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Abstract—Recent computations involving quantum processing
units (QPUs) have demonstrated a series of challenges inherent to
hybrid classical-quantum programming, compilation, execution,
and verification and validation. Despite considerable progress,
system-level noise, limited low-level instructions sets, remote
access models, and an overall lack of portability and classical
integration presents near-term programming challenges that
must be overcome in order to enable reliable scientific quan-
tum computing and support robust hardware benchmarking.
In this work, we draw on our experience in programming
QPUs to identify common concerns and challenges, and detail
best practices for mitigating these challenges within the current
hybrid classical-quantum computing paradigm. Following this
discussion, we introduce the XACC quantum compilation and
execution framework as a hardware and language independent
solution that addresses many of these hybrid programming chal-
lenges. XACC supports extensible methodologies for managing a
variety of programming, compilation, and execution concerns
across the increasingly diverse set of QPUs. We use recent
nuclear physics simulations to illustrate how the framework
mitigates programming, compilation, and execution challenges
and manages the complex workflow present in QPU-enhanced
scientific applications. Finally, we codify the resulting hybrid
scientific computing workflow in order to identify key areas
requiring future improvement.

Index Terms—Quantum Computing, Quantum Programming
Models

I. INTRODUCTION

Currently available quantum processing units (QPUs) con-
sisting of tens of qubits are providing a unique capability for
understanding hybrid classical-quantum algorithms and asso-
ciated speedups for future scientific computing applications.
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Such applications range across scientific domains, and small-
scale demonstrations of quantum programming have been
developed in fields such as nuclear and high-energy physics,
machine learning, chemistry, and materials science [1]. While
QPU hardware development is progressing at a rapid pace,
these near-term quantum computing systems are far from
ideal [2]. Low-level unitary quantum instruction noise, read-
out errors, decoherence patheways, and remote programming
access models limit the scalability of these devices to research
applications. Recent results in hybrid classical-quantum varia-
tional algorithms demonstrate the potential ability to mitigate
some of these challenges, specifically QPU noise errors, but
there is an overall lack of awareness of the software tooling
needed by programmers and domain scientists to leverage such
computing systems in a robust and coherent way.

State of the art demonstrations of hybrid scientific quantum
computations on gate-model QPUs, e.g. devices offered by
vendors such as IBM, Rigetti, and Google, have had varied
success and limited simulation accuracy [3]-[6]. For example,
the first variational hybrid quantum computation via remote
cloud resources reached an overall simulation accuracy of
3 percent [5]. This is a computation that can be performed
by a classical computer in microseconds, yet it took months
of work to map it to a quantum computer and execute via
a remote cloud access model with job queue constraints.
These types of near-term hybrid programming challenges must
be overcome to enable reliable and reproducible quantum
computing applications and to support the continued testing
and characterization of quantum computer performance.

Can a robust software platform and workflow improve the
usability and accessibility of near-term quantum computers for
scientific applications? In this work, we attempt to answer this
question in the affirmative by providing a model workflow for
near-term hybrid quantum computations that enables useful
scientific applications and makes quantum computing tech-
nologies accessible to a broader community. We will detail



the primary challenges present in these hybrid, noisy quantum
computations and discuss best practices for addressing them.
We describe the XACC quantum compilation and execution
framework that provides a hardware and language independent
solution for many of these challenges and supports extensible
methodologies that provide a strategy for managing program-
ming concerns across an increasingly diverse set of QPU tools.
As an example, we discuss recent demonstrations of scientific
applications built on XACC for nuclear physics.

This work is organized as follows: first, we provide a
discussion of hybrid classical-quantum computing systems,
including high-level discussions of requisite programming and
execution models. We then discuss the near-term challenges
present in programming, compiling, and executing hybrid
scientific computing applications. Afterwards we introduce the
XACC quantum programming framework and detail how it
addresses these unique challenges. Finally, we conclude by
demonstrating its utility with the example of computing the
binding energy of the deuteron bound state.

II. HYBRID COMPUTING SYSTEMS

We broadly define hybrid computing systems as a class of
abstract machine models that combine different computational
paradigms. However, we specialize our analysis to the case of
realizable architectures that integrate a conventional classical
Turing machine with a quantum Turing machine. Research into
these different machine models has clarified that they are not
equivalent with respect to computational power [7], and we
address some of the unique considerations that arise by using
the conventional model to program and control the quantum
model.
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Fig. 1. A hybrid computing infrastructure that integrates classical systems of
Boolean logic into the control of quantum dynamics requires an interface for
input-output (IO) based on the transmission and reception of physical fields
F’anut(t) and Foutput (t)

As shown in Fig. 1, the two-way interaction between a
classical and a quantum machine model imposes a constraint
that requires the machines to share a common understanding
of language. In practice, this language is expressed as the
physical fields that define the operations issued by the conven-
tional model and implemented within the quantum domain [8].
Electric, magnetic, and optical fields are prominent examples
by which the current technology controls the quantum physical

systems. It is notable that this description is inherently ana-
log due to the continuity of the time-dependent Schrodinger
equation. Translation between the system of Boolean logic
characterizing the conventional Turing machine into the analog
fields is necessarily limited by the available computational
power. In practice, this amounts to constraints imposed by
the available digital-to-analog converters and the range of the
arbitrary waveform generators as well as the speed at which
the logical network can be processed and the connectivity of
the control system.

The outstanding concern for programming such a hybrid
computing system is the controllability of the conventional and
quantum machines [9], [10]. That is to say, for those scenarios
in which the quantum machine must execute a series of issued
instructions, how accurately are these instructions realized and
how precisely does the result reflects the effect of the intended
instructions?

A. Client-Server Model for Hybrid Computing Systems

Current state-of-the-art hybrid computing systems integrate
existing CPU-based clients with QPU-based servers [11], [12].
The latter represent the online availability of a programmable
infrastructure to access the field generators that drive the
control of a quantum physical device. The applied fields
are shaped and scheduled to control the dynamics of an
addressable array of quantum physical subsystems, which for
convenience we denote generically as the quantum register.
Similarly, the response fields emitted by the register elements
are collected and discriminated to generate binary representa-
tions that characterize the state of the register.

A QPU-based server often includes conventional CPUs for
purposes of parsing the digital programming instructions that
generate the shape and timing of the control fields as well
as the detection and discrimination of the response fields.
Access to the QPU-based server requires an interface that may
adhere to conventional logic, for example, as found in modern
networking communication technology, to accept instructions
from and return results to a CPU-based client. Currently, the
conventional client-server model shown in Fig. 2 dominates
the access method to QPU systems due in large part to the
experimental nature of these machines.

Within the client-server model for hybrid computing sys-
tems, the QPU represents a layer of language parsers that
translate the Boolean logic of the client to the control fields
required to drive the quantum register. As detailed elsewhere
[8], the QPU is partitioned into a control unit, execution
units, and the register itself. The control unit parses the client
instructions received by the server into the local instruction
set architecture for generating and applying control fields.
Application of the fields are carried out by the execution units,
which in practice represent waveform generators for electric,
magnetic and optical fields. A similar signal flow occurs for
detecting output fields and generating a digital response.
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Fig. 2. Currently, most hybrid computing systems rely on a CPU-based client
interacting with a QPU-based server over a network. The QPU-based server
presents a classical control interface to the client that can be customized to a
variety of programming styles. Internally, the QPU-based server must parse
these instructions into a local representation that carries out the requested
sequence of control fields.

B. Programming and Execution Model

The client-side API for the hybrid computing system dic-
tates how users access the quantum physical devices, while
the functionality of the QPU-based server is restricted to the
local interpretation of these transmitted instructions. In this
programming model, a client may select which instructions
to send from a predefined instruction set for the QPU. The
instruction set architecture (ISA) defines the functionality of
the QPU and the language for the control unit [13]. These in-
structions are generally transmitted as character strings that are
mapped by the QPU-based server into pre-compiled functions
that execute the instruction. Calls to these libraries initiate
the cascade of logic required to trigger the execution units,
which subsequently apply the necessary fields to the register
elements.
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Fig. 3. Components in a QPU-based server include a control unit that
expresses the instruction set architecture (ISA), multiple execution units that
translate instructions into applied fields, and the quantum register which stores
the computational state. This layered, hierarchical structure provides a natural
separation of concerns but introduces challenges to programming near-term,
noisy QPUs.

As shown in Fig. 3, the two-way information flow within the
QPU-based server provides a natural separation of concerns
for device programming. The logic dictating computational
functionality is isolated within the control unit and determined

by programs expressed within the ISA. Similarly, the execution
unit hosts the translation of individual instructions into the
fields that carry out the intended logical transformations on
the register. The information unique to the implementation of
either layer is notionally not required in the opposing layer.
However, as we explore in the subsequent section, this design
of the current QPU-based servers leads to several challenges
for application programming.

III. PROGRAMMING CHALLENGES FOR NOISY QPUS

Despite the natural separation of concerns that arises in
a hybrid computing system using a QPU-based server, this
design presents a number of challenges when programming
currently available noisy quantum processors. Advances in
our understanding and engineering of QPUs have enabled
demonstrations with register capacities up to 20 addressable
elements, yet these realizations still demonstrate a non-trivial
amount of noise relative to the underlying decoherence rates,
greatly limiting the depth of quantum circuits with even
modest reliability. This raises a need for repeated sampling of
the circuit execution, but existing client-server access models
hamper this interaction and greatly limit the overall utility and
accessibility of the QPUs.

Code portability is also a growing concern as many QPU
vendors trend toward standalone programming frameworks
that interact with their tightly controlled and proprietary ISA.
These barriers to portability impede efforts to perform veri-
fication of software and benchmarking of hardware as well
as methods to validate hardware behavior using numerical
simulation. Finally, the individual workflow steps required to
program, compile, and execute hybrid applications with near-
term QPUs are tightly coupled. The lack of inter-operability
across available software and hardware platforms raises a
concern that the users programming hybrid computing systems
will face artificial barriers to adoption and performance.

We provide a more detailed description of each of these
challenges with an analysis for how hybrid computation is
affected. While several references provide background for
additional technical details, we identity how each of these
challenges must be overcome in order to advance utilization
of noisy QPU systems.

A. Gate Noise and Execution Errors

In a QPU, gate noise represents a lack of control over the
fundamental physical processes by which program instructions
are executed. Among many measures of instruction accuracy,
the quantum state fidelity quantifies the accuracy by which an
observed state meets the instruction design requirements. For
this characterization, a noisy gate applied to a quantum register
induces a logical transformation to a state which is some
distance away from the expected outcome. Assuming only
pure states, the fidelity is defined as the squared magnitude of
the inner product between the observed and expected register
states (F(p,0) = [{(¢,]15)]?) and, for imperfect gates, it is
always less then unity. A similar measure can be defined for
mixed states in terms of the trace distance.



Noisy gate operation obviously influences program execu-
tion by diverting the computational state away from the in-
tended algorithmic design. Quantum error correction and fault-
tolerant gate protocols may be expected to mitigate this noise
eventually, but such techniques are beyond the scope of current
hardware devices. Instead, programming noisy QPUs must
directly address the presence of errors within the application
logic. This may be as simple as repeated execution of the
program as a method of sampling the computer outputs, or it
may be a more sophisticated redesign of the compiled circuit to
mitigate against known errors. For such methods, the burden of
understanding the noise that arises from the execution of these
instructions lies on the programmer. However, as noted in the
previous section, the separation of concerns for current QPU-
based servers isolates the physics of the execution unit and
register from the user. The ISA alone provides the interface
for programming and controlling the computational logic.

So far the application developers have relied on external
characterization of the gate noise outside of the programming
workflow. This requires consideration of errors during the
algorithmic design stage which is largely based on manual
analysis [14]. Such strategies are untenable as circuit complex-
ity increases. Programming models that are device-aware are
currently lacking, but would be necessary to automate circuit
rewriting techniques to compensate for noisy gates.

In addition to the effects of gate noise, execution errors
for a quantum program also arise from state-preparation and
measurement (SPAM) errors. These errors correspond to faulty
initialization or measurement of a register element. For ex-
ample, an instruction to initialize the computational state |0)
may inadvertently prepare the state |1) or a superposition of
these two possibilities. Similarly, measurement of the state |0)
may instead project into |1), which would be interpreted as
the 1. It is notable that SPAM errors currently dominate QPU
performance in multiple technologies with error rates nearly
an order of magnitude above typical gate errors.

Several strategies exist for mitigating SPAM errors such
as using a series of repeated program executions to decode
the correct result based on the maximum likelihood statistics.
However, this example of statistical detection based on es-
timates of the output measurement values not only adds to
the complexity of the program execution but also requires
accurate characterization of the error mechanisms. Because
of the relatively high SPAM error rates, a large number of
samples are typically required to gain high confidence in the
program behavior. But the separation of concerns between the
physical and logical layers in the QPU details hides these
physical errors from the programmer. Inline calibrations for
initialization and measurement gates may be able to bridge this
gap when the number of register elements is very small and
the errors are independent, but cross-talk during measurement
may invalidate the latter model. Moreover, such calibrations
are intractable as the size of the register reaches ever larger
sizes.

B. Access Models

The overall system infrastructure required to operate current
QPU systems is based largely on sensitive, experimental
devices that cannot be easily distributed. Many vendors and
laboratories therefore enable users to access these complex
computing systems via remote, online server. Examples of
these remote access models include QPU-based servers that
support REST APIs that delegate requests to a job queue
service, which then schedules program execution on the QPU.
In addition, many systems provide web portals that permit
manual input methods for programming. These may also
be operated via the REST API or Pythonic frameworks by
creating batch-style program executions.

This remote user access infrastructure suffices for small-
scale program executions, but production-level computing,
including scientific computing applications based on quantum
acceleration, are not amenable to remote access models. As
described in the subsequent sections, many current demon-
strations of hybrid variational quantum algorithms employ
repeated program executions [15]—-[18]. These methods require
many consecutive serial executions in which each execution in-
fluences the next iteration of the algorithm. A remote network
connection is therefore an impractical access model for these
types of iterative hybrid algorithms because of the additional
overhead associated with the remote calls, the communication
parsing, and the queuing latency.

A related challenge for QPU-based server programming
is that the job queue service employed by most servers is
based on individual serial QPU executions. This introduces a
hardware bottleneck for the variational sampling algorithms
that use multiple circuit executions to estimate a single ob-
servable. Related circuit executions are not collated within the
queue, which slows down the overall application execution
time. In contrast, job schedulers for typical high-performance
computing systems operate by queuing a complete application
execution. That is to say, when a job reaches the top of the
queue, the associated applications are executed completely to
remove unnecessary uncertainty in both the application and
machine state.

C. Portability

A persistent concern for any application developer is the
portability of existing code onto new platforms. Despite the
major conceptual shift offered by the quantum computational
model, this concern is also faced by the nascent hybrid
application developer community. Many QPU vendors support
standalone programming frameworks that interact only with
their tightly controlled and proprietary ISA. Although tight
control over the system may offer advantages to the vendor, a
major disadvantage to users is a need to retool for each QPU.
Efforts to retool often slow down overall productivity and may,
eventually, impede efforts to adopt new software or hardware.

The lack of portability also presents a challenge for verifi-
cation of software and benchmarking of hardware as well as
for validation of the hardware behavior based on numerical
simulations. In particular, there is a concern that test cases



and benchmarks devised for one hardware platform will be
incompatible with similar efforts developed for other plat-
forms. In essence, developers cannot begin to address quantum
benchmarking concerns without some form or mechanism
of quantum code portability. Code verification and program
validation represent important steps in certifying an applica-
tion as correct. The above challenges for current quantum
programming tools directly impact the ability for application
developers to perform verification and validation. Noise and
errors undermine the testability of the application, while non-
portable codes challenge the ability to use different platforms
for comparative analysis.

D. Classical-Quantum Integration

Primarily due to the remote access models employed and
an overall lack of code portability, currently available quantum
computing resources lack direct integration with conventional
software and processing workflows. This integration is not nec-
essary for experimental proof-of-concept demonstrations, in
which the focus is on manual, device-level benchmarking and
validation of the QPU physical behavior [19]. But integration
is necessary to make such devices available for development
and testing of classical-quantum hybrid algorithms. Currently,
these interactions are largely avoided or treated as separate
stages of a manual workflow.

There are several efforts underway to integrate quantum and
classical workflows. Examples of domain-specific languages
have appeared including Quipper [20], ProjectQ [21], Lig-
uid [22], and Q# [23] among many others. However, these
languages target programmers with detailed knowledge and
understanding of quantum logic, especially in the gate or
circuit model. The integration of these languages with existing
programming methods, including well-known languages such
as C/C++ and Python, are established by using externally
reference library functions or embedding in a host language.
In both cases, the understanding of quantum functionality and
device behavior is ambiguous to the high-level language user
and challenges the understanding of information flow and error
analysis needed for profiling an application on a noisy QPU.

IV. QUANTUM COMPILATION WORKFLOW

The quantum compilation workflow, like any compiler
workflow, can be decomposed into discrete steps that, at a
black-box level, read in quantum source code and produce
machine-level instructions for execution. However, along the
way, many individual tasks need to be executed in order
to ensure that the computation is amenable for the chosen
hardware, is resource-efficient, and is at least partly resilient
to system noise and errors. This includes allocation of quantum
registers and instruction scheduling that minimizes errors and
noise, as well as pre- and post-processing of erroneous inputs
and outputs.

These individual compiler layers for quantum computation
must be tightly coupled, i.e. the layers closer to the high-level
source code directly influence layers at a lower level closer
to the hardware. Compilation layers can have a multiplicity

greater than 1, meaning that multiple processes of the same
type may be executed for a given layer, and these processes
may or may not commute. Also, various compilation layers
may dictate whether or not any post-execution actions must
take place.
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Fig. 4. The XACC compilation workflow is a series of processing layers
amenable to near-term quantum computer programs. These layers include
language parsing, source code pre-processing, optimization, and transforma-
tion. For near-term program behavior, the pre-processing layer is strongly tied
to the post-processing methods that follow QPU execution, e.g., SPAM error
mitigation strategies.

We provide working examples of the layers required by
the compilation workflow for noisy QPUs in Fig. 4. The
first step in this workflow is source code parsing, which
maps quantum code to an intermediate representation (IR) of
the input program. This representation then passes through a
compilation layer that provides generic pre-processing of the
intermediate representation. The subsequent two layers target
IR optimization and code transformation. Optimization may
include simplification and enhancements to the programmed
quantum logic which is isomorphic with the original program,
while transformations modify the intermediate representation
structure to satisfy logical constraints exposed by the hardware
topology. The next layer maps the IR to the low-level quantum
machine instructions (QMI) for the target hardware. The re-
sulting representation is an executable that will be executed on
the QPU-based server. Following execution, additional post-
processing steps may be included to take advantage of the
pre-processing layer.

These various layers of the compilation workflow must be
tightly coupled, ideally through the use of a common IR
to minimize overhead. Pre-processing directly influences the
optimizations and transformations that may be implemented
as well as the post-analysis of the QPU measurement results.
At each compilation layer, multiple invocations of individual,
yet different, pre-processors, optimizers, or transformations,
and the execution of these processes may not commute with
one another. For example, one preprocessor may update the IR



instance in a way that makes a future pre-processor execution
invalid. Maintaining logic across these different instances of
the IR is a challenge for evaluating near-term noisy QPUs.

V. XACC

We have put forth a new hybrid classical-quantum pro-
gramming model, XACC (eXtreme-scale ACCelerator), that
attempts to address many of the challenges discussed above
[24]. XACC has been specifically designed for enabling near-
term quantum acceleration within existing classical computing
applications and workflows. This model, and associated open-
source reference implementation, follows the traditional classi-
cal co-processor model, akin to OpenCL or CUDA for GPUs,
but takes into account the subtleties and complexities inherent
to the interplay between classical and quantum hardware.
XACC provides a high-level API that enables classical appli-
cations to offload work represented as quantum kernels to an
attached quantum accelerator in a manner that is independent
of both the quantum programming language and the quantum
hardware. This enables one to write quantum code once for
a given model of quantum computation (adiabatic or gate),
and perform benchmarking, verification and validation, and
performance studies for a set of virtual (simulators) or physical
quantum hardware. Here we detail the XACC architecture
and in subsequent sections describe how it begins to mitigate
against the aforementioned hybrid programming challenges.
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Fig. 5. The XACC intermediate representation architecture demonstrating the
relationship between the Instruction, Function, and IR interfaces.

A. Intermediate Representation

Suppose one wishes to program a quantum algorithm in lan-
guage A and target QPU B. This necessitates the development
of a compiler that maps A to the native assembly understood
by B. Now suppose that one wishes to benchmark, profile, or
otherwise validate the program across a variety of QPU types.
This would require the development of N QPU compilers, one
for each QPU. Furthermore, if that same user would like to
also vary the programming language used we would require
N x M compiler implementations, for M available languages.

In classical compiler theory this N x M scaling is overcome
through the design and implementation of a robust intermedi-
ate representation (IR) for available classical instruction sets.
This IR sits at a slightly higher level of abstraction than

concrete instructions sets, and therefore enables a type of poly-
morphism across various instructions sets. With an available
IR, global compiler implementations can be decomposed into
extensible frontend, IR transformation/optimization, and back-
end components. A prime example of this type of architecture
is the LLVM compiler infrastructure, which defines a classical
IR that enables the mapping of C++, Fortran, Objective-C,
etc. to x86, ARM, MIPS, etc. [25]. Extensions of the frontend
map source languages to the IR, and extensions of the backend
map the IR to native instruction sets. In this way, mapping M
languages to N target hardware types requires M compiler
frontend extensions and N backend extensions, but not /N x M
total compiler implementations.

We are seeing something similar currently in the quantum
programming landscape. The recent emergence of various
quantum programming mechanisms such as formal languages,
domain specific languages, and Pythonic frameworks and
libraries, coupled with the emergence of a number of quantum
computing hardware types has introduced major issues with
regards to application portability, unified compilation strate-
gies, and current and future benchmarking activities. Mapping
one language or programming mechanism to a hardware type
that it was not directly implemented for introduces a high-
cost for scientific quantum-classical application testing and
benchmarking.

To alleviate these challenges, XACC builds off of ap-
proaches from classical compiler theory and defines an poly-
morphic intermediate representation for quantum computing
that enables the mapping of various programming approaches
to available quantum computing backends (physical or virtual).
The XACC IR is the key architectural design that enables
the integration of a number of high-level and low-level pro-
gramming abstractions targeting gate and adiabatic quantum
computing model implementations. The IR is composed of
three core interfaces, shown in Figure 5. First, the Instruction
interface abstracts the notion of an operation to be executed on
a quantum computer. Instructions have a unique name (such as
Hadamard, CNOT, DW-QMI, etc.) and keep reference to the
quantum bit indices that they operate on. Instruction can also
be parameterized with one or many parameters, modeling gate
instructions such as general qubit rotations about a given axis.
Next, the Function interface is itself an Instruction sub-type but
also contains a list of further Instructions. This design forms
a familiar n-ary tree of Instructions, and enables executions,
transformations, and optimizations of this tree via pre-order
traversal. Finally, the IR interface serves as a container for
Function instances, and provides methods for serialization and
producing graphical representations of the compiled quantum
program (quantum circuit graph or Ising Hamiltonian graphs
for gate and adiabatic models, respectively).

B. Kernels and Compilers

The XACC programming model follows the familiar co-
processor model leveraged in heterogeneous CPU-GPU pro-
gramming. XACC requires users to express code intended for
quantum computation as quantum kernels, similar to CUDA



__gpu_ quantum kernel foo(AcceleratorBuffer
qubit register, Param pl, .., Param pN);

Fig. 6. A typical XACC quantum kernel definition.

and OpenCL kernels for GPUs. XACC kernels are classic C-
like functions that have a unique function name and a typical
function argument structure (see Figure 6). XACC kernels
must take as their first argument the buffer (for more on the
AcceleratorBuffer, see [24]) of qubits that the kernel is to
operate on, and then any further runtime parameters (such as
parameters in a variational algorithm). Furthermore, XACC
kernels must be annotated with the __gpu__ attribute which
can enable ahead-of-time compilation of hybrid quantum-
classical source code (a topic for future work).
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xacc::Compiler
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Fig. 7. The XACC Compiler interface mapping languages of varying degrees
of abstraction to the XACC IR.

The XACC kernel function body can be written in any
quantum programming language supported by the framework.
Supported languages are those that provide a Compiler im-
plementation. The Compiler interface makes up the XACC
compilation frontend component discussed in the previous
section by providing a way to map general kernel source
code to the XACC IR. The generality of this interface al-
lows for the inclusion of a hierarchy of quantum program-
ming language abstractions (see Figure 7). Compilers can
be implemented for translating low-level quantum assembly
to IR, thus enabling low-level source-to-source translation
and thereby overall hardware interoperability. Compilers can
also be implemented for translating high-level constructs such
as problem-specific Hamiltonians to low-level quantum gate
instructions. Currently, XACC provides support for a number
of low-level quantum programming languages including Scaf-
fold, Quil, D-Wave QMI, and OpenQasm, as well as high-
level domain-specific languages encoding second-quantized
fermionic Hamiltonians.

C. Operations on the Intermediate Representation

When decomposing a compiler workflow into extensible
frontend and backend components via an intermediate rep-
resentation, it is often useful to provide a middle layer that
executes an extensible set of transformations and optimizations
on the IR before backend execution. The XACC infrastructure

provides such a compile step via the IRTransformation inter-
face definition. This interface takes as input IR instances and
outputs a new IR instance whose execution is isomorphic to
the previous IR, just simplified our otherwise transformed.

Furthermore, XACC defines an IRPreprocessor interface
that is executed before any transformations or optimiza-
tions and enables custom modifications to the IR in a non-
isomorphic way. This can be useful for error mitigation
strategies where one usually requires extra information from
the QPU in the form of further circuit executions.

Finally, XACC defines a visitor pattern on the IR tree that
enables the mapping of the IR to hardware native gate sets
and virtual (simulation) execution [26]. This design pattern
enables a dynamic, double-dispatch mechanism that adds
virtual functionality to types in the hierarchy dynamically and
at runtime. It enables the translation of the XACC IR into
native instruction sets via a pre-order tree traversal of the
IR. Tterating through the IR nodes and invoking this visitor
mechanism invokes the node-specific visit method. These
methods affect the generation of node-specific, native machine
code. In this way, one can see a clear mechanism for source-
to-source translation. Translation between languages requires
the translation of the source language to the XACC IR,
which can then be translated to the target language. The first
translation (code to IR) is achieved through implementations of
the Compiler interface, while the final translation is achieved
through implementations of this visitor pattern. In this way,
one is able to translate between Scaffold and Quil, for example,
enabling true application portability across various hardware

types.

D. Accelerators

Finally, the backend component of XACC is composed
of the Accelerator interface, which provides a way to read
in instances of the generally pre-processed, transformed, or
optimized IR instance and affect execution on the backend
physical or virtual QPU. Most Accelerator implementations
delegate to vendor supplied APIs for the execution of compiled
quantum programs expressed in the native gate set. Accelera-
tors also provide any required transformations on the IR that
must be executed before overall Accelerator execution. This
provides a mechanism for the mapping of compiled IR to a
format that is amenable for execution on the given hardware
type (such as program-to-qubit connectivity checks).

Currently, XACC provides unified access to the Rigetti
Forest infrastructure (simulators and physical QPUs), the IBM
Quantum Experience (simulators and physical QPUs), and
the D-Wave quantum annealer infrastructure (simulators and
physical QPUs). This breadth of hardware types amenable
for XACC compilation and execution is enabled through
implementations of the XACC IR interfaces for both gate and
adiabatic model quantum computation.



VI. MITIGATING PROGRAMMING CHALLENGES WITH
XACC

A. XACC and Portability

Overall code portability is at the heart of the XACC
design. XACC is the first platform to provide a robust and
polymorphic intermediate representation object model that
enables programming across quantum computing models (gate
or adiabatic). This IR allows XACC to be language-agnostic,
such that a code written in one language can be compiled to an
IR instance and then mapped to a representation amenable for
execution on a completely different QPU. This mapping step
can be accomplished with user-specified IR transformation
implementations. For example, imagine one writes quantum
code for one architecture with a given qubit connectivity and
wants to run it on another architecture with a different connec-
tivity structure. XACC handles the execution of appropriate
transformations on the IR that insert swap gate instructions
to insure that two qubit interactions can be executed on the
new architecture. This general IR transformation infrastructure
makes sure that true code portability can be achieved in the
case of hybrid classical-quantum computing. It provides a
mechanism for future benchmarking of quantum computers
via a number of different application types.

B. XACC and Error Mitigation

The XACC interfaces can also be leveraged to provide
certain error mitigation strategies. Error mitigation schemes
involve some sort of classical pre-processing of the quantum
program, followed by execution and post-processing of the
result based on the pre-processing action. As classical pre-
processing can be achieved through an implementation of the
IRPrerocessor interface implementation, the error mitigation
workflow fits in very well with the XACC IR infrastructure.
The IRPreprocessor interface takes an IR instance as input,
pre-processes or otherwise modifies it, and then outputs a
functional instance of some post-processing step that is stored
by the XACC framework and executed after QPU execution.
This is an ideal setup for mitigating the QPU qubit readout
errors discussed in Section III-A as a readout characterization
IR can easily be defined on the set of qubits participating in
the computation. To this end, XACC provides a pre-processor
implementation that prepends the IR instance with additional
quantum kernels preparing classical bit strings in order to
characterize the bit flip error rates [4]. Those results are
stored and used by a post-processor functional instance, which
is applied to the qubit measurement results after execution.
This post-processor uses the bit flip probabilities to shift and
scale resultant observable expectation values to more accurate
values.

Clearly the existence of a standard intermediate represen-
tation aides in the mitigation of certain types of noise and
errors. We classify these errors into hardware dependent and
independent types. Hardware independent errors are especially
well suited for mitigation at the IR level due to the fact
that the IR spans the available set of QPUs. Qubit readout

measurement errors are a prime example in this regard, and
preprocessing, transformation, and postprocessing steps on
the IR provide a novel way for mitigating these types of
errors. Hardare dependent error mitigation strategies can also
be handled via implementations of the Accelerator backend,
specifically through contributed IR Transformations that are
QPU-type aware (see discussion on Accelerator functionality
in Section V-D).

This workflow could be applied to other forms of error mit-
igation, requiring simple interface implementations that pre-
process quantum IR and post-process QPU qubit measurement
results.

C. XACC and Access Models

XACC enables multiple forms of user access via the host
language that the framework is written in and its overall
platform, or system context, model. XACC is written in C++,
a foundational language that enables bindings to many other
programming languages. This language binding extensibility
facilitates user access to available QPUs since users are not
tied to a language they are not familiar with. As of this writing,
XACC provides Python bindings and has planned support for
Fortran due to its wide adoption in classical high-performance
scientific computing.

XACC implements a client-server model designed to sup-
port both remote and local user access models, as discussed
in Section II-A. Implementations of the XACC accelerator
construct are currently available for QPUs with access to
a REST client that enables HTTP POST/GET operations to
affect execution of quantum programs on the remotely hosted
service. The XACC client-server model also enables access
to a local access model by using service invocations that
can be routed to the local host computing system. XACC is
currently ready to enable local QPU-access models simply
by redirecting the accelerator URL to the locally hosted
QPU driver server, or further Accelerator implementations that
leverage available in-memory, in-process QPU APIs.

D. XACC Compilation Workflow

The XACC compilation process directly implements the
workflow layers described in Fig. 4. The XACC Compiler
interface processes input quantum kernels and returns a rep-
resentative IR instance. The IR instance may then be passed
through any requested IR Preprocessors - which could imple-
ment readout-error mitigation, or map logical qubits to more
suitable physical qubits, for example. This layer is extensible
for future preprocessing implementation steps, and takes as
input an IR instance and produces a new post-processing
function instance that is queued up for execution after QPU
execution.

Next, the IR is passed to any requested optimization
routines. An example implementation for optimization is a
mechanism (i.e. a set of rules) reducing the IR complexity by
removing redundant instructions via CNOT cancellations and
compositions of local rotations [27]. Next, transformations are
executed that make the program amenable for execution on the



hardware (to ensure requested two-qubit gates are available in
hardware, and, if not, apply swap gate transformations, for
example). Finally, the IR is mapped to the appropriate low-
level machine instruction set implemented in hardware. IR
Transformations enable the XACC instruction scheduling and
layout steps in that they enable the efficatious assignment of
resources with respect to gate fidelities and overall connectiv-
ity.

This compiled result is sent off for execution on the QPU,
and the resultant bit strings are brought back and passed
through any post-processing functional instances produced by
the preprocessing layer. This can be, for example, a post-
processor that updates observable expectation values based
on error probabilities added to the overall computation via
a previous IR Preprocessor.

VII. APPLICATION EXAMPLES

In this section, we review a recent example application
programmed and executed using XACC that was hardware
agnostic and implemented the various layers of the quantum
compilation workflow. This example made use of the vari-
ational quantum eigensolver (VQE) algorithm, which relies
on the variational principles of quantum mechanics to find
the minimal energy quantum state under a given Hamiltonian.
The algorithm is relatively simple and has the advantage
of permitting even short-depth circuits to address interesting
application scenarios. Here we provide a brief overview of
this application and detail how XACC addresses the various
challenges detailed in this work.

A. Nuclear Binding Energy

We recently undertook the computation of the binding
energy of the deuteron via cloud quantum computing resources
using the variational quantum eigensolver hybrid algorithm
[5]. Using XACC, we were able to program the problem
in a hardware-agnostic manner and target available super-
conducting circuit gate model quantum computers from IBM
and Rigetti [28], [29]. Via the compiler workflow discussed
in Sections IV,VI-D, we were also able to provide minimal
error mitigation that corrected for qubit measurement readout
errors. This work represented the first variational quantum
eigensolver computation done through a remote access model,
and highlighted the need for future local access models that
take advantage of application job queues instead of individual
QPU execution queues. This remote access model severely
hindered the work and demonstrates the need for vendors to
research and implement local access models that enhance or
enable variational scientific quantum simulation.

We leave the low-level technical details of the deuteron
work to [5], but at a high level, we leveraged a pionless
effective field theory in a discrete variable representation using
the familiar harmonic oscillator basis. We considered cutoffs
of that basis at N = 2, 3. Here we discuss the N = 2 case for
brevity, which employed the following Hamiltonian

Hy = 5.9067091 + 0.2182917Z, — 6.1257;
— 2143304 (X0 X1 + YyY1) . (1)

Dictated by this Hamiltonian, we performed measurements of
our QPU after application of a unitary coupled cluster circuit
composed of a single variational parameter 6. Computing the
ground state energy required looping over various 6 parameters
as part of a classical non-linear optimization scheme until
convergence criteria were met.

Listing 1
XACC KERNELS FOR DEUTERON VQE

__qpu__ ansatz(AcceleratorBuffer b,
double t0) {
X 0
RY(t0) 1
CNOT 1 0
}
__qpu__ zO0(AcceleratorBuffer b, double t0) {
ansatz (b, t0)
MEASURE 0 [0]
1
__qpu__ zl(AcceleratorBuffer b, double t0) {
ansatz (b, t0)
MEASURE 1 [1]
1

__qpu__ x0xI(AcceleratorBuffer b, double t0) {

ansatz (b, t0)

}
__gpu__ yOyl(AcceleratorBuffer b, double t0) {

ansatz (b, t0)
RX(1.57079) 0
RX(1.57079) 1
MEASURE 0 [0]
MEASURE 1 [1]

The code for this work was written in as XACC quantum
kernels in the Quil language from Rigetti [30] and is shown in
Listing 1. Through XACC, this code was immediately portable
to IBM (as well as a number of simulators), thus overcoming
the portability challenge for near-term quantum programming
and computation.

One common source of error discussed in Section III-A
are due to systematic errors in reading out the state of an
individual qubit. These types of errors were discussed in the
supplemental information of [4]. For this work we automated
this error mitigation strategy as part of the XACC compiler
workflow. We implement the XACC IR Preprocessor extension
interface to append measurements of each qubit that provide
probabilities that the qubit was in a state of 0 when a 1 was
expected, and vice versa. This IR Preprocessor implementation
then returns a post processing function instance that is exe-
cuted after QPU execution that leverages these probabilities
to shift and scale observable expectation values. The plot in
Figure 8 shows the energy as a function of the variational
parameter, with and without this readout error mitigation
preprocessor execution. Clearly, automating this sort of error
mitigation will provide more reliable results with minimal
costs to those adopting quantum computing as part of their




scientific computing workflows.
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Fig. 8. Energy as a function of the variational parameter for the deuteron
N = 2 Hamiltonian with and without readout error correction.

B. Higher Levels of Abstraction

The previous section demonstrated the programmability of
the N = 2 deuteron problem through XACC quantum kernels
written in the low-level Quil assembly language. However,
XACC Compilers enable the expressibility of problems at
higher levels of abstraction as well. Here we take the same
problem and program it in a language parseable by a Compiler
implementation that abstracts the notion of a fermionic second
quantized Hamiltonian.

We can express the above deuteron problem as the following
second quantized fermionic Hamiltonian

Hy = —.4365811a}ao — 4.28660705a,a,
— 4.28660705a ag + 12.25ala; . 2)

We have developed a Compiler implementation (the Fermion-
Compiler [31]) that reads in quantum kernel source code that
represents the above Hamiltonian (see Listing 2). Each line
of this language represents a single term in the Hamiltonian.
Each line begins with the term coefficient followed by pairs
of integers indicating the operator site and whether it is a
creation or annihilation operator (a 1 or 0 respectively). This
Compiler maps the fermionic representation to spins via the
Jordan-Wigner or Bravyi-Kitaev transformation, and produces
the equivalent XACC quantum kernels shown in Listing 1.
Listing 2
XACC KERNEL FOR DEUTERON VQE TARGETING FERMIONCOMPILER

demonstrate the portability of the framework via its application
programming interface (API). The programming, compilation,
and execution of quantum kernels in C++ is demonstrated in
Listing 3 for a general quantum kernel foo.

Listing 3
PORTABLE XACC API
auto src = R“src(
__qpu__ foo(AcceleratorBuffer b,
double t) {...})src”;
// Get the target Accelerator
auto qpu = xacc::getAccelerator (’ibm”);

auto gbits = gqpu—>createBuffer (3);
// Compile the src against qpu
xacc :: Program p(src,qpu);
p.build ();

// Get executable lambda
auto kernel = p.getKernel <double>("fo0”);

// Loop over parameterized
// compiled kernel

for (auto& t thetas) kernel (gbits, t);

__qpu__ H2(AcceleratorBuffer b) {
—0.43658111 0 1 0 O;
—4.28660705 0 1
—4.28660705 1 1
12.25 11

1 0;
0 0;
1 0;

bl

C. A Portable API

The previous section provide the reader with examples of
the extensibility of XACC with regards to error mitigation and
overall quantum program levels of abstraction. Here we seek to

Note the generality of this API and its portability to available
accelerators. Users begin by defining their quantum algorithm
as an XACC kernel, and then get reference to the desired
Accelerator (here the IBM Accelerator targeting the remote
IBM Quantum Experience). Then an allocation of qubits is
requested, and Program object is constructed and built, which
kicks off the XACC compilation workflow. This includes
mapping the source code to the XACC IR and executing
all preprocessors, optimizations, and transformations. Users
can then get reference to a lambda or functor that affects
execution of the compiled result on the requested Accelerator.
This code snippet is general and portable to available backend
Accelerators. The name of the desired Accelerator can even
be elevated to a command line option that one can modify at
runtime.

VIII. CONCLUSION

Hybrid computing systems offer novel platforms to inte-
grate emerging QPU with conventional programming methods.
However, there are several challenges that arise from these
noisy devices whose performance not yet well understood. In
this contribution, we have outlined many of the technical issues
faced by quantum program developers adopting to client-
server model for remote access across multiple technologies
and vendors. In addition to new needs for device-level in-
formation, current programmers also face obstacles in code
portability, tool integration, program validation, and workflow
development.

In the context of these challenges, we have described how
the XACC programming framework provides new methods
for inter-operable program and tool development as well as
support for new access client-server access models based on
local QPU systems. The framework itself is hardware agnostic
and, therefore, meant to provide a generalized approach to




quantum programming. This contrast with the diversity of
vendor-specific stacks and domain-specific languages under-
development. We anticipate that both efforts, specialized and
generalized, are needed to ensure strong and robust growth of
the quantum computing ecosystem. The ongoing co-design of
hardware and software to mitigate gate noise and execution
errors will continue to require close coordination.
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