
Exceptional service in the national interest 0 Sandia
National
Laboratories

Designing Vector-Friendly Compact BLAS and LAPACK Kernels

Kyungjoo Kiml Timothy B. Costa2 Mehmet Devecil

Andrew M. Bradley1 Simon D. Hammond1 Murat E. Guney2

Sarah Knepper2 Shane Story2 Sivasankaran Rajamanickaml

'Center for Computing Research, Sandia National Labs

2 Intel® Math Kernel Library Team, Intel Corporation

SC17, Denver, CO

ekaftal, irlfgraA :CCR
17====1;r:Ztrwzromizrac:AnArztrazrzar.=°.2211gAgIWAV

SAND2017-12419C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Introduction

■ Vectorization

■ Block Line Preconditioner

■ Implementation Choices

Compact Data Layout

■ Example of 3 x 3 x 3 Matrix-Matrix Multiplication (GEMM)

■ Compact Batched APIs
■ Intel MKL 18
■ KokkosKernels

Numerical Experiments

■ Compact batched LU, TRSM, GEMM

■ Roofline Analysis

■ Block Line Preconditioner

Conclusion
2

What Is Vectorization ?

for (int i=0;i44;++i){

A[i]

B[i]

C[i]

Scalar operation

for (int i=0;i41;i+.4){

A[i+0] A[i+1] A[i+2] A[i+3]

+

B[i+0] B[i+1] B[i+2] B[i+3]

ii

C[i+0] C[i+1] C[i+2] C[i+3]

1 ti'orJrg.) with a vector lenqth 4

• Vectorization transforms a code with Single Instruction Multiple Data (SIMD)
instructions, exploiting instruction-level parallelism.

• Significant speedup can be achieved by vectorizing a code with SIMD.

• Modem HPC systems use wide vector units to achieve peak performance.

How can we vectorize a code ?

• A code can be auto-vectorized by a compiler, or developers can write a code with vector
intrinsics or assembly kernels.

• Developers (or code generators) should be able to express algorithms with fine-grained
regular parallelsim.

3

Problem: Block Line Preconditioner

• Consider a block sparse system arising from coupled multi-physics problems.

• Line preconditioner is built by approximating the problem domain as a collection of lines
of elements.

• A collection of lines of elements results in a set of block tridiagonal matrices.

• Block tridiagonal matrices are factorized once per solution (or every nonlinear iteration)
and applied (triangular solve) multiple times.

Problem domaM Extracted line elements A set of block tridiagonal matrices

4

Problem Setup

• Typical blocksize b is selected as 3, 5, 9 and 15, which are related to scientific
applications e.g., elasticity, ideal gas and multi-physics fluid problems.

• Limit memory usage up to 16 GB i.e., MCDRAM on KNL and GPU device memory.

• With this memory constraint, typical local problems (m x n x k) are selected as
128 x 128 x 128 for b = 3,5 and 64 x 64 x 128 for b = 10,15.

—> Batch parallelism is used running a sequential block tridiagonal factorization consisting of
GETRF, TRSM and GEMM within parallel_f or.

MN.

To
a. nr

e"" Ar, 2

for T in {To,T) • • • ,Tmxn—i } do in parallel
for rt—Otok-2do

EN 3 Ar := 1(Ar);
T, •

4 Er := hr;

5 Cr
:= Cru—l;

6
Ar+1 := fir+)

1& 7
:= (iik—i);

Line preconditioner setup with batch parallelism

5

Implementation Choices

■ BLAS/LAPACK with OpenMP

■ Batched BLAS/LAPACK

■ Do-It-Yourself

Problems Using Dense Linear Algebra Libraries

• BLAS/LAPACK with OpenMP

#pragma omp parallel for

for (1=0;i<m*n;++1) {

for (r=0;i<k-1;++r) {

getrf(A(i,r));
trsm('L', A(i,r), B(i,r));

trsm('U', A(i,r), C(i,r));

gemm(C(i,r), B(i,r), A(i,r+1));
}

getrf(A(i,k —1));
}

• BLAS/LAPACK is not optimized for such small problem sizes as 3, 5, 9 and 15.

• Batched BLAS/LAPACK

for (r=0;i<k-1;++r) {

batch_getrf(A(:,r));
batch_trsm('L', A(:,r), B(:,r));

batch_trsm('U', A(:,r), C(:,r));
batch_gemm(C(:,r), B(:,r), A(:,r+1));

}

batch_getrf(A(:,k —1));

• Batched BLAS/LAPACK is designed to compute many dense problems in parallel.
• The sequence of batched operations does not exploit temporal data locality.

7

Compact Data Layout

■ Allows to exploit temporal locality in a sequence of batch calls.

■ Efficiently uses SIMD units for small matrix computations.

8

Problem in Standard 3 x 3 x 3 Matrix-Matrix Multiplication (GEMM)

• Matrices are stored in a standard column-major (row-major) order.

// C += A B;

for (int j=0; j<3;++j)

for (int k=0;k<3;++k)

// C(0:2,j) += A(0:2 ,k)*B(k,j)
fused_mult_add(C(mask (0 :2) , j), A(mask (0:2) , k), B(k, j)):

• FLOP (54 = 2• m • n • k) per memory ops. (6 vector load with masks, 9 scalar load and 3
vector store with mask) is 3.

• Blocksize of interest (3,5,10,15) is too small to use wide vector units (AVX512) on
KNL.

C(,:) A(:,)

!!!
B(k,j)

•

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

+13 more registers

Register usage: A and C are unrolled and B is loaded elementwisely 9

Our Solution: Compact Data Layout (SIMD type)

• Modern computing architectures achieve peak performance through vectorization.

■ Recall that our focus is on solving multiple problems in parallel.

• Compact data layout interleaves data across matrices.

• SIMD type becomes basic computing unit and all scalar operations are transformed to
vector operations.

A111

A121 A122 A123
A111 A112;i A173?

A131 A132 A133y// computing unit

struct VectorAVX256D {
A211 A212 A21

A311 A312 A313
union { A2124 A2151°A211

A411 A412 A413
__m256d v; A221 A222 M23

A121 A122 A123double B[4];
A231 A232 A233y

A221 M22 A223};

}; A321 A322 A323
A311 A3124

A421 :4422 A423
A321 M22 M23// overload arithmetic operators (+—*/)

A131 IA132 IA133
VectorAVX256D

operator+(VectorAVX256D const &a,
A331`ft" A332`ft" A333y

A231 A232 A233

VectorAVX256D const &b) { A331 A332 A333
A411

return __mm256_add_pd(a, b);
A4124 A41,

A431i A432y) A433y
A421 ,M22 M23

}

A431 A432 MMy

Standani data layout
Compact data layout

using vector length of 4 10

Compact 3 x 3 x 3 Matrix-Matrix Multiplication (GEMM)

■ Matrices are batched, with batch size the architecture vector length. In a batch, matrix
entries are interleaved.

// batched C += A B;

for (int i=0;i<3;++i)
for (int j=0;j<3;++j)

for (int k=0;k<3;++k)

// C(0:7,i,j) += A(0:7,j,k)*B(0:7,k,j)

fused_mult_add(C(0:7, i, j), A(0:7, j, k), B(0:7, k, j));

■ FLOP (432 = 8.2• m • n • k) per memory ops. (27 vector load and 9 vector store) is 12.

■ Code is purely vectorized.

C(0:7,:)

,,I I I
B(0:7,k,j)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

+13 more registers

Register usage: packed matrix A and C is unrolled and packed B is loaded elementwisely

Compact Batched BLAS/LAPACK

Intel® MKL 2018

• Compact BLAS/LAPACK APIs1:

• mk1_?gemra_compact matrix-matrix multiplication,
• mk1_?trsm_compact triangular matrix solve,
• mk1_?potrf _compact Cholesky factorization,
• mk1_?getrfnp_compact LU without pivoting,
• mk1_?geqrf _compact QR, etc.

• Example of mk1_?gemm_compact:

mkl_?gemm_compact(// conventional BLAS interface

layout, transa, transb, m, n, k,

alpha, *ap, ldap, *bp, ldbp, beta, *cp, ldcp,

// compact format description

format, // MKL_COMPACT_{SSE/AVX/AVX512}
nm); // # of matrices in compact format

• Single pack operation (nm = 1) can be used in "parallel for".

• New batch functionality can be efficiently composed by using compact BLAS/LAPACK
e.g., batched block tridiagonal factorization.

1. software.intel.caVen-us/mk1 -developer-reference-c -blas -and-lapack -compact -routines 12

Compact Batched BLAS/LAPACK

KokkosKemels2

■ Provides portable C++ implementations of local computational kernels for linear algebra
and graph operations using Kokkos shared-memory programming model.

■ Layered interface i.e., serial(vector), team and device corresponding to hierarchical
parallelism.

■ Supports LU factorization without pivoting, TRSM and GEMM.

// SIMD type encapsulates vector storage and operations
class Vector<SIMD<T>, VectorLength>;

// multidimensional array, Kokkos::View, abstracts rank-3 packed matrices
// nm — # of matrices in compact format; m,n,k — matrix dimensions for gemm
Kokkos::View<Vector<SIMD<T> >.e4.> A(nm, m, k), B(nm, k, n), C(nm, m, n);

// device: compose a batch operation using Kokkos parallel programming model

Kokkos::parallel_for(nm, KOKKOS_LAMBDA(int i) {
// extract rank-2 array from input array of matrices
auto Ac = Kokkos::subview(A, i, ALL, ALL);
auto Bc = Kokkos::subview(B, i, ALL, ALL);
auto Cc = Kokkos::subview(C, i, ALL, ALL);

// serial: single pack interface using compact data format
KokkosBatched::SerialGemm<TransA,TransB,AlgorithmTag>

::invoke(alpha, Ac, Bc, beta, Cc);

1) ;
2. github . com/kokkos/kokkos- kernels/tree/master /src/batched 13

Line Preconditioner Impl. Using Compact Batched BLAS/LAPACK

0,,Til4 01

1'1

for a pair T in

{(To,T1),(T2,T3),• • • ,(Tm.xn-2,1;0.n-1)} do in
parallel

2 for rt—Otok-2do

3 := Lu(Ar);
4 := L-'k;
5 erU-I;

6
Ar+1 := _ &Er,

7 Ask-1 := Ok-l);

Block tridiagonal factorization using compact batched BLAS/LAPACK packed with a vector length 2

Some Issues

• As it performs cross-matrix vectorization, pivoting in LU is not feasible.

—> For preconditioning, this does not matter.

• There is repacking overhead when the standard format is used.

—> Block tridiagonal matrices are extracted and repacked at the same time.

14

Numerical Experiments

15

Numerical Experiments

Testbed: Intel Knights Landing

■ 34 Tiles, 2 Cores/tile, 4 Threads/core, 2x AVX512 units/core, 1MB L2

■ 3+ TFLOPs in double precision, 400+ GB/s (MCDRAM)

Benchmark

■ Compact batched LU, TRSM and GEMM are compared against

■ 1) MKL with OpenMP, 2) MKL batched APIs, 3) libxsmm3

■ Roofline analysis on batched LU, TRSM, GEMM.

■ Our impl. of block line preconditioner is compared with an optimized mini-app version of
SPARC.

■ SPARC: Sandia production code for solving Navier-Stokes equations for
compressible and reacting flows.

3. https: //github. com/hfp/libxstrn

16

B atched LU

Block Sze

04,
1 2 4 8 16 34 68 1

coves

Block Size 5 Block S•e 10

4 8 16

*cores
66 1 4 8 16 Y.

e Cores

1.0

0_5

Block Slze 15
,

• • • •

4 8 6 34 68

It Cores

Comparison of compact batched LU against MKL DGETRF with OpenMP where the batch size (N) is 16384.

Vector utilization Speedup of MKL Compact

Blocksize MKL OpenMP KokkosKernels MKL Compact 1 thread 68 threads

3 1.00 12.80 12.28 67.61 7.88
5 2.18 13.42 13.42 34.49 9.69
10 3.65 14.72 14.70 10.01 6.84
15 4.94 15.17 15.15 7.64 6.24

Vector utilization (closer to 16 is better) with 68 threads and speedup against MKL DGETRF with OpenMP
using 1 and 68 threads.

17

Batched TRSM

1.2

1.0

66

66

06

0.2

Black S•e 3

8 6
6 Coosa

Block Size 5

8 16
Cores

Block Size 10

111-41

0 8 16
COree

Block Size 15

3.0

1.5

1.0

1.5

1.0

0.6
• ■

8 16 60
Cores

Comparison of compact batched TRSM against MKL batched DTRSM where the batch size (N) is 16384.

Vector utilization Speedup of MKL Compact

Blocksize MKL Batched KokkosKernels MKL Compact 1 thread 68 threads

3 6.44 13.13 15.68 73.17 9.38
5 8.89 15.39 13.64 14.90 5.36
10 10.66 15.93 14.65 5.37 3.44
15 12.44 15.98 15.05 5.33 4.09

Vector utilization (closer to 16 is better) with 68 threads and speedup against MKL batched DTRSM using 1
and 68 threads.

18

B atched GEMM

Bloca Sae 3 BlaticSize5

0-0 100 80.
•-• C0m0.0

• •-• Oper0AP
• : Kolaas.neis
?.777774 ...777,+•-• libnnun

4 a is
Cores

Moak Slut 10 Block Size 15

 •

4 8 18 94 68 1

8.88 8Cores

2 4 8 18 94
*Cons

Comparison of compact batched GEMM against MKL batched DGEMM and libxsmm where the batch size (N) is

16384.

Vector utilization Speedup (Compact/Batch)

Blocksize MKL Batched libxsmm KokkosKernels MKL Compact 1 thread 68 threads

3 10.30 9.99 12.96 15.87 10.26 3.46
5 12.40 11.99 14.34 15.97 4.32 2.34

10 14.43 15.01 15.14 15.99 1.76 1.45
15 14.94 15.87 15.41 15.99 1.32 1.27

Vector utilization (closer to 16 is better) with 68 threads and speedup against MKL batched DGEMM using 1

and 68 threads.

19

Roofline Analysis LU

• Roofline is obtained by P = min(P,,B • I) where P, Pc, B and I are attainable performance,
peak compute performance, peak bandwidth and arithmetic intensity respectively.

• APEX4 toolkit is used for performance analysis.

• Compact BLAS/LAPACK fully utilizes high bandwidth memory.

a
ea GFloo/s,MA1
no FMA1

* MKL Cornpact
• MKL OpenMP
KokkosKernels

Arithmetic Intensity (flops/bytes)

Roofline analysis of batched LU: darker color represents a bigger blocksize among 3,5,10 and 15.

4. S.D. Hammond. 2015. Towards Accurate Application Characterization for Exascale (APEX). Technical Report

SAND2015-8051. Sandia National Laboratories, NM, USA. 20

Roofline Analysis TRSM

• Roofline is obtained by P = min(P,,B • I) where P, Pc, B and I are attainable performance,
peak compute performance, peak bandwidth and arithmetic intensity respectively.

• APEX4 toolkit is used for performance analysis.

• Compact BLAS/LAPACK fully utilizes high bandwidth memory.
lm

stk

ea GFloo/s,MAI

no FMA1

A no vecto ationl

• MKL Batch
* MKL Cornpact

• MKL OpenMP

KokkosKernels
io 0- 10. io

Arithmetic Intensity (flops/bytes)
10'

Roojiine analysis of batched TRSM: darker color represents a bigger blocksize among 3,5,10 and 15.

4. S.D. Hammond. 2015. Towards Accurate Application Characterization for Exascale (APEX). Technical Report

SAND2015-8051. Sandia National Laboratories, NM, USA. 20

Roofline Analysis GEMM

• Roofline is obtained by P = min(P,,B • I) where P, Pc, B and I are attainable performance,
peak compute performance, peak bandwidth and arithmetic intensity respectively.

• APEX4 toolkit is used for performance analysis.

• Compact BLAS/LAPACK fully utilizes high bandwidth memory.
lU

10

ea GFloo/sjyyMA1

no FMA1

0-

• MKL Batch

* MKL Cornpact

• MKL OpenMP

KokkosKernels

✓ libxsrnrn

10-' 10. 10'

Arithmetic Intensity (flops/bytes)

Roofline analysis of batched GEMM: darker color represents a bigger blocksize among 3,5,10 and 15.

4. S.D. Hammond. 2015. Towards Accurate Application Characterization for Exascale (APEX). Technical Report

SAND2015-8051. Sandia National Laboratories, NM, USA. 20

Block Line Preconditioner: Performance Improvement on KNL

• KokkosKernels is compared with an optimized mini-app version of SPARC.

Blolk 81883 (128 x 128 x 128)
250 59.9

1'1200 47.9

35.9

100 24.0

12.0

° "4 8 16 34 68 136 27

100

80

60

40

20

Block Sin 5 (128 x 128 x 128)

6 4 60

15 100

91.7 80

68.7 60

45.0 40

22.9 20

11-11 Ma Compact Batch

350 *-4. MKLCempeclFueed 37.2
"

300
M-M Netve

KokosSeinel8 1.9
45.4

2
26.6

150

2°°
21.3

30.

O 150

100

6.0

6 NJ

100

15.1

°18 34 68
2209

4 18 34 88 138 27P °

Threads Threads

Black Size 10 (64 x 64 x 128)

236

189

141

94.3

47.1

35

30

25

20

15

10

5

8 16 34 68
136 2 0.0 0 4

100
81.5

80

462

60

30.8
40

0

Block Sin 15 (64 x 64 x 128)

16 34

281

241

201 2)

161

120 3i

80.3

4a2

68 136 2
0.0

69.6

55.7

41.8

27.8 -4i

13.9

4" '"8 18 34 08 138 2 8 18 34 88 138 272

Threads 0/ Threads

Petformance comparison of line preconditioner on KNL against SPARC mini-app implementation

Conclusion

■ New compact batched BLAS/LAPACK is proposed and developed.

■ Using SIMD friendly data layout, compact batched BLAS/LAPACK almost
purely vectorized.

■ Significant speedup is achieved for small sized problems.

■ A new batch functionality e.g., batched block tridiagonal factorization can be
efficiently implemented using compact batched BLAS/LAPACK APIs.

■ Compared with an optimized mini-app version of SPARC, 1.7 x - 6 x speedup is
observed for initializing and applying block line preconditioner.

■ Sustainable performance improvement is expected through the standardization
of compact batched BLAS/LAPACK.

■ Compact BLAS/LAPACK is available in Intel MKL 2018.

22

