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Abstract. Dedicated data transport infrastructures are increasingly being de-
ployed to support distributed big-data and high-performance computing scenar-
ios. These infrastructures employ data transfer nodes that use sophisticated soft-
ware stacks to support network transport among sites that often house distributed
file and storage systems. Throughput measurements collected over such infras-
tructures for a range of round trip times (RTTs) reflect the underlying complex
end-to-end connections, and have revealed dichotomous throughput profiles as
functions of RTT. In particular, concave regions at lower RTTs indicate near-
optimal performance, and convex regions at higher RTTs indicate bottlenecks due
to factors such as buffer or credit limits. We present a machine learning method
that explicitly infers these concave and convex regions and transitions between
them using sigmoid functions. We also provide distribution-free confidence es-
timates for the generalization error of these concave-convex profile estimates.
Throughput profiles for data transfers over 10 Gbps connections with 0–366 ms
RTT provide important performance insights, including the near optimality of
transfers performed with the XDD tool between XFS filesystems, and the perfor-
mance limits of wide-area Lustre extensions using LNet routers. A direct appli-
cation of generic machine learning packages does not adequately highlight these
critical performance regions or provide as precise confidence estimates.

Keywords: Data Transport · Throughput Profile · Concavity-Convexity · Gener-
alization Bounds

1 Introduction

There have been unprecedented increases in the volume and types of data transfers
over long-distance network connections in a number of scenarios, such as transfers
of partial computations over geographically dispersed cloud-server sites for big data
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managed by UT-Battelle, LLC for U.S. Department of Energy under Contract No. DE-AC05-
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(a) XDD: XFS on SSD
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(b) LNet-routed Lustre
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(c) memory: Scalable TCP

Fig. 1: Throughput measurements over dedicated 10GigE connections for RTT ∈ [0,366] ms: (a)
concave profile of near-optimal XDD transfers, (b) convex profile due to LNet router limits, and
(c) intermediate concave-convex profile of memory transfer.

computations. Extensive throughput measurements collected over a range of testbed and
production infrastructures (for example, [9, 19]) show that performance can vary greatly
as a result of both transfer characteristics and choices made along four dimensions:
(i) Data Transfer Node (DTN) host systems, which can vary significantly in terms of

the number of cores, Network Interface Card (NIC) capability, and connectivity;
(ii) file and disk systems, such as Lustre [10], GPFS [5], and XFS [26], installed on

Solid State Disk (SSD) or hard disk arrays;
(iii) network protocols, for example, CUBIC [20], H-TCP [23], and BBR [4] versions

of Transmission Control Protocol (TCP); and
(iv) file transfer software, such as Globus [2], GridFTP [1], XDD [25, 22], UDT [6],

MDTM [11], Aspera [3], and LNet extensions of Lustre [16].
Thus throughput measurements need to be analyzed systematically to reveal perfor-
mance trends of the components and infrastructures.

We denote the throughput at time t over a connection of RTT τ as θ(τ, t), for a given
configuration of end-to-end connection. We call its expectation over an observation
period TO the throughput profile (a function of τ), given by

ΘA(τ) =
1

TO

TO∫
0

θ(τ, t)dt

where modality A = T and A = E correspond to memory transfers using TCP and
end-to-end disk file transfers, respectively. Each modality embodies the combined ef-
fects of corresponding components and their configurations; for file transfers, it reflects
the composition of filesystems, network connections, and their couplings through host
buffers. In general, ΘA(τ) is a random quantity and its distribution PΘA(τ) is complex,
since it depends on the properties and instantaneous states of network connections,
filesystems, and transfer hosts. Throughput measurements are used to estimate its ap-
proximation Θ̂A(τ), in order to characterize transport performance as RTT is varied.

To illustrate the importance of throughput profile properties, we show in Figs. 1(a)-
(c) “measured” throughput profiles for three scenarios: (a) XDD transfers between sites



with XFS filesystems mounted on SSD storage, (b) file copy operations between Lustre
filesystems extended over wide-area connections using LNet routers, and (c) memory
transfers between transfer hosts with identical configurations. Data transfers in these
scenarios are over dedicated 10GigE connections with RTT τ ∈ [0,366] ms. The profiles
in Figs. 1(a) and 1(b) are quite different not only in their peak throughput values (10 and
4.5 Gbps respectively) but also in their concave and convex shapes, respectively. The
first represents a near-optimal performance achieved by balancing and tuning XFS and
TCP parameters in XDD [18], whereas the second represents a performance bottleneck
due to LNet credit limits [16]. On the other hand, the third profile, in Fig. 1(c), shows
a combination of both concave and convex regions [17], wherein TCP buffers limit
throughput values beyond a certain RTT at which the profile switches from concave to
convex in shape.

From the perspective of network performance, a concave region is highly desirable
since intermediate-RTT throughput values are, by definition, higher than the linear in-
terpolation; this is often an indicator of near-optimal throughput performance. Now,
obtaining a concave throughout profile requires (i) selection of TCP version and trans-
port method parameters, (ii) selection of file, I/O, and storage system parameters, and
(iii) joint optimization of these parameters as well as the interactions between the com-
plex subsystems. On the other hand, in a convex region, intermediate-RTT throughput
values can only be guaranteed to be higher than the minimum observed; this is often
an indicator of system/component limits, for example, the LNet credits and TCP buffer
sizes in Figs. 1(b) and 1(c), respectively. Furthermore, the shape of Θ̂A(τ) has a deeper
connection to the time dynamics of data transfers [17, 8]. For example, a concave profile
requires a fast ramp-up followed by stable throughput rates, which in turn requires that
file I/O and network connections be matched. Thus, profile estimates that accurately
reflect concave and convex regions are highly insightful for performance prediction and
diagnosis.

To estimate the concave-convex profile regions, we present a machine learning
method based on the flipped sigmoid function ga1,τ1(τ) = 1− 1

1+e−a1(τ−τ1)
. We use this

method to estimate, given a set of performance measurements, a throughput profile us-
ing the function fΘA(τ), given by

fΘA(τ) = b [ga1,τ1(τ)I (τ ≤ τT )+ga2,τ2(τ)I (τ ≥ τT )]

where I(·) is the indicator function, ga1,τ1(τ) is the concave part, and ga2,τ2(τ) is the
convex part. We apply this method to extensive throughput measurements over 10 Gbps
connections with 0-366 ms RTT for:
(i) memory transfers using different TCP configurations,

(ii) file transfers between Lustre and XFS filesystems using XDD and GridFTP, and
(iii) file copy operations using Lustre filesystems mounted over wide-area connections

using LNet routers.
In addition, we show analytically that the estimation of this concave-convex profile

function is statistically sound [24] in that its expected error is close to optimal, with
a probability that improves with the number of measurements. This guarantee is in-
dependent of the composite distribution PΘA(τ) that depends on various hardware and
software components and complex interactions between them.



To further evaluate our machine learning method, we also apply some generic ma-
chine learning modules from Python and MATLAB libraries to estimate the throughput
profiles. We find that these methods do not, in most cases, adequately capture the critical
concave-convex regions of the throughput profiles. The confidence probability bounds
for their generalization errors are not readily available, but can be derived by using
properties such as bounded variance or smoothness [15, 21]. The generalization bounds
for our sigmoid-based method use the Lipschitz property and are sharper, as they re-
quire only a two-dimensional metric cover, rather than the higher-dimensional covers
needed in generic learning techniques.

The rest of this paper is as follows. A brief description of our testbed used for
measurements is provided in Section 2. The concave and convex regions of memory
and file transfer throughput profiles are discussed in Section 3, along with the proposed
profile-estimate fΘA(τ) computed based on measurements. A confidence probability
estimate for generalization error is derived in Section 4. Application of some generic
machine learning modules is described in Section 5. Conclusions and open areas are
briefly described in Section 6.

2 Testbed and Measurements

We collected the measurements used in this paper on a testbed consisting of multiple
data transfer servers, 10 Gbps wide-area hardware connection emulators, and a dis-
tributed Lustre filesystem with LNet routers. The testbed consists of 32-core (feynman1,
feynman2, tait1, and tait2) and 48-core (bohr05 and bohr06) Linux work-
stations, QDR Infiniband (IB) switches, and 10 Gbps Ethernet switches. For various
network connections, hosts with identical configurations are connected in pairs over a
back-to-back fiber connection with negligible 0.01 ms RTT and a physical 10GigE con-
nection with 11.6 ms RTT via Cisco and Ciena devices, as shown in Fig. 2(a). We use
ANUE devices to emulate (in hardware) 10GigE connections with RTTs τ ∈ [0,366] ms.
These RTT values are strategically chosen to represent a global infrastructure with three
scenarios of interest: (a) smaller values represent cross-country connections, for exam-
ple, facilities distributed across the US; (b) 93.6 and 183 ms represent inter-continental
connections, for example, among US, Europe, and Asia; and (c) 366 ms represents a
connection spanning the globe, which is mainly used as a limiting case.

The Lustre filesystem is supported by eight OSTs connected over IB QDR switch,
as shown in Fig. 2(b). Host systems (bohrs and taits) are connected to IB switch
via HCA and to Ethernet via 10 Gbps Ethernet NICs. In addition, our SSD drives are
connected over PCI buses on the hosts bohr05 and bohr06, which mount local XFS
filesystems. We also consider configurations wherein Lustre is mounted over long-haul
connections using LNet routers on tait1 and bohr06.

Memory-to-memory throughput measurements for TCP are collected using iperf.
Typically, 1-10 parallel streams are used for each configuration, and throughput mea-
surements are repeated 10 times. TCP buffer sizes are set at largest allowed by the host
kernel to avoid TCP-level performance bottlenecks, which for iperf is 2 GB. These set-
tings result in the allocation of 1 GB socket buffer sizes for iperf. File transfers between
the sites and different filesystems are carried out using XDD and GridFTP which pro-



(a) physical and emulated connections between hosts

(b) Lustre and XFS filesystems

Fig. 2: Testbed network connections and filesystems.

vide the throughput measurements. For Lustre over wide-area connections, throughput
measurements are made using IOzone executed on a host with Lustre Ethernet clients
that access remote IB Lustre system via LNet routers.

3 Throughput Profiles: Convexity-Concavity

Using memory and file transfer measurements collected over connections with RTT
τk, k = 1,2, . . . ,n, we derive the estimate f̂ΘA(τ) of ΘA(τ). The flipped sigmoid func-
tion ga,τa is concave for τ ≤ τa and switches to convex for τ ≥ τa. The condition
τa2 ≤ τT ≤ τa1 ensures the concave and convex regions to the left and right of the
transition-RTT respectively, as illustrated in Fig. 5. Let θ(τk, tk

i ) denote ith throughput
measurement collected at RTT τk, k = 1,2, . . . ,n, and at time tk

i , i = 1,2, . . . ,nk. We
scale all measurements by the connection capacity such that b = 1. We estimate the
parameters a1, τa1 , a2, τa2 , and the transition-RTT τT by minimizing the sum-squared
error of the fit fΘA(τ) based on measurements, which is defined as

Ŝ
(

fΘA

)
= ∑

τk≤τT

nk

∑
i=1

(
θ(τk, t

k
i )−ga1,τa1

(τk)
)2

+ ∑
τk≥τT

nk

∑
i=1

(
θ(τk, t

k
i )−ga2,τa2

(τk)
)2

, (3.1)
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(a) f 1 10gige f 2, 1 stream
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(b) f 1 10gige f 2, 10 streams

Fig. 3: Throughput profiles improve with number of parallel streams.
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(b) normal
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(c) large

Fig. 4: Throughput profiles improve with larger buffer sizes.

where the parameters are bounded such that a1,a2 ∈ [−A,A] and τa1 ,τa2 ∈ [−T,T ], and
τT ∈ {τk : k = 1,2, . . . ,n}.

3.1 Various Throughput Profiles

The three different throughput profile shapes illustrated in Fig. 1 correspond to sce-
narios with disparate end-subsystems and configurations. However, profiles may vary
significantly even when end-subsystems are identical, as a result of different transport
parameters. For example, Fig. 3, which presents throughput measurements for memory
transfers using CUBIC with large buffers, shows that more streams not only increase
the aggregate throughput, but also extend the concave region; here, the convex region
with a single stream mostly disappears with 10 streams. TCP/IP buffer sizes have a
similar effect, with larger buffers both increasing mean throughput and extending the
concave region. As seen from Fig. 4, for CUBIC with 10 streams, the default buffer
size results in an entirely convex profile; with the normal buffer size recommended for
100 ms RTT, a concave region (leading up to 91.6 ms) is followed by a convex region;
finally, a large buffer extends the concave region beyond 183 ms. We will show next that
f̂ΘA(τ) estimated using measurements provides us a systematic way to identify the con-
cave and convex regions, and in particular, all convex regions that indicate performance
bottlenecks and potential improvements.
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Fig. 5: Sigmoid-regression fits of throughput profiles with various buffer sizes for single CUBIC
stream.

3.2 Estimates for Memory Transfers

The concave-convex fit f̂ΘT (τ) for single stream CUBIC measurements over 10GigE
connections for three different buffer sizes are shown in Fig. 5 along with the mea-
surements. As in previous section with 10 streams, the profile is entirely convex at the
default buffer size, and consequently there is only a convex portion to the sigmoid fit.
For normal and large buffer sizes, both the concave and convex sigmoid fits are present,
as shown with solid-blue and dashed-black curves, respectively. It is clear that τT in-
creases, hence the concave region expands, as the buffer size is increased.

We estimate f̂ΘT (τ) for 1-10 parallel streams and three congestion control modules,
namely, CUBIC, HTCP, and STCP. The overall variations of the estimated transition-
RTT values w.r.t. number of parallel streams, buffer sizes, and TCP congestion control
modules are shown in Fig. 6. For CUBIC with default buffer size, the transition-RTT
τT increases from 0.4 ms for 1-3 parallel streams to 11.8 ms for 4 or more parallel
streams. With normal buffer size, the transition-RTT τT remains consistently higher
(at 45.6 ms, except for 2 steams) than with default buffer size, and further increases
to 91.6 ms for 10 parallel streams. The τT estimate with the large buffer size is even
larger than with both the default and normal buffer sizes; for example, 91.6 ms for 1-6
parallel streams (except 2 streams) and 183 ms for 7 or more parallel streams. Similar
increasing trends of the estimate τT are also noted for HTCP and STCP, and thereby
corroborate our inference that more streams and larger buffer sizes extend the concave
region in addition to improving the throughput.
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Fig. 6: Transition-RTT estimates with 1-10 streams and various buffer sizes for CUBIC, HTCP,
and STCP.
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(a) XFS
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(b) direct I/O, 2 stripes
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(c) direct I/O, 8 stripes

Fig. 7: Mean throughput profiles of XFS and Lustre direct I/O file write transfer rates.

3.3 Estimates for File Transfers

XDD High-performance disk-to-disk transfers between filesystems at different sites
require the composition of complex file I/O and network subsystems, and host orches-
tration. For example, Lustre filesystem employs multiple OSTs to manage collections
of disks, multiple OSSes to stripe file contents, and distributed MDSes to provide site-
wide file naming and access. However, sustaining high file-transfer rates requires joint
optimization of subsystem parameters to account for the impedance mismatches among
them [22]. For Lustre filesystems, important parameters are the stripe size and num-
ber of stripes for the files, and these are typically specified at the creation time; the
number of parallel I/O threads for read/write operations are specified at the transfer
time. To sustain high throughput, I/O buffer size and the number of parallel threads
are chosen to be sufficiently large, but this heuristic is not always optimal [18]. For
instance, wide-area file transfers over 10 Gbps connections between two Lustre filesys-
tems achieve transfer rates of only 1.5 Gbps, when striped across 8 storage servers,
accessed with 8 MB buffers, and with 8 I/O and TCP threads [18], even though peak
network memory-transfer rate and local file throughput are each close to 10 Gbps.

We measured file I/O and network throughput and file-transfer rates over Lustre
and XFS filesystems for a suite of seven emulated connections in the 0–366 ms RTT
range, which are used for memory transfer measurements in the previous section. We
collected two sets of XDD disk-to-disk file transfer measurements, one from XFS to
XFS and one from Lustre to Lustre, and each experiment is repeated 10 times. We con-
sidered both buffered I/O (the Linux default) and direct I/O options for Lustre. In the
latter, XDD avoids the local copies of files on hosts by directly reading and writing into
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Fig. 8: Sigmoid regression fits of file transfer throughput profiles for XFS and Lustre.
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Fig. 9: Transition-RTT estimates with respect to the number of flows for XFS and Lustre.

its buffers, which significantly improves the transfer rates. Results based on these mea-
surements are summarized in [18]: (a) strategies of large buffers and higher parallelism
do not always translate into higher transfer rates; (b) direct I/O methods that avoid file
buffers at the hosts provide higher wide-area transfer rates, and (c) significant statistical
variations in measurements, due to complex interactions of non-linear TCP dynamics
with parallel file I/O streams, necessitate repeated measurements to ensure confidence
in inferences based on them.

These file transfers are carried out using XDD, which spawns a set of QThreads to
read a file from the source filesystem and subsequently transfer data over the network
to the destination filesystem. We refer to each source-destination QThread connection
as a flow. For XFS file transfers, the number of flows varies from 1 to 10, and the
data transfer profile plot is shown in Fig. 7(a) for various RTTs. These profiles show
monotonically increasing trends with respect to the number of flows. We use similar
configuration for the Lustre experiments with the direct I/O option. In addition to vary-
ing the number of flows from 1 to 10, two different number of stripes were used: stripes
2 and 8, and the corresponding plots are respectively shown in Figs. 7(b) and 7(c). Sim-
ilar to XFS profiles, the overall throughput exhibits predominantly increasing trends
with respect to the number of flows; although compared to XFS, the Lustre throughput
increases much slower with increasing flow counts in lower RTT cases. Comparing the
performances of 2 vs. 8 striped Lustre, we notice that the use of 2 stripes yields some-
what higher transfer rates for lower flow counts. With more flows, overall throughput is
higher, and 8 stripes is the better option.

To evaluate the transition-RTT values of file transfer profiles, we estimate the sig-
moid fit f̂ΘE (τ) using measured XFS and Lustre throughput profiles. In Fig. 8, we
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Fig. 10: GridFTP: Mean throughput profiles with CUBIC-Lustre-XFS configuration.
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Fig. 11: GridFTP: Mean throughput profiles with HTCP-Lustre-XFS configuration.

demonstrate the fitted sigmoid plots overlayed on the mean profiles of measured through-
put values with 6 parallel flows. We notice that all three variations of throughput profiles
show concave and convex region to a different degree. For the XFS profile, the concave
throughput profile at the smaller RTT values is more prominent than those in the Lus-
tre profiles with both 2 and 8 stripes. In addition, we notice that transition-RTT values
change depending on the file transfer throughput profiles; for example, both XFS and
Lustre with 8 stripes show τT = 183 ms with 6 flows, but Lustre with 2 stripes has
τT = 91.6 ms for this configuration.

The overall characteristic of the transition-RTT values for XFS and Lustre filesys-
tems at different number of flows is summarized in Fig. 9. For XFS, the transition-RTT
values steadily increases from 0.4 ms for 1 parallel flows to 45.6 ms for 2 flows, 91.6 ms
for 3-4 flows, and 183 ms for 5 or more flows. Similar increasing trends of the estimated
τT values are also noted for Lustre filesystem in Fig. 9(b), but comparing them with
Fig. 9(a) it becomes quite evident that XFS profiles have higher τT values, and hence
wider concave profile regions, at smaller number of flows. Among the Lustre profiles
with 2 and 8 stripes in Fig. 9(b), both produce only convex profiles for 4 or less number
of flows. Then, transition-RTT values of Lustre with 8 stripes rise sharply to 183 ms
in contrast to that with 2 stripes, indicating wider concave regions for 8-striped Lus-
tre profile. For 8 flows or more, both 2-striped and 8-striped Lustre throughput profiles
show the same τT values, but the measured throughput values are higher for 8-striped
Lustre (see Figs. 7(b) and 7(c)).

GridFTP GridFTP is an extension of the standard File Transfer Protocol (FTP) for
high-speed, reliable, and secure data transfer [1]. It implements extensions to FTP,
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Fig. 12: Sigmoid fits of GridFTP throughput profiles with CUBIC-Lustre-XFS configuration.
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Fig. 13: Sigmoid fits of GridFTP throughput profiles with HTCP-Lustre-XFS configuration.

which provide support for striped transfers from multiple data sources. Data may be
striped or interleaved across multiple servers, as in a parallel filesystem such as Lustre.
GridFTP supports parallel TCP flows via FTP command extensions and data channel
extensions. A GridFTP implementation can use long virtual round trip times to achieve
fairness when using parallelism or striping. In general, GridFTP uses striping and paral-
lelism in tandem, i.e., multiple TCP streams may be open between each of the multiple
servers participating in a striped transfer. However, this process is somewhat different
compared to XDD wherein each I/O stream is handled by a single TCP stream, whereas
such association is less strict in GridFTP.

Figs. 10 and 11 show GridFTP throughput performances for transfers between Lus-
tre and XFS filesystems using CUBIC and HTCP congestion control modules. In each
configuration, we vary the concurrency (cc) and parallelism (p) parameters, and collect
throughput measurements across 11 different RTT values including the ones used in
previous section. Here, XFS is mounted on SSD and provides throughput higher than
10 Gbps connection bandwidth. On the other hand, Lustre throughput is below 10Gbps
and hence the transfer throughput is mainly limited by Lustre parameters. From these
plots, it is quite evident that the overall throughput profiles of GridFTP are lower com-
pared to XDD file transfer throughput values described in previous section.

To evaluate the transition-RTT values for GridFTP profiles, we estimate the sigmoid-
based fit f̂ΘE (τ) of the measured GridFTP throughput values, and the corresponding
results are shown in Figs. 12 and 13. We notice from Fig. 12(a) that, when the values
of cc and p parameters are small, the concave throughput profiles extend only up to
93 ms. However, Figs. 12(b) and 12(c) show that, with the increase in cc and p val-
ues, the concave throughput regions of the GridFTP profiles become wider resulting
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Fig. 14: Transition-RTT estimates with respect to the GridFTP configurations.

into τT = 183 and 150 ms respectively at cc = 5 and 10 (along with p = 10). These
variations of τT values with respect to cc and p parameters are plotted in Fig. 14(a)
for the CUBIC-Lustre-XFS configuration of GridFTP profile. For the other GridFTP
configuration, HTCP-Lustre-XFS, the sigmoid fitted models on the throughput profiles
are shown in Fig. 13, and the resulting transition-RTT values are depicted in Fig. 14(b).
Overall, they show similar trends as obtained with the CUBIC-Lustre-XFS configura-
tion of GridFTP. The only notable difference is that, for the HTCP-Lustre-XFS config-
uration of GridFTP, the τT values stays at 183 ms for both cc = 5 and 10 (when p = 10),
indicating monotonic trend with cc and p parameters.

Lustre Over LNet As mentioned earlier, Lustre filesystem employs multiple OSTs to
manage collections of disks, and multiple OSSs to stripe file contents. Lustre clients and
servers connect over the network, and are configured to match the underlying network
modality, for example IB or Ethernet. Host systems are connected to IB switch via
HCAs, and Lustre over IB clients is used to mount the filesystem on them over IB
connections. Due to a latency limit of 2.5 ms, such deployments are limited to site-level
access, and do not provide file access over wide-area networks. This IB-based Lustre
filesystem is augmented with Ethernet Lustre clients, and LNet routers are utilized to
make IB-based OSSs available over wide-area Ethernet connections [16]. Compared
to GridFTP and XDD, which are software applications, the implementation of LNet
routers requires more changes to the infrastructure.

The throughput profiles of Lustre over wide-area connections using LNet routers
are shown in Fig. 15. For these measurements, we use two classes of hosts: (i) bohr05
(b5) and bohr06 (b6) are DTN servers with 48 cores, and (ii) tait1 (t1) and tait2
(t2) are compute nodes of a cluster with 32 cores. In each case, one of the node is used
as a LNet router which extends IB network to wide-area TCP/IP connection. As shown
in Section 3.1, TCP buffer size could have a significant impact on the concave-convex
shape of the profile.

In Fig. 16, we demonstrate the sigmoid fit f̂ΘE (τ) along with the measured through-
put profiles for LNet router configurations. As noted from Fig. 15, the profiles are en-
tirely convex in all our LNet configurations, and consequently we get only the convex
portions of the sigmoid fits. Therefore, the transition-RTT values for all LNet exper-
iments are estimated to 0.1 ms, as shown in Fig. 17. We also used two LNet buffer
sizes, 50M and 2G, which corresponded to convex and concave profiles for the under-
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Fig. 15: LNet: Mean throughput profiles.
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Fig. 16: Sigmoid regression fits of LNet throughput profiles.

lying TCP throughput profiles, as illustrated in Fig. 4. However, for file transfers via
LNet routers, in all the three configurations, the estimated throughput profile f̂ΘE (τ)
as a function of RTT is entirely convex, which indicates that the source of convexity
is elsewhere. Indeed, the LNet credits limit the number of packets in transit over the
Lustre filesystem, which in turn limits the number of packets in transit over TCP con-
nection. Such limit is equivalent to TCP buffer limit, which explains the convex profile
indicated by our estimate f̂ΘE (τ).

4 Confidence Probability Estimates

In the previous section, the convex-concave estimate f̂ΘA(τ) based on measurements
has been important in assessing the effectiveness of the transport methods and con-
figurations. Now, we address its soundness from a finite sample statistics perspec-
tive [24], particularly in assessing properties of ΘA(τ) that depend on (potentially)
infinite-dimensional PΘA(τ). We consider the profile regression given by

Θ̄A(τ) = E [ΘA(τ)] =
∫

ΘA(τ)dPΘA(τ),

which is approximated by f̂ΘA(τ) using finite independent and identically distributed
(i.i.d.) measurements θ(τk, tk

j ) at τk, k = 1,2, . . . ,n, collected at times tk
j , j = 1,2, . . . ,nk.

The critical concave-convex property provided by f̂ΘA(τ) is only an approximation of
the true concave-convex property of Θ̄A(τ), which depends on the complex distribution
PΘA(τ). In general, it is not practical to estimate PΘA(τ) since it depends on hosts, filesys-
tems, and network connections, as well as on software components, including TCP con-
gestion control kernel modules, and file- and memory-transfer application modules. For
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the estimate f̂ΘA(τ) computed based solely on measurements, we derive probability that
its expected error is close to the optimal error, independent of PΘA(τ).

Consider an estimate f (.) of Θ̄A(.) chosen from a function class M . The expected
error I( f ) of the estimator f is

I( f ) =
∫
[ f (τ)−θ(τ, t)]2dPθ(τ,t).

The best estimator f ∗ is given by I( f ∗) = min
f∈M

I( f ), which in general is not possible

obtain since Pθ(τ,t) in unknown. The empirical error of estimator f based on measure-
ments is given by

Î( f ) =
1

nT

n

∑
k=1

nk

∑
j=1

[ f (τk)−θ(τk, t j)]
2 ,

which is a scaled version of the sum-squared error Ŝ( f ) in Eq. (3.1), that is Î( f ) =
1

nT
Ŝ( f ), where nT =

n
∑

k=1
nk. The best empirical estimator f̂ ∈M minimizes the empiri-

cal error, that is, Î( f̂ ) = min
f∈M

Î( f ). Thus, f̂ is estimated based entirely on measurements

as an approximation to f ∗.
Let us consider a class of flipped sigmoid functions with bounded weights Ma,τ =

{ga,τ : a ∈ [−A,A],τ ∈ [−T,T ]}. The estimator f̂ΘA is chosen from the set of estimators
MΘA =

{
fΘA : ga1,τ1 ,ga2,τ2 ∈Ma,τ

}
, which is not guaranteed to minimize the empirical

error since τT is limited to τi. Then, the empirical error of our estimator f̂ΘA is given
by Î

(
f̂ΘA

)
= Î( f̂ )+ ε̂ in terms of the empirical best estimator f̂ , where ε̂ ≥ 0. We now

show that the expected error of f̂ΘA is within ε + ε̂ of optimal error I( f ∗), for any ε > 0,
with a probability that improves with the number of measurements and is independent
of the complex, unknown Pθ(τ,t).

Theorem 1. For f̂ΘA estimated based on nT =
n
∑

k=1
nk i.i.d. measurements, the probabil-

ity that its expected error is within ε + ε̂ of the optimal error is upper bounded as

P
{

I
(

f̂ΘA

)
− I( f ∗)> ε + ε̂

}
≤ K

(
AT
ε2

)
e−ε2nT /512,

for any ε > 0 and K = 2048.



Proof. We first note that

P
{

I
(

fΘA

)
− I( f ∗)> ε + ε̂

}
≤ P

{
I
(

ga1,τa1

)
+ I
(

ga2,τa2

)
− I( f ∗)> ε + ε̂

}
since I

(
ga1,τa1

)
+ I
(

ga2,τa2

)
≥ I
(

fΘA

)
wherein both ga1,τa1

and ga2,τa2
are expanded to

the entire range of τ . Then, we can write

P
{

I
(

ga1,τa1

)
+ I
(

ga2,τa2

)
− I( f ∗)> ε + ε̂

}
≤ P

{
I
(

ga1,τa1

)
− I(g∗a,τa)> ε/2+ ε̂/2

}
+P
{

I
(

ga2,τa2

)
− I(g∗a,τa)> ε/2+ ε̂/2

}
,

where I(g∗a,τa) = min
ga,τa∈Ma,τ

I(ga,τa). This inequality follows by noting that the condition

I
(

gai,τai

)
− I(g∗a,τa)< ε/2+ ε̂/2

for both i = 1,2 implies that I
(

ga1,τa1

)
+ I
(

ga2,τa2

)
− I( f ∗)< ε + ε̂ . Equivalently, the

opposite of the latter condition implies that of the former, and thus the probability of
the former is upper bounded by that of the latter, establishing the above inequality.

Next, by using Vapnik-Chervonenkis theory [24], we have

P
{

I
(

ga1,τa1

)
− I(g∗a,τa)> ε/2+ ε̂/2

}
≤ P

{
max

h∈Ma,τ
|I (h)− Î(h)|> ε/4

}
≤ 8N∞ (ε/32,Ma,τ)e−ε2nT /512

where θ(τ, t)≤ 1, and N∞ (ε,Ma,τ) is the ε-cover of Ma,τ under L∞ norm (see [7, 12]
for the last bound).

We now show that ga,τa ∈Ma,τ is Lipschitz as follows: (i) |ga,τ(x)− ga′,τ(x)| <
AT/4ε for all x under the condition |a− a′| ≤ ε , and (ii) |ga,τ(x)− ga,τ ′(x)| < AT/4ε

for all x under the condition |τ − τ ′| ≤ ε . The Lipschitz constant in (i) is estimated by
the maximum derivative with respect to a (part (ii) is similar). Let z = a(τ − τa) and
σ(z) = 1/(1+ e−z), such that ga,τa(τ) = 1−σ(z). Then, we have
dσ(z)

dz = aσ(z)[1−σ(z)]≤ a/4. Thus, we get [13]

dga,τa

da
=

dσ(z)
dz

τa ≤ AT/4 .

We consider a two-dimensional grid [−A,A]× [−T,T ] with 4AT/ε2 points equally
spaced in each dimension. Then, for any (a,τa), there exists a grid point (b,τb) such
that |a−b| ≤ ε and |τa− τb| ≤ ε , which in turn assures that ‖ ga,τa −gb,τb ‖∞≤ AT/4ε .
Consequently, we have

N∞ (ε/32,Ma,τ)≤ 128
(

AT
ε2

)
.

By applying this bound for both ga1,τa1
and ga2,τa2

, we obtain

P
{

I
(

f̂ΘA

)
− I( f ∗)> ε + ε̂

}
< 16N∞ (ε/32,Ma,τ)e−ε2nT /512 ,

which establishes the probability bound. �



This result ensures that I
(

f̂ΘA

)
− I( f ∗)< ε + ε̂ with a probability at least

α =
[
1−K

(
AT
ε2

)
e−ε2nT /512

]
, which approaches to 1 as nT → ∞. In particular, the ex-

ponential term decays faster in nT than other terms, and hence for a sufficiently large
nT a given confidence probability α can be assured. This performance guarantee is
independent of how complex the underlying distribution PΘA(τ) is, and thus provides
confidence in the inferences based on the concavity-convexity properties of the esti-
mate f̂ΘA derived entirely from measurements. Similar performance guarantees have
been provided for a somewhat different problem of network throughput profile estima-
tion in [14, 17]. It is interesting to note that the exponent of ε in the bound for the cover
size N∞ (ε/32,Ma,τ) is 2 in the above proof, although 5 parameters (a1,a2,τa1 ,τa2 and
τT ) are needed to estimate f̂ΘA . In this sense, the underlying structure of f̂ΘA reduces the
estimation dimensionality from 5 to 2. For a similar cover size estimate for feedforward
sigmoidal neural networks, for example, the exponent of ε would be the total number
of neural network parameters (much larger than 2).

5 Generic Machine Learning Methods

To gain further insights into throughput performance, we apply generic machine learn-
ing modules, available in Python and MATLAB, for obtaining regression-based esti-
mates of throughput profiles. The regression-fits in general not only indicate the overall
throughput trends as functions of various parameters, but also provide throughput pre-
dictions for configurations at which measurements have not been collected.

From the Python-based machine learning tools, we use three well-known learn-
ing approaches: (i) artificial neural network (ANN), (ii) random forest (bagging), and
(iii) gradient boosting. From MATALB, we use (i) support vector machines (SVM)
and (ii) Gaussian kernel estimates, for GridFTP measurements. We implement ANN
in the tensorflow framework with the following specifications: number of hidden
layers = 2, number of hidden units = 8 and 5, learning rate = 0.001, ReLU activation
units, and Adam optimizer. Both the weights and bias terms of the ANN are initial-
ized with normal random variables. The random forest model is also developed in the
tensorflow framework, specifically with the tensor forest module. In this setup, we
use number of trees = 2 and number of maximum nodes = 10, and execute the ten-
sor forest graph in the regression mode. The gradient boosting method is implemented
using the scikit-learn library, along with the following parameters: number of
trees = 1500, maximum depth = 2, learning rate = 0.001, and minimum samples per
split = 10. Furthermore, in the all the three learning methods, we use mean-squared
error as the cost metric for optimization purposes.

Memory Fig. 18 shows the fitted regression curves obtained via ANN, random forest,
and gradient boosting methods, when they are applied to the CUBIC TCP throughput
measurements. Specifically, in Fig. 18, we show only the cases with single flow using
the default and normal buffer sizes. The mean throughput profiles of the measured data
are shown with bold lines, whereas the corresponding fitted models are shown via dotted
lines. The corresponding sigmoid-function based regression fits are shown in Figs. 5(a)
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Fig. 18: CUBIC: Generic regression fits to default and normal buffer measurements with 1 flow.
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Fig. 19: XDD XFS: Generic regression fits to file transfer measurements at 6 flows.

and 5(b). At the chosen parameter setting for the generic learning methods, we notice
from Fig. 18 that the ANN and random forest based regression models show better fits
to these CUBIC TCP datasets than the gradient boosting based model. Particularly, the
learning models show better accuracy (i.e., smaller error) with the default-buffer config-
uration and at somewhat small RTT values. However, from these generic regression fits,
the concave-convex portions of throughput profiles and the associated transition-RTT
values are not quite as clear as with sigmoid regression fits.

XDD For the disk-to-disk file transfer throughput measurements, we also apply the
ANN, random forest, and gradient boosting learning methods to obtain the regression-fit
estimates. In Figs. 19 and 20, we depict the performances of these learning methods re-
spectively for the XFS and Lustre (8-striped with direct I/O option) filesystems. To com-
pare with the corresponding sigmoid-function based regression method (see Figs. 8(a)
and 8(c)), we only show the fitted lines at 6 parallel flows. The parameters of the learn-
ing methods are kept the same as those used for the TCP throughput measurements. In
general, ANN model show the best accuracies, followed by the random forest and gradi-
ent boosting models, for both XFS and Lustre direct I/O throughput measurements. The
fitted lines via random forest and gradient boosting methods show large errors from the
XFS measurements particularly at larger RTT values. Comparing the performances be-
tween the XFS and Lustre throughputs, we notice that the fitting accuracy is little better
with the Lustre datasets than XFS. However, from the concavity-convexity perspective,
these generic fits do not provide as clear information as obtained via the sigmoid based
regression approach.
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Fig. 20: XDD Lustre: Generic regression fits to 8-striped direct I/O measurements at 6 flows.
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Fig. 21: GridFTP: Generic regression fits to CUBIC-Lustre-XFS file transfer measurements.

GridFTP The generic regression model fits to the GridFTP measurements are demon-
strated in Fig. 21 for the CUBIC-Lustre-XFS configuration with the parameter values
cc = 5 and p = 10, using ANN model from Python, and SVM and Gaussian kernel
models from MATLAB. These plots are equivalent to Figs. 12(b) depicting the sig-
moid regression fit. Overall, the characteristics of all the fitted models seems quite
similar to each other. In particular, from the SVM fit in Fig. 21(b), we can observe
the concave and convex portions of the fitted model respectively at the smaller and
larger RTT values. However, exact specification of the transition-RTT value requires
one more post-processing step on the fitted SVM model, which was not required in the
sigmoid-regression method. The concave portion is also present in Gaussian kernel fit
although less prominent compared to SVM fit, as shown in Fig. 21(c). Comparatively,
the concave-convex shape is less discernable in neural network fit in Fig. 21(a), whereas
the transition is apparent in the other two fits.

LNet The regression fits obtained using ANN, random forest, and gradient boosting
techniques to the LNet throughput measurements are depicted in Fig. 22 for the b5-
b6-2G configuration. Fig. 16(a) depicts the equivalent sigmoid-regression fit. We do
not include the generic regression fits to the other LNet datasets as they have similar
trends. Among the three generic learning methods, the ANN model shows the best ac-
curacy in fitting the measured LNet throughput data, followed by the gradient boosting
and random forest models. Overall, these regression fits capture the entirely-convex
trends of LNet throughput profiles, except the random forest fit, which is somewhat
non-representative of convex profile.
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Fig. 22: LNet: Generic regression fits to b5-b6-2G file transfer measurements.

6 Conclusions

We presented a learning approach that explicitly captures the dichotomous throughput
profiles observed in throughput measurements collected in a number of data transport
scenarios. It identifies concave regions at lower RTTs that indicate near-optimal per-
formance, and convex regions at higher RTTs that indicate bottlenecks due to factors
such as buffer or credit limits. This approach uses sigmoid functions to characterize the
concave and convex regions in throughput profiles, and also provides distribution-free
confidence estimates for the closeness of its expected error to optimal error. We applied
this method to throughput measurements of memory and file transfers over connections
ranging from local to cross-country to round-the-earth distances. The convex-concave
profile estimates enabled us to infer the near optimality of transfers in practical sce-
narios, such as XDD transfers between XFS filesystems, based on concave regions. In
addition, this approach also enabled us to infer performance limits, such as in case of
wide-area Lustre extensions using LNet routers, based on convex regions. A direct ap-
plication of generic machine learning packages did not always highlight these critical
performance regions nor provided as sharp confidence estimates, thereby making a case
for customized machine learning methods such as the one proposed here.

In terms of future directions, characterizations of latency, jitter, and other dynamic
properties will be of interest for data transport infrastructures, in addition to throughput
profiles considered here. Additionally, it would be of future interest to derive confi-
dence estimates for the transition-RTT computed using the measurements. Extensions
of the proposed estimates and analyses to data transport over shared network connec-
tions would also be of future interest.
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