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What Is Vectorization ? B

for (int i=0;i<N;++i){ for (int i=0;i<N;i+=4){
| Ali+0] | Ali+1] | Ali+2] | Ali+3] |
+ +

| B[i+0] | B[i+1] | B[i+2] | B[i+3] |

| cito | civn | cis2 | civg |

Scalar operation ¥ Vector processing with a vector length 4

m Vectorization transforms a code with Single Instruction Multiple Data (SIMD)
instructions, exploiting instruction-level parallelism.

m Significant speedup can be achieved by vectorizing a code with SIMD.

m Modern HPC systems use wide vector units to achieve peak performance.

How can we vectorize a code ?

m A code can be auto-vectorized by a compiler, or developers can write a code with vector
intrinsics or assembly kernels.

m Developers (or code generators) should be able to express algorithms with fine-grained

regular parallelsim. 5




Problem: Block Line Preconditioner

m Consider a block sparse system arising from coupled multi-physics problems.

m Line preconditioner is built by approximating the problem domain as a collection of lines
of elements.

m A collection of lines of elements results in a set of block tridiagonal matrices.

m Block tridiagonal matrices are factorized once per solution (or every nonlinear iteration)
and applied (triangular solve) multiple times.

. al
<0 i o\ |

i

n

Problem domain Extracted line elements A set of block tridiagonal matrices




Problem Setup

m Typical blocksize b is selected as 3, 5, 9 and 15, which are related to scientific
applications e.g., elasticity, ideal gas and multi-physics fluid problems.

m Limit memory usage up to 16 GB i.e., MCDRAM on KNL and GPU device memory.

m With this memory constraint, typical local problems (m x n X k) are selected as
128 x 128 x 128 for b = 3,5 and 64 x 64 x 128 for b = 10, 15.

— Batch parallelism is used running a sequential block tridiagonal factorization consisting of
GETRF, TRSM and GEMM within parallel_for.

ﬁ;}i\\ﬂi—:&:“;i 1 for T in{To,Ti, - ,Tuxn—1} do in parallel
B Nw e 2 for r<Otok—2do

o1l B
N 4 Br:=L"1B";

'.. 5 Cr=CuUul;

6 Ar+] ::A"r+l _C"vrér;
B\ 7 AT = LU(A"”);
AN

Line preconditioner setup with batch parallelism



Implementation Choices

m BLAS/LAPACK with OpenMP
m Batched BLAS/LAPACK
m Do-It-Yourself




Problems Using Dense Linear Algebra Libraries @

m BLAS/LAPACK with OpenMP

#pragma omp parallel for
for (i=0;i<mx*n;++i) {
for (r=0;i<k—1;++r) {
getrf (A(i,r));
trem (L2, ACi,z), B(i,z));
trsm (202, A(Ci,r), Cli,xr));
gemm (C(i,r), B(i,r), A(i,r+1));
b
getrf (A(di,k—1));

m BLAS/LAPACK is not optimized for such small problem sizes as 3, 5, 9 and 15.

m Batched BLAS/LAPACK

for (r=0;i<k—1;++r) {
batch_getrf (A(:,r));
bateh trsm(?L%, A(:,xr), B(:,r));
bateh_trsm(*U?, ACz,r), C(:,r));
batchtgemm( Ci(:, )R NBIC: 2 ), A et 1))
e
batch_getrf (A(: ,k—1));
m Batched BLAS/LAPACK is designed to compute many dense problems in parallel.
= The sequence of batched operations does not exploit temporal data locality.
7



Compact Data Layout

m Allows to exploit temporal locality in a sequence of batch calls.

m Efficiently uses SIMD units for small matrix computations.




Problem in Standard 3 x 3 x 3 Matrix-Matrix Multiplication (GEMM) @ g

m Matrices are stored in a standard column-major (row-major) order.

// C += A B;
for (int j=0;3j<3;++j)
for (int k=0;k<3;++k)
// C(0:2,3j) += A(0:2,k)*B(k,j)
fused_mult_add (C(mask(0:2), j), A(mask(0:2), k), B(k, j));

m FLOP (54 =2-m-n-k) per memory ops. (6 vector load with masks, 9 scalar load and 3
vector store with mask) is 3.

m Blocksize of interest (3,5,10,15) is too small to use wide vector units (AVX512) on
KNL.

+13 more registers

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Register usage: A and C are unrolled and B is loaded elementwisely




Our Solution: Compact Data Layout (SIMD type) @ g
m Modern computing architectures achieve peak performance through vectorization.
m Recall that our focus is on solving multiple problems in parallel.
m Compact data layout interleaves data across matrices.

= SIMD type becomes basic computing unit and all scalar operations are transformed to
vector operations.

A111 A112 AT13

wizt || avz2|] at2s

A1 [§ a2 a1194

A13TN A132\" A133)

// computing unit o [
struct VectorAVX256D { . .
a1 1 msiz |} asid

union { a1t || a21| A21g
__m256d v; a2zt || agez || az2s
double s[4];

}.}, .

A311 A312 A313

aatt |} Adagz [} Adga

= — A121 |} A2 [§ At23
A231wt" A232wt" A233: 3 -

Az21 |} Asez [} Ases

Ad421 || g2z [ Ad23

// overload arithmetic operators (+—sx/) Ad21]| As2|| A323 : 2
A131 [§ ;A132 |§ rA133

VectorAVX256D A331\h" A332\t" A333
operator+(VectorAVX256D const &a, i) | P |
VectorAVX256D const &b) { e | ety A331 |} Ass2 |} Asss
return __mm256_add_pd(a, b); - A43IN A432NA A433

} izt || adz2 || adzs

A431 A432y A433

Compact data layout
Standard data layout using vector length of 4 10
——_
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Compact 3 x 3 x 3 Matrix-Matrix Multiplication (GEMM)

m Matrices are batched, with batch size the architecture vector length. In a batch, matrix

entries are interleaved.

// batched C += A B;

for Cint 1=0;i<8;++1)

for (int j=0;j<3;++j)
for (int k=0;k<3;++k)

£/ €L0:7,1,j) += A(0:7,[,K)*BC0O:7 &k, j)
fused_mult_add(C(0:7, i, j), AC0:7, j, k), B(0:7, k, j));

m FLOP (432 =8-2-m-n-k) per memory ops. (27 vector load and 9 vector store) is 12.
m Code is purely vectorized.
C(0:7,:,: B(0:7.k,))

IIIIIIIIIIII|IIIIII o
12 15

Register usage: packed matrix A and C is unrolled and packed B is loaded elementwisely

11




Compact Batched BLAS/LAPACK =

Inte]l® MKL 2018
m Compact BLAS/LAPACK APIs!:

® mkl_7gemm_compact matrix-matrix multiplication,
® mkl_7trsm_compact triangular matrix solve,
m mkl_7potrf_compact Cholesky factorization,
® mkl_7getrfnp_compact LU without pivoting,
m mkl_7geqrf_compact QR, etc.

m Example of mkl_7gemm_compact:

mkl_7gemm_compact (// conventional BLAS interface
layout, transa, transb, m, n, k,
alpha, xap, ldap, x*bp, 1ldbp, beta, *cp, ldcp,
// compact format description
format, // MKL_COMPACT_{SSE/AVX/AVX512}
nm) ; // # of matrices in compact format

m Single pack operation (nm = 1) can be used in “parallel for”.

m New batch functionality can be efficiently composed by using compact BLAS/LAPACK
e.g., batched block tridiagonal factorization.

1. software.intel.com/en-us/mkl-developer-reference-c-blas-and-lapack-compact-routines 12



Compact Batched BLAS/LAPACK =

KokkosKernels?

m Provides portable C++ implementations of local computational kernels for linear algebra
and graph operations using Kokkos shared-memory programming model.

m Layered interface i.e., serial(vector), team and device corresponding to hierarchical
parallelism.

m Supports LU factorization without pivoting, TRSM and GEMM.

// SIMD type encapsulates vector storage and operations
class Vector<SIMD<T>, VectorLength>;

// multidimensional array, Kokkos::View, abstracts rank—3 packed matrices
// nm — # of matrices in compact format; m,n,k — matrix dimensions for gemm
Kokkos ::View<Vector <SIMD<T> >%%*> A(nm, m, k), B(am, k, n), C(nm, m, n);

// device: compose a batch operation using Kokkos parallel programming models
Kokkos ::parallel_for (nm, KOKKOS_LAMBDA (int i) {

// extract rank—2 array from input array of matrices

auto Ac = Kokkos::subview(A, i, ALL, ALL);

auto Bc = Kokkos::subview(B, i, ALL, ALL);

auto Cc = Kokkos::subview(C, i, ALL, ALL);

// serial: single pack interface using compact data format
KokkosBatched::SerialGemm<TransA,TransB,AlgorithmTag>
::invoke(alpha, Ac, Bc, beta, Cc);
1215
2. github.com/kokkos/kokkos-kernels/tree/master/src/batched 13



Line Preconditioner Impl. Using Compact Batched BLAS/LAPACK @ g

1 for apairT in
{10, 1) (12, 13), . (Twsn—2, Tuxn—1) } do im
parallel

Artl i Artl G,
AL = LU (AF1);

2 for r < O0tok—2do
3 Ar:=LU(Ar);
4 B i=LVB

5 Cr=Cu';

6

7

N\,

Block tridiagonal factorization using compact batched BLAS/LAPACK packed with a vector length 2

Some Issues
m As it performs cross-matrix vectorization, pivoting in LU is not feasible.
— For preconditioning, this does not matter.
m There is repacking overhead when the standard format is used.
— Block tridiagonal matrices are extracted and repacked at the same time.

14
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Numerical Experiments




Numerical Experiments

Testbed: Intel Knights Landing

m 34 Tiles, 2 Cores/tile, 4 Threads/core, 2x AVX512 units/core, IMB L2
m 3+ TFLOPs in double precision, 400+ GB/s (MCDRAM)

Benchmark
m Compact batched LU, TRSM and GEMM are compared against
m 1) MKL with OpenMP, 2) MKL batched APIs, 3) 1ibxsmm’
m Roofline analysis on batched LU, TRSM, GEMM.

m Our impl. of block line preconditioner is compared with an optimized mini-app version of
SPARC.

m SPARC: Sandia production code for solving Navier-Stokes equations for
compressible and reacting flows.

3. https://github.com/hfp/libxsm

16
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Batched LU

Block Size 3 Block Size 5 Block Size 10 Block Size 15

*— MKL Compact
- VKL OpenhiP

|44 KokkosKernels 14 i o X i
; iy ’ <
; ! 10 I 15 i "~
0 0s

GFLOPS / Core

i 2 4 8 16 34 68 12 4 8 16 34 6 12 4
#Cores #Cores.

6 o34 68 1 2 4 16 34 68

8 8
#Cores # Cores

Comparison of compact batched LU against MKL DGETRF with OpenMP where the batch size (N) is 16384.

Vector utilization Speedup of MKL Compact
Blocksize MKL OpenMP  KokkosKernels ~ MKL Compact 1 thread 68 threads
3 1.00 12.80 12.28 67.61 7.88
5 2.18 13.42 13.42 34.49 9.69
10 3.65 14.72 14.70 10.01 6.84
15 4.94 15.17 15.15 7.64 6.24

Vector utilization (closer to 16 is better) with 68 threads and speedup against MKL DGETRF with OpenMP
using 1 and 68 threads.




Batched TRSM e

Block Size 3 Block Size 5 Block Size 10 Block Size 15
(@8 MKL Batch
#—% MKL Compact
-8 MKL OpenP

\ 4 KokkosKernels

$os

@

& 0.

02 i \ 02

—t—t—t—t—1
1 2 4 8 16 34 68 1 4 8 16 34 68 1 2 4 8 16 34 68 1 2 4 8 16 34 68
# Cores. # Cores. # Cores. # Cores.

Comparison of compact batched TRSM against MKL batched DTRSM where the batch size (N) is 16384.

Vector utilization Speedup of MKL Compact
Blocksize =~ MKL Batched ~ KokkosKernels ~ MKL Compact 1 thread 68 threads
3 6.44 13.13 15.68 73.17 9.38
5 8.89 15.39 13.64 14.90 5.36
10 10.66 15.93 14.65 5.37 3.44
15 12.44 15.98 15.05 5.33 4.09

Vector utilization (closer to 16 is better) with 68 threads and speedup against MKL batched DTRSM using 1
and 68 threads.




Batched GEMM

Block Size 3 Block Size 5 Block Size 10 Block Size 15

12 ; @ (KL Batch 20
KL Compact h . B
10/ -8 MKL OpenMP
~ 15 \‘\ i PPY s, £ I ) :
08 ¥-¥ ibismm - »—0—0___4,\\
2 ——o = -

GFLOPS / Core

05
- D—O—o——._.“\' ! 5
——a—a—a—a g '
—a——8—=§
1 2 4 8 16 34 68 1 2 4 8 16 ) 68 1 2 4 8 16 34 68 1 2 4 8 16 34 68
# Cores # Cores #Cores #Cores

Comparison of compact batched GEMM against MKL batched DGEMM and 11ibxsmm where the batch size (N) is
16384.

Vector utilization Speedup (Compact/Batch)
Blocksize =~ MKL Batched  libxsmm  KokkosKernels ~ MKL Compact 1 thread 68 threads
3 10.30 9.99 12.96 15.87 10.26 3.46
5 12.40 11.99 14.34 15.97 4.32 2.34
10 14.43 15.01 15.14 15.99 1.76 1.45
15 14.94 15.87 15.41 15.99 1.32 1.27

Vector utilization (closer to 16 is better) with 68 threads and speedup against MKL batched DGEMM using 1
and 68 threads.
19




Roofline Analysis LU (],

m Roofline is obtained by P = min(P.,B-I) where P, P, B and [ are attainable performance,
peak compute performance, peak bandwidth and arithmetic intensity respectively.

m APEX* toolkit is used for performance analysis.
m Compact BLAS/LAPACK fully utilizes high bandwidth memory.

10*

Peak GFlop/s (W/FMA)

B
o @9‘& no FMA)
2 o
o o (neFMA, izali
<2 no vectorization)
10*
&

10!

w % MKL Compact

a [l MKL OpenMP
’ KokkosKernels
1‘u*" 107" 10" 10" 10*

Arithmetic Intensity (flops/bytes)

Attainable Performance (GFlop/s)

Roofline analysis of batched LU: darker color represents a bigger blocksize among 3,5,10 and 15.

4. S.D. Hammond. 2015. Towards Accurate Application Characterization for Exascale (APEX). Technical Report
SAND2015-8051. Sandia National Laboratories, NM, USA. 20




Roofline Analysis TRSM B

m Roofline is obtained by P = min(P.,B-I) where P, P, B and [ are attainable performance,
peak compute performance, peak bandwidth and arithmetic intensity respectively.

m APEX* toolkit is used for performance analysis.
m Compact BLAS/LAPACK fully utilizes high bandwidth memory.

10*

Peak GFlop/s (W/FMA)
2% (fo EMA)

10° N
o9 2
& o
) N\ (ne’FMA, no vectorization)

2 o] B)
&

=

MKL Batch

MKL Compact
MKL OpenMP
KokkosKernels

10

Attainable Performance (GFlop/s)

oH* 0

1
10°2 107! 10" 10t 10°

Arithmetic Intensity (flops/bytes)
Roofline analysis of batched TRSM: darker color represents a bigger blocksize among 3,5,10 and 15.

4. S.D. Hammond. 2015. Towards Accurate Application Characterization for Exascale (APEX). Technical Report
SAND2015-8051. Sandia National Laboratories, NM, USA. 20




Roofline Analysis GEMM B

m Roofline is obtained by P = min(P.,B-I) where P, P, B and [ are attainable performance,
peak compute performance, peak bandwidth and arithmetic intensity respectively.

m APEX* toolkit is used for performance analysis.
m Compact BLAS/LAPACK fully utilizes high bandwidth memory.

10*

Peak GFlop/s (W/FMA)
) (flo EMA)

10°

10°

10!

MKL Batch
MKL Compact
MKL OpenMP
KokkosKernels
libxsmm

10"

Attainable Performance (GFlop/s)

<4oHE*0®

1
10°2 107! 10" 10t 10°

Arithmetic Intensity (flops/bytes)
Roofline analysis of batched GEMM: darker color represents a bigger blocksize among 3,5,10 and 15.

4. S.D. Hammond. 2015. Towards Accurate Application Characterization for Exascale (APEX). Technical Report
SAND2015-8051. Sandia National Laboratories, NM, USA. 20




Block Line Preconditioner: Performance Improvement on KNL

m KokkosKernels is compared with an optimized mini-app version of SPARC.

Block Size 3 (128 x 128 x 128) Block Size 5 (128 x 128 x_128) Block Size 10 (64 x 64 x 128) Block Size 15 (64 x 64 x 128)
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Performance comparison of line preconditioner on KNL against SPARC mini-app implementation




Conclusion

m New compact batched BLAS/LAPACK is proposed and developed.

m Using SIMD friendly data layout, compact batched BLAS/LAPACK almost
purely vectorized.

m Significant speedup is achieved for small sized problems.

m A new batch functionality e.g., batched block tridiagonal factorization can be
efficiently implemented using compact batched BLAS/LAPACK APIs.

m Compared with an optimized mini-app version of SPARC, 1.7x - 6x speedup is
observed for initializing and applying block line preconditioner.

m Sustainable performance improvement is expected through the standardization
of compact batched BLAS/LAPACK.

m Compact BLAS/LAPACK is available in Intel® MKL 2018.




