distributions of
outcomes that are not possible classically, not just because they are non-factorizable, but also because they
cannot have arisen from a classical source of advice, or in traditional quantum mechanical terminology, a
hidden variable. If these joint probability distributions are realized in a Bayesian game with payoffs assigned
appropriately, the players with access to quantum resources can play with probability distributions that are
more favorable than what is possible classically.

Thus it has been shown that the probability distributions of outcomes are more fundamental than the
presence of entanglement within a game. Indeed these considerations shed light on other types of correla-
tions that can exist, both within quantum mechanics and beyond quantum mechanics. For example, there
are quantum states that exhibit quantum correlations even when the entanglement is known to be zero.
These correlations are known as quantum discord, and it is possible to formulate games that have an ad-
vantage under quantum discord [66]. Further, there are types of correlations known to be consistent with
the no-signaling condition that are not even possible with quantum mechanics, known as super-quantum
correlations Popescu and Rohrlich [67]. Games formulated with these correlations can outperform even the
quantum versions[59].

The analysis of Bayesian quantum games has thus addressed several of the objections to the importance
of quantum games. The correlations that exist, or the joint probability distributions, of mixed strategies are
shown to be more powerful in analyzing the advantage of a quantum game than just the presence of entan-
glement. The connections between Bayesian quantum games and Bell’s inequalities will likely continue to
give insight to and play a role in analyzing either different games that are formulated, or forms of Bell’s
inequalities that are derived [68].

6 Stochastic games

Stochastic games extend strategic games to dynamical situations where the actions of the players and his-
tory of states affect the evolution of the game. In this section let us review a subset of classical multi-stage
stochastic games that are Markovian in evolution. The hope is that it will generate interest in quantizing
such multi-stage games leveraging the advances in quantum stochastic calculus [69] and quantum stochas-
tics [70]. There is very little work done on quantum Markov decision processes (qMDP) [71] which are
specialized quantum games and so there are lot of opportunities to explore in this class of quantum stochas-
tic games. We start our discussions with stochastic games, specialize them to Markov decision processes
(MDP), review the literature on quantized MDPs that involve partial observations, introduce quantum prob-
ability and quantum Markov semigroups, and finally outline one possible way to quantize stochastic games.
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A classical stochastic game a la Shapely [72] is a tuple (χ,Ai(x), Qi(x, a),P(x|x, a), λ, x0), where
χ is the finite state space, Ai is the finite action space for individual players, Qi is the ith player’s payoff
function, P is the transition probability function which can be thought of as a random variable because it
is a conditional probability and would become a completely positive map in the quantum case, 0 ≤ λ ≤ 1
is the discount factor that is player i’s valuation of the game diminishes with time depending on this factor,
and x0 is the initial state of the game. The discount factor is introduced in infinite horizon games so as to
have finite values and another way to understand it is to relate λ to the player’s patience. How much more
does the player value a dollar today than a dollar received in the future which can be quantified by the factor,
so as her discount factor increases she values the later amount more and more nearly as much as the earlier
payment. A person is more patient the less she minds waiting for something valuable rather than receiving
it immediately. In this interpretation higher discount factor implies higher levels of patience. There is yet
another reason to discount the future in multi-stage games. The players may not be sure about how long
the game will continue. Even in the absence of time preference per se, a player would prefer a dollar today
rather than a promise of one tomorrow because of the uncertainty of the future. Put another way, a payoff at
a future time is really a conditional payoff conditional on the game lasting that long.

The formulation of Shapely has been extended in different directions such as non-zero sum games, states
that are infinite (countable as well as uncountable), and the existence of Nash equilibria established under
some restricted conditions. For a recent perspective on dynamical games we refer the reader to Ref[73].

The dynamic game [74] starts at x0 and all the players simultaneously choose apply a strategy si that
is an action from Ai depending upon the history of states. The payoffs and the next state of the game are
determined by the functions Q and P . The expected payoff for player i is given by

Πi

(
s1, s2, . . . , sn;x0

)
= E

[
λt
∞∑
t=0

Qi
(
s1(xt), s2(xt), . . . , sn(xt);xt

)]
. (16)

Definition 1. A strategy is called a Markov strategy if si is a strategy that depends only on the state and we
will let si(x) denote the action that player i would choose in state x.

A Markov perfect equilibrium (MPE) is an equilibrium on the dynamic game where each player selects
a strategy that depend only upon the current state of the game. MPEs are a subset of Nash equilibria for
stochastic game. Let us start with the observation that if all players other than i are playing Markov strategies
s−i, then player i has a best response that is a Markov strategy. This is easy to see as if there exists a best
response where player i plays ai after a history h leading to state x, and plays a‘i after another history h‘
that also leads to state x, then both ai and a‘i must yield the same expected payoff to player i. Let us define
a quantity Vi(x; s−i) for each state x that is the highest possible payoff player i can achieve starting from
state x, given that all other players play the Markov strategies s−i. A Markov best response is given by:

Vi(x; s−i) = max
ai∈Ai(x)

E

Qi(ai, s−i(x);x) + λ

∞∑
x‘∈χ

P(x‘|ai, s−i(x), x)Vi(x‘; s−i)

 . (17)

Existence of MPE for finite games When the state space, number of players, and actions space are all
finite a stochastic game will have a MPE. To see this, let us construct a new game with N*S players where N
and S are the number of players and the states respectively of the original game. Then the payoff and action
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for player (i,x) are given by,

a(i, x) = ai(x), i ∈ N, x ∈ χ. (18)

Ri,x = E

[
λt
∞∑
t=0

Qi
(
a(1, xt), a(2, xt), . . . , a(n, xt);xt

)
|x0 = x

]
. (19)

This is a finite stochastic game that is guaranteed to have a Nash equilibrium. It is also a MPE as each
player’s strategy depends only on the current state. By construction, the strategy of player i maximizes his
payoff among all Markov strategies given s−i. As shown above each player i has a best response that is a
Markov strategy when all opponents play Markov strategies.

Definition 2. Two player zero sum stochastic game: A two player zero sum game is defined by an m × n
matrix P, where the Pij corresponds to the payoff for player 1 when the two players apply strategies i ∈
A1, i = 1, . . .m and j ∈ A2, j = 1, . . . n respectively and correspondingly the payoff for the second player
is −Pij .

When the players use mixed strategies ∆(S1) and ∆(S2) respectively, the game being finite is guaran-
teed to have a Nash equilibrium as follows:

V (P ) = maxs1∈∆(S1)mins2∈∆(S2)s
>
1 Ps2 = mins2∈∆(S2)maxs2∈∆(S1)s

>
1 Ps2. (20)

The above mini-max theorem can be extended to stochastic games as shown by Shapley [72].

Lemma 3. Let A and B be two m× n matrices then |val(B)− val(C)| ≤ maxij |Bij − Cij | .

Let (s1, s2) and (ŝ1, ŝ2) be the NE for games B and C respectively. Then, it follows from the properties
of NE that

s>1 Bs2 ≤ s1
>Bŝ2.and (21)

s>1 Cŝ2 ≤ ŝ1
>Cŝ2. (22)

s>1 Bs2 + s>1 Cŝ2 ≤ s1
>Bŝ2+ ≤ ŝ1

>Cŝ2. (23)

s>1 Bs2 − ŝ1
>Cŝ2 ≤ s1

>Bŝ2 − s>1 Cŝ2. (24)

≤ max
ij
|Bij − Cij |. (25)

By a symmetric argument reversing B and C we establish the lemma. Let us now consider the stochastic
version of this game played in k stages. The value of the game is defined via a function αk : χ → R and
operator T which is a contraction as

Rx(α)(a1, a2) = Q(a1, a2;x) + λ
∑
x‘∈χ

P(x‘|a1, a2, x)αk, a1 ∈ A1(x), a2 ∈ A2(x). (26)

αk(x) = val(Rx(αk−1). (27)

(Tα)(x) = val(Rx(α)). (28)
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To see that the operator T is a contraction with respect to the supremum norm and thus the game has a fixed
point with any initial condition let us consider

‖Tα− Tα‘‖∞ = max
x∈χ
|val(Rx(α)− val(Rx(α‘))| (29)

≤ λmax
x∈χ

max
a1∈A1(x),x2∈A2(x)

|
∑
x‘∈χ

P(x‘|a1, a2, x)(α(x‘)− α‘(x‘)) (30)

≤ λmax
x‘∈χ
|α(x‘)− α‘(x‘)| (31)

= λ‖α− α‘‖∞ (32)

Theorem 4. Given a two-player zero-sum stochastic game, define α∗ as the unique solution to α∗ = Tα∗.
A pair of strategies (s1, s2) is a subgame perfect equilibrium if and only if after any history leading to the
state x, the expected discounted payoff to player 1 is exactly α∗(x).

Proof. . Let us suppose the game starts in state x and player 1 plays an optimal strategy for k stages with
terminal payoffs α0(x‘) = 0, ∀x‘ ∈ χ and plays any strategy afterwards. This will guarantee him this payoff

val = αk(x)− λk

1− λ
M. (33)

M = maxx‘∈χmaxa1∈A1(x‘),a2∈A2(x‘)|Q(a1, a2;x)|. (34)

This follows from the observation that after k stages the payoff for first player is negative of maximum
possible for second player. When k →∞ the value becomes α∗ and by symmetrical argument for layer two
the theorem is established.

Proposition 5. Let s1(x), s2(x) be optimal (possibly mixed) strategies for players 1 and 2 in zero- sum game
defined by the matrix Rx(α∗). Then s1, s2 are optimal strategies in the stochastic game for both players; in
particular, (s1, s2) is an MPE.

Proof. . Let us fix a strategy that could possibly be history dependent ŝ2 for player 2. Then, we first consider
a k stage game, where terminal payoffs are given by α∗. In this game, it follows that player 1 can guarantee
a payoff of at least α∗(x) by playing the strategy s1 given in the proposition, irrespective of the strategy of
player 2. Thus we have:

E

[
k−1∑
t=

λtQ(s1(xt), ŝ2(xt) + λkα∗(xk)|x0 = x

]
≥ α∗(x). (35)

From this we get

E

[
k−1∑
t=

λtQ(s1(xt), ŝ2(xt)|x0 = x

]
≥ α∗(x)− λk‖α∗‖∞. (36)

we finally get an expression that in the limit k →∞ goes to α∗ and by symmetric argument for the second
player we establish the result.

Π(s1, ŝ2;x) ≥ α∗(x)− λk‖α∗‖∞ −
λk

1− λ
M. (37)
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The method described above is the backward induction algorithm to solve the Bellman equation (16)
and is applicable for games with perfect state observation. For games with asymmetric information, that
is, when players make independent noisy observations of the state and do not share all their information,
we refer the reader to reference [75] and the references mentioned therein. Our interest here is confined to
games with symmetric information from the quantization point of view as they would be a good starting
point.

Now, let us consider a special class of stochastic games called Markov decision processes (MDP) where
only one player called MAX plays the game against nature, that introduces randomness, with a goal of
maximizing a payoff function. It is easy to see that MDP generalizes to a stochastic game with two players
MAX and MIN with a zero sum objective. Clearly, we can have results similar to stochastic games in the
case of finitely many states and action space MDP with discounted payoff and infinite horizon.

Proposition 6. (Blackwell 1962[76]) For every MDP (χ,A(x), Q(x, a),P(x|x, a), λ, z) with finitely many
states and actions and every discount factor λ < 1 there is a pure stationary strategy σ such that for every
initial state z and every strategy τ we have

v(xz, λ, σ) ≥ v(z, λ, τ). (38)

Moreover, the stationary strategy σ obeys, for every state z,

v(x0, λ) = (1− λ)r(x0, σ(z)) + λ
∑
z‘∈χ

P(z‘|z, σ(z))v(z‘, λ).

= maxa∈A(z)

(1− λ)r(z, a) + λ
∑
z‘∈χ

P(z‘|z, σ(z))v(z‘, λ)

 .

7 Quantum probability

Let us now review the basic concepts in quantum probability and quantum Markov semigroups that would
be required to define quantum stochastic games. The central ideas of classical probability consist of random
variables and measures that have quantum analogues in self adjoint operators and trace mappings. To get a
feel for the theory, let us consider the most familiar example [77] of random variables, namely the coin toss.

Definition 7. Pauli operators.

σx =

(
0 1
1 0

)

σy =

(
0 −i
i 0

)

σz =

(
1 0
0 −1

)
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0 1 2 3 m

Figure 2: Coin-toss represented as a random walk on a graph with two nodes relating the random variable
to the adjacency matrix of the graph.

Example 8. The probability measure of a random variable (r.v.) taking values +1 and -1 is defined by
µ=(1/2)(δ−1 + δ+1). The moment generating function of this r.v. is given by

Mm(µ) =

∫ +∞

−∞
xmµ(dx) = 1, if m is even

= 0. otherwise (39)

Let us now consider the self adjoint operator A =

(
0 1
1 0

)
and the canonical basis of C2, e0 =(

1
0

)
, e1 =

(
0
1

)
. It is easy to show the following

〈e0, A
me0〉 = 1, if m is even

= 0. otherwise (40)

From the equations (39) and (40), it is clear that the self adjoint Pauli operator σx is stochastically equiva-
lent to the Bernoulli random variable. This moment generating sequence can be visualized as a walk on a
graph as follows:

A = A++A−=

(
0 1
0 0

)
+

(
0 0
1 0

)
. (41)

Using this we can rewrite (40) as

〈e0, A
me0〉 = 〈e0, (A

++A−)me0〉 =
∑

ε1,...,εm∈{±}

〈e0, A
εm . . . Aε1me0〉. (42)

Definition 9. A finite dimensional quantum probability (QP) space is a tuple (H ,A,P) where H is a finite
dimensional Hilbert space, A is a *-algebra of operators, and P is a trace class operator, specifically a
density matrix, denoting the quantum state.

As we have alluded earlier, random variables in a CP are stochastically equivalent to observables in a
Hilbert space H . These are self-adjoint operators with a spectral resolution X = ΣixiEi

x where the xi’s
are the eigenvalues of X and each EXi is interpreted as the event X taking the value xi. States are positive
operators with unit trace and denoted by P. In this framework, the expectation of an observableX in the state
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P is defined using the trace as trP(X). The observables when measured are equivalent to random variables
on a probability space, and a collection of such classical spaces constitute a quantum probability space. If all
the observables of interest commute with each other then the classical spaces can be composed to a product
probability space, and the equivalence CP = QP holds. The main feature of a QP is the admission of possibly
non-commuting projections and observables of the underlying Hilbert space within the same setting.

Definition 10. Canonical observables: Starting from a σ-finite measure space we can construct observables
on a Hilbert space that are called canonical, as every observable can be shown to be unitarily equivalent to
the direct sum of them [69]. Let (Ω,Γ, µ), be a σ-finite measure space with a countably additive σ−algebra.
We can construct the complex Hilbert space as a space of all square integrable functions w.r.t µ and denote
it as L2(µ). Then, the observable ξµ : Γ→ P(H ) can be set up as (ξµ(E)f)(ω) = IE(ω)f [ω], f ∈ L2(µ)
where I is the indicator function.

Example 11. Let H =C 2 and A = M2 the *-algebra of complex matrices of dimension 2 × 2 and the
state P(A) = 〈ψ,Aψ〉 = 〈A†ψ,ψ〉 where ψ is any unit vector. This space models quantum spin systems in
physics and qubits in quantum information processing. This example can be generalized to an n-dimensional
space to build quantum probability spaces.

Definition 12. Two quantum mechanical observables are said to be compatible, that is they can be measured
simultaneously, if the operators representing them can be diagonalized concurrently. The two operators that
share a common eigenvector will be characterized as co-measurable.

There is a canonical way to create quantum probability spaces from their classical counterparts. The
process involves creating a Hilbert space from the square integrable functions with respect to the classical
probability measure. The *-algebra of interest is usually defined in terms of creation, conservation, and
annihilation operators. Classical probability measures become quantum states in a natural way through
Gleason’s theorem [78]. In this case, unitary operators are identified in the algebra to describe quantum
evolutions. A sequence of operators forming a quantum stochastic process can be defined similarly to
stochastic processes in a classical probability space.

Conditional expectation in a quantum context is not always defined and here we give a version that will
be adequate for our purposes and is consistent with its classical counterpart in being a projection and enjoys
properties such as tower. Followed by that we will define quantum Markov semigroups (QMS), as a one
parameter family of completely positive maps, required for defining the quantum stochastic games.

Definition 13. A linear map T : B(H2) → B(H1) of bounded linear operators between Hilbert spaces
H2 and H1 is called positive if

1. T I = I.
2. TX ≥ 0 whenever X ≥ 0.

3. T (X∗) = X∗.

4. ‖T (X)‖ ≤ ‖X‖.
5. w.limn→∞T (Xn) = T (X) whenever w.limn→∞Xn = X.

If Tn, ∀n is positive then it is called a completely positive mapping.
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Definition 14. A completely positive linear map from a *-algebra A to a von Neumann algebra B is said
to be a version of quantum conditional expectation with respect to a state ρ if it satisfies the following
conditions:

Eρ[I|B] = I.
Eρ[X∗X|B] ≥ 0,∀X ∈ A .

Eρ[X∗|B] = Eρ[X|B]∗,∀X ∈ A .

Eρ[XY Z|B] = XEρ[Y |B]Z, ∀X,Y ∈ A and X,Y ∈ B.

Eρ[Eρ[X|B]] = Eρ[X|B], ∀X ∈ A .

Definition 15. A quantum Markov semigroup in a Hilbert space H is a one parameter family {Tt|t ≥ 0}
of operators, that is members of bounded linear operators B(H ), satisfying the following conditions:

1. T0(X) = X,∀X ∈ B(H ), TtTs = Tt+s for all s,t ≥ 0.

2. limt→0‖Tt(X)−X‖ = 0,∀X ∈ B(H ).

3. Tt(I) = I, ‖Tt(X)‖ ≤ ‖X‖,
w.limn→∞Tt(Xn) = Tt(X) whenever w.limn→∞Xn = X.

4. for any Xi, Yi ∈ B(H ), 1 ≤ i ≤ n, n = 1, 2, · · ·
∑
i,j

Y ∗i Tt(X
∗
iXj)Yj ≥ 0.

Now, we have all the ingredients to define a multi stage qMDPs and quantum stochastic games. There
could potentially be several ways to quantize a stochastic game and here we attempt at a straightforward
generalization of the probability transition mapping to a QMS. We also introduce partial observation at ev-
ery stage to evaluate the payoff. In this context it is interesting to note the ways in which random walks
and classical filters are quantized. The quantum version of the former is without observations as that would
reduce it to a classical walk and the later involves observing, more precisely non demolition measurements,
compatible Hermitian operators to facilitate conditional expectations [79]. Measurements may make quan-
tum stochastic games behave similar to their classical counter part and coherent evolution of such games
may result in interesting dynamics, for example, they may follow geodesics on the Bloch sphere not pos-
sible with measurement based controls [80], and possibly with quantum advantage that require in depth
investigations.

In this work we consider games with long but finite horizon, that is the number of stages are finite and
the payoffs are calculated at the last stage, and correspondingly the quantum measurements are made at the
very end.

8 Quantum Markov decision processes

A quantum Markov Decision Processes (qMDP) is a tuple (χ = C 2⊗n, A(x), Q(x, a),T (x|x̂, a),
λ, ρ0). Here, χ is the finite 2n dimensional complex Hilbert space, A is the finite action space for the single
player (unitary operators of the Hilbert space C n such as the Pauli operators), Q is the player’s payoff
function based on partial observation of the state, T is a completely positive mapping that would induce a
quantum Markov semigroup when it is time dependent, 0 ≤ λ ≤ 1 is the discount factor, and ρ0 is the initial
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quantum state of the game. In terms of quantum information theory the state of the game can be represented
by n qubits and each player applies an unitary operator, a fixed finite set, on a qubit as a strategy.

Instead of partially observed state based payoff, a continuous non-demolition measurement based ap-
proach can be formulated. In [79] Boutan et al., derived Bellman equations for optimal feedback control of
qubit states using ideas from quantum filtering theory. The qubit is coupled to an environment, for exam-
ple the second quantized electromagnetic radiation, and by continually measuring the field quadratures the
state of the qubit (non-demolition measurements) can be estimated. The essential step involves deriving a
quantum filtering equation rigorously based on quantum stochastic calculus [69] to estimate the state of the
system coupled to the environment. By basing the payoff on this estimate the qMDP process can evolve co-
herently until a desired time. Such an approach can be extended to the quantum stochastic games described
next. In addition, coherent evolutions may have advantages over measurement based dynamics [80].

9 Quantum stochastic games

A quantum stochastic game is a tuple (χ = C 2⊗n, Ai(x), Qi(x, a),T (x|x, a), λ, ρ0). Here, χ is the finite
2n dimensional complex Hilbert space, Ai is the finite action space for individual players (unitary operators
of the Hilbert space C n such as the Pauli operators),Qi is the ith player’s payoff function, T is a completely
positive mapping that would induce a quantum Markov semigroup when it is time dependent, 0 ≤ λ ≤ 1 is
the discount factor, and ρ0 is the initial quantum state of the game.

The quantum version of the dynamic game starts at ρ0 which could be an entangled or a product state and
all the players simultaneously choose to apply a strategy si, that is an action from Ai ∈ SU(2), depending
upon the history of states producing a quantum Markov semigroup. At each stage based on the strategies
applied and the current state of the game, either by partial observation or via non demolition measurements
on a common bath shared by the players, a referee moves it to the next step in a coherent fashion. The
payoffs and the next state of the game are determined by the functions Q and T . The expected payoff for
player i given by

Πi (s1, s2, . . . , sn; ρ0) = E

[
λt
∞∑
t=0

Qi
(
s1(xt), s2(xt), . . . , sn(xt);xt

)]
. (43)

A quantum Markov perfect equilibrium (QMPE) is an equilibrium on the dynamic game where each
player selects a strategy that depends only upon the current state of the game. QMPEs are again a subset of
Nash equilibria for a quantum stochastic game. Let us reason as in the classical case that when all players
other than player i are playing Markov strategies s−i, then player i has a best response that is a Markov
strategy. This follows as if there exists a best response where player i plays ai after a history h leading
to state x, and plays a‘i after another history h‘ that also leads to state x, then both ai and a‘i must yield
the same expected payoff to player i. Let us define a quantity Vi(x; s−i) for each state x that is the highest
possible payoff player i can achieve starting from state x, given that all other players play the Markov
strategies s−i. A Markov best response is given by:

Vi(x; s−i) = max
ai∈Ai(x)

E

Qi(ai, s−i(x);x) + λ

∞∑
x‘∈χ

P(x‘|ai, s−i(x), x)Vi(x‘; s−i)

 . (44)
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It is a straightforward procedure to start with a classical stochastic game first by constructing the canonical
Hilbert space [70] with the probability measure µ and then generate the QMS as:

Ttf(x) =

∫
x
f(y)Qt(x, dy) =

∫
x
qt(x, y)f(y)µ(dy). (45)

With this set up we can leverage the mathematical machinery of QMS to investigate quantum stochastic
games framed with different entanglement configurations, cost functions, etc,. Then, one can explore the
condition under which Nash and Markov perfect equilibrium are possible for the quantum stochastic games.

10 Experimental realizations

The implementation of quantum games on hardware can be viewed as a small quantum computation, in that
sense, the requirements for a good platform on which to perform a quantum game are the same as that for a
quantum computer[81]. The quantum computer may not need to be a universal computer but requires both
single and two-qubit gates. Quantum computers with the capabilities required for quantum games are just
beginning to come online (see for example www.research.ibm.com/ibm-q), and full quantum networks are in
their infancy[82], thus, many of the experimental demonstrations to date, have been performed on hardware
that arenot ideal from the point of view of the criterion above. Though notably, unlike many interesting
quantum computing algorithms, quantum games are typically performed with very few qubits, making them
an attractive application for early demonstrations on emerging quantum hardware.

The potential applications and uses of quantum games suggest that certain characteristics are desirable
for their implementation. First, by definition, quantum games contain several independent agents. For
realistic applications this likely requires that the agents be remotely located. This requires not only a small
quantum computation, but also some form of network. The network would need to be able to transmit
quantum resources, for example, produce entangled pairs that are shared at two remote locations which is
typically done with photons.

Second, a quantum game needs to have input from some independent agent, either a human or computer.
This may require some wait time for the interaction with a classical system to occur, perhaps while the agent
makes their decision. This implies that another desirable characteristic for quantum hardware is to have a
quantum memory, that is, the ability to store the quantum information for some variable amount of time
during the computation. Typically, the capabilities of a quantum information processor are quantified by
the ratio of the coherence time to the time it takes to perform gates. Whereas in quantum games, the actual
coherence time of the qubits may be a necessary metric in itself.

One may wonder what it even means to perform an experimental demonstration of a quantum game.
No experiment has ever had actual independent agents (i.e. humans or computers) play a game on quan-
tum hardware in real time. Thus the implementations of games to date have been in some sense partial
implementations. The games are typically implemented by using quantum hardware to run the circuit, or
circuit equivalent, of the game with the strategy choices of the Nash equilibria. Where the strategy choices
that form the Nash equilibria are determined by theoretical analysis of the quantum game in question. The
output states of the experiment are then weighted by the payoff matrix, and the payoff at Nash equilibria is
reported and compared to that of the classical case. One can view this as a type of bench-marking exper-
iment where the hardware is bench-marked against a game theoretic application, rather than with random
operations.
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The games that have been implemented always set up to have a larger payoff in the quantum equilibrium
than the classical case, presumably because these are the interesting games to quantum physicists. Because
of this, the effect of noise or decoherence is almost always to lower the payoff of the players. It is generally
seen that the payoffs at equilibrium of the quantum games still outperform the classical game with some
amount of decoherence.

It should be noted that this section is concerned with evaluating the hardware for quantum games. As
such the specific game theoretical results of the games that were performed will not be discussed, only the
relative merits of each physical implementation.

10.1 Nuclear magnetic resonance

The first experimental realization of a quantum game was performed on a two qubit NMR quantum computer
[83]. The computations are performed on the spin to spin interactions of hydrogen atoms embedded in a
deuterated nucleic acid cytosine whose spins interact with a strength of 7.17Hz. They examined the payoff
of the quantum game at Nash equilibrium as a function of the amount of entanglement. The experimentally
determined payoffs showed good agreement with theory, with an error of 8 percent. In total, they computed
19 data points, which each took 300 ms to compute compared to the coherence time of the NMR qubits of
∼ 3 seconds.

An NMR system has also demonstrated a three qubit game[84]. This game is performed on the hydrogen,
fluorine and carbon atoms in a 13CHFBr2 molecule. The single qubit resonances are in the hundreds of
MHz, while the couplings between spins are tens to hundreds Hz. For their theoretical analysis they used
three possible strategy choices, resulting in 27 possible strategy choice sets, which can be classified into 10
classes. They show the output of the populations of all 8 possible states in the three qubit system, and thus
the expected payoff, for each class of strategy choices sets. They ran the game 11 times, varying the amount
of noise on the initial state, thus direcly showing the decrease of the payoff as the noise increases. Their
experimental populations had a discrepancy of 15 to 20 percent with the theory.

Quantum computations on NMR based systems are performed on ensembles of qubits, and can have
relatively large signal sizes. However, there do not appear to be promising avenues for scaling to larger
numbers of qubits, or interfacing with a quantum communication scheme. Also, NMR computers are not
capable of initializing in pure quantum states. Thus, methods have been developed to initialize the states to
approximate states, [85], but there is uncertainty as to whether such mixed states actually exhibit entangle-
ment or if they are separable [86].

10.2 Linear optics

Implementing quantum games with optical circuits has several appealing characteristics. They do not suffer
from the uncertainty in entanglement of NMR computing and can potentially have very high fidelities. Gates
are implemented with standard optical elements such as beam splitters and waveplates. Also, since they are
performed on photons, they can naturally be adapted to work on remote agents.

One possible implementation is to use a single photon and utilize multiple degrees of freedom. Typically
the polarization state of the photon is entangled with its spatial mode. In [87], a heavily attenuated He-Ne
laser was used as a single photon source. The single photon is input into a Mach-Zender interferometer
where the two paths through the interferometer forms the first qubit pair, and the polarization state of the
photon forms the second. They are entangled by splitting the photon into the two paths depending on its
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polarization. Gates are performed by single photon polarization rotations, i.e. adding waveplates to the
photons path. They report an error in the experimentally determined payoff to the theoretical one of 1 to 2
percent.

Rather than using the path of an interferometer as the spatial degree of freedom, one can also use the
transverse modes of a beam [88, 89]. In these implementations, beams of light are incident on holographic
masks to produce higher order transverse modes in a polarization dependent way. These implementations
have typically been done at higher light levels, i.e. ∼ mW , and the beams are imaged on a camera to
determine the steady state value of many photons being run in parallel.

Another possible implementation using linear optics utilizes cluster states. This has been done for a two
player Prisoner’s Dilemma game [90]. The computation is performed with a 4 qubit cluster state. Gates
are performed by measurements of photons. Spontaneous parametric down conversion in a non-linear BBO
crystal produces entangled photon pairs which are then interfered with beam splitters and waveplates. The
creation of the four qubit cluster state is post-selected by coincidence clicks on single photon detectors, so
that runs are only counted if 4 single photo detectors registered a photon. The experimentalists can also
characterize their output with full quantum tomography, and they report a fidelity of 62 percent.

Rather than producing cluster states, one can take the entangled photon pairs output from a non-linear
crystal and perform gates in much the same way as they are performed in the single photon case[91, 92].
These approaches have reported fidelities around 70 to 80 percent.

A four player quantum game has been implemented with a spontaneous parametric down conversion
process that produces four photons, in two entangled pairs [91]. Again the information is encoded into the
polarization and spatial mode of the photons. This method, with two entangled pair inputs, can naturally
be set up to input a continuous set of initial states. The initial entangled state in this implementation is a
superposition of a GHZ state and products of Bell states. Again, the fidelities are reported to be near 75
percent which results in errors in the payoff at the equilibrium of about 10 percent.

Another example of a linear optical implementation sheds light on other types of correlations that can
occur in quantum mechanics that are beyond entanglement, i.e. discord[93]. To create states with discord,
the measurements are taken with different Bell pairs, and then the data are partitioned out into different
sets randomly, which produces a statistical mixture of entangled states. Such a mixture is known to have no
entanglement as measured by the concurrence, but retains the quantum correlation of discord. The entangled
pairs were produced from spontaneous parametric down conversion. This experiment reported a fidelity of
95 percent. Notably, even when there is no entanglement, the game can still exhibit a quantum advantage.

The linear optical implementations are promising because of their ability to perform games with re-
motely located agents. They are also capable of high fidelity quantum information processing. However
they have drawbacks as well. In order to run a different circuit, one must physically rearrange the linear
optical elements such as waveplates, beam splitters. In addition, the production of larger amounts of entan-
gled photon pairs is experimentally challenging. These make it difficult to scale up implementations with
linear optical circuits to more complicated games. In addition, purely photonic implementations have no
memory, and thus may not be conducive to more complicated quantum games which may require wait time
for a decision to be made, or some sort of feed forward on measurements.

10.3 Other proposals

There are many other potential platforms for quantum information processing and it is unclear which will
be dominant in quantum computation. Ion trapped systems and cavity QED systems stand out as having all
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of the characteristics we desired in a quantum information processor specifically designed for implementing
quantum games: they are potentially powerful quantum computers, they can have long memory times,
and can be coupled to photonic modes for long distance communication. There have been proposals for
implementations of quantum games on such systems[94, 95].

Ion trapped qubits can perform quantum computations with as many as 5 qubits with a very high fidelity
[96]. In addition, ion trapped systems can also be coupled to single photons for entangling remote ions
[97]. Cavity QED systems have a single atom, or ensemble of atoms, strongly coupled to a photonic mode.
This allows the quantum information of the atomic system, which can be used for information processing,
to be mapped to the photonic system for communication purposes with very high fidelity. Recently [98], a
Bayesian quantum game was demonstrated on a five-qubit quantum computer where the payoff, and phase-
change-like behavior of the game were analyzed as a function of the amount of entanglement.

10.4 Human implementations

In addition to the bench-marking types of demonstrations described above, there is a separate interpretation
about what it means to implement a quantum game, and that is having actual agents play a game with
quantum rules. For real world applications of quantum games, it is interesting to speculate on whether or
not it will be possible for players to effectively learn the correct strategies in a quantum game if they have
no training in quantum theory. In fact, one of the biggest problems of classical game theory is that players
do not act entirely rationally, and thus the equilibria of a game are only a guide to determine what real
players will do. This problem may be exacerbated in quantum games by the fact that the players will likely
have little or no knowledge of quantum mechanics or entanglement. There have been a few experiments to
research this question[99, 100].

Due to the limited availability of quantum hardware, in order to ease implementation, in these experi-
ments the quantum circuits are simulated on a classical computer. Though a simulated quantum game will
give the same outputs as a quantum computer, there are none of the benefits afforded by the absolute phys-
ical security of quantum communication protocols, which are likely a very desirable quality of quantum
games. In addition, if the quantum games become sufficiently complex, it may not be possible to simulate
them efficiently on a classical computer, as the number of states in a computation goes up as 2n where n is
the number of qubits, as is well known in quantum computing.

In [98], the players were randomly paired and played the quantum Prisoner’s Dilemma game, and the
results were compared for classical versus quantum rules. They also performed one experiment where the
players played repeatedly with the same partner. In the classical interpretation of the Prisoner’s Dilemma,
one can interpret the people who play the Pareto optimal strategy choice, even though it is not a Nash
equilibrium, as altruistic. In any real instantiation of the game, there will be some players who play the
altruistic option, even though, strictly, it lowers their individual payoff. As such, the prediction of the Nash
equilibria from game theory can be interpreted as a guide to what players may do, especially in repeated
games.

When players played the game with quantum rules, the players tended to play the altruistic option more
often than in the classical case, as is predicted by the Nash equilibria that occur in the quantum version
of the game. This at least shows that players, who had no formal training in quantum mechanics, though
had some instruction in the rules of the game, were capable of playing rationally, that is, maximizing their
payoff. Interestingly, the game theory prediction for behavior was actually closer to the behavior of the
players than in the classical case. The players of the classical game played less rationally than those of the
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quantum game, and there was more variation between players in the classical versions.
These results may suggest that the players have more preconceptions about the strategy choices in the

classical version than in the quantum version, where the interpretation is more complicated. In the classical
version, they can choose to cooperate or defect independently, while in the quantum version ultimately,
whether or not they cooperate also depends on the strategy choice of their opponent. Preconceptions about
the strategy choices in the classical game may provide influences beyond the desire to simply maximize
ones own payoff and lead to larger deviations from the game theory prediction.

A full implementation of a quantum game with real players on quantum hardware has not been per-
formed. Yet demonstrations of quantum game circuits on quantum hardware are compelling because they
provide results that are interesting while only using small numbers of qubits. As quantum networks and
quantum computers become more developed, we expect that quantum games will play a role in their adop-
tion on a larger scale either as applications or as a diagnostic tool of the quantum hardware.

11 Future applications for quantum game theory

Applications of conventional game theory have played an important role in many modern strategic decision-
making processes including diplomacy, economics, national security, and business. These applications typ-
ically reduce a domain-specific problem into a game theoretic setting such that a domain-specific solution
can be developed by studying the game-theoretic solution. A well-known application example is the game
of “Chicken” applied to studies of international politics during the Cold War [101]. In Chicken, two players
independently select from strategies that either engage in conflict or avoid it. Schelling has cited the study
of this game as influential in understanding the Cuban Missile crisis. More broadly, studying these games
enables an understanding of how rational and irrational players select strategies, an insight that has played
an important role in nuclear brinkmanship.

The method of recognizing formal game-theoretic solutions within domain-specific applications may
also extend to quantum game-theoretic concepts. This requires a model for the game that accounts for the
inclusion of unique quantum resource including shared entangled states. For example, Zabaleta et al. [102]
have investigated a quantum game model for the problem of spectrum sharing in wireless communication
environments in which transmitters compete for access. Their application is cast as a version of the minority
game put forward by Challet and Zhang [103] and first studied in quantized form by Benjamin and Hayden
[30] and also by Flitney and Hollenberg [104]. For Zabaleta et al., a base station distributes an n-partite
entangled quantum state among n individual transmitters, i.e., players, who then apply local strategies to
each part of the quantum state before measuring. Based on the observed, correlated outcomes, the players
select whether to transmit (1) or wait (0). Zabaleta et al. showed that using the quantum resource in this
game reduces the probability of transmission collision by a factor of n while retaining fairness in access
management.

In a related application, Solmeyer et al. investigated a quantum routing game for sending transmissions
through a communication network [105]. The conventional routing game has been extensively studied as
a representation of flow strategies in real-world network, for example, Braess’ paradox that adding more
routes does not always improve flow [106]. Solmeyer et al. developed a quantized version of the routing
game modified to include a distributed quantum state between players representing the nodes within the
network. Each player is permitted to apply a local quantum strategy to their part of the state in the form of a
unitary rotation before measuring. Solmeyer et al. simulated the total cost of network flow in terms of overall
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latency and found that the minimal cost is realized when using a partially entangled state between nodes.
Notably, their results has demonstrated Braess’ paradox but only for the case of maximal and vanishing
entanglement.

In the field of decision science, Hanauske et al. have applied quantum game theory to the selection
of open access publishing decisions in scientific literature [107]. Motivated by the different publication
patterns observed across scientific disciplines, they perform a comparative analysis of open-access choices
using three different games: zero-sum, Prisoner’s Dilemma and stag hunt. The formal solutions from each
of these classical games provide Nash equilibria that either discourage open access publication or include
this choice as a minority in a mixed strategy. By contrast, Hanauske et al. found that quantized versions
of these games which include distributed quantum resources yield Nash equilibria that favor open access
publication.

In addition to decision making applications, game theory may also serve as a model for understanding
competitive processes such as those found in ecological or social systems. It is an outstanding question to
assess whether quantum game theory can provide new methods to these studies. In addition to the study of
classical processes, such as evolution and natural selection, quantum game theory also shows promise for
the study of strictly quantum mechanical processes as well. In particular, several non-cooperative processes
underlying existing approaches to the development of quantum technology including quantum control, quan-
tum error correction, and fault-tolerant quantum operations. Each of these application areas require a so-
lution to the competition between the user and the environment, which may be considered to be a‘player’
in the game theoretic setting. The solutions to these specific applications require a model of the quantum
mechanical processes for dynamics and interactions which are better suited for quantum game theory.

A fundamental concern for any practical application of game theory is the efficiency of the implementa-
tion. A particular concern for a quantum game solution is the relative cost of quantum resources, including
entangled states and measurements operations. Currently, high-fidelity, addressable qubits are expensive to
fabricate, store, operate, and measure, though these quantum resources are likely to reduce in relative cost
over time. For some users, however, the expense of not finding the best solution will always outweigh the
associated implementation cost, and the cost argument need not apply for those application where quantum
game theory provides a truly unique advantage. van Enk and Pike have remarked that some quantum games
can be reduced to similar classical game, often by incorporating a classical source of advice [25]. The effect
of this advice is to introduce correlations into the player strategies in a way that is similar to how a dis-
tributed quantum state provides means of generating correlated strategies. For example, Brunner and Liden
have shown how non-local outcomes in Bell’s test can be modeled by conventional Bayesian game theory
[59]. This raises the question as to whether it is ever necessary to formulate a problem in a quantum game
theoretic setting. As demonstrated above, there are many situations for which distributed quantum resources
offer a more natural application, e.g., quantum networking, and such formulations are at least realistic if not
necessary.

The current availability of prototype general-purpose, quantum processors provides opportunities for
the continued study of quantum game theory. This will include experimental studies of how users interacts
with quantum games as well as the translation of quantum strategies into real-world settings. However,
quantum networks are likely to be needed for field testing quantum game applications, as most require
the distribution of a quantum resource between multiple players. Alongside moderate duration quantum
memories and high-fidelity entangling operations, these quantum networks must also provide players with
synchronized classical control frameworks and infrastructure. These prototype quantum gaming networks
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may then evolve toward more robust routing methods.

12 Conclusion

We gave a review of theoretical and experimental developments in quantum game theory since its formal
inception in 1999 to thecurrent state of affairs. We note that unlike other mergers of game theory and
scientific disciplines like economics and evolutionary biology, quantum game theory has seen stagnated
growth and limited success. We point out two main reasons for this situation. First, the misconceptions and
confusions outlined in sections 4, ??, and 4.1 appear to have discouraged physicists, particularly quantum
information scientists, from pursuing the subject seriously. As a consequence, quantum game theory papers
are often rejected from leading quantum physics journals citing either a lack of application of quantum
games to physics, or van Enk’s opinions from 2002.

Second, a majority of authors in quantum game theory have followed the EWL quantization protocol.
It is pertinent here to mention again the work of Marinatto and Weber (MW) in [29] where these authors
proposed a variation of the EWL protocol by removing the dis-entangling gate in Figure 1. This action
unfortunately has the effect of making MW a non-extension of the classical games, that is, no restriction
of the MW protocol would reproduce the original game. As such, the MW protocol does not offer any
interesting insights in quantum computational implementation of classical games. On the other hand, one
could interpret MW as an effort in gaming the quantum; however, we are unaware of any such efforts to
date.

We also reviewed future applications of quantum games with respect to technological and human im-
plementations. In case of the former, quantum networks and quantum Internet-of-Things are of immediate
practical interest, where the distribution of a quantum resource among many players creates a competitive
scenario. While full scale human implementation of quantum games has not been achieved, small scale ex-
periments have been done and produce counter-intuitive outcomes such as a greater prevalence of altruism
than in the classical game. Classical stochastic games were also discussed. These games have also appli-
cations in networks, whenever there is a competition for resources, and the quantum counter part will have
applications in networks[108] of quantum computing and sensing devices.

We conclude this essay with the hope that a new generation of researchers will find this discussion
useful in contextualizing quantum game theory and find new and exciting applications of quantum games to
physics.
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