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Two superconducting qubits in spatially separated microwave cavities were entangled recently by
a sequential probe of the two cavities by a coherent mode [Roch et al., Phys. Rev. Lett. 112, 170501
(2014)]. In this paper we derive the theory describing this experiment from first principles, and fully
characterize the weak measurement induced dynamics and entanglement generation. This allows
us to identify the limitations of the current experiment and suggest improvements that enable the
generation of higher degree of entanglement between the qubits.

I. INTRODUCTION

Entanglement between remote parties is a key resource
in many quantum information applications, including
quantum teleportation, quantum key distribution, and
quantum metrology, and is central to the notion of a
quantum network [1]. Distributed entangled states are
also a critical component for scalable quantum comput-
ing since they enable long-range gates between spatially
separated qubits [2]. Accordingly many different ap-
proaches have been proposed to distribute or generate
entangled states among systems that are significantly
spatially separated. Distributing entangled states af-
ter preparation at a central location is practically chal-
lenging since decoherence in distribution channels typi-
cally degrades entanglement, e.g., [3, 4]. Alternatively, a
long-range coupling between remote systems can be en-
gineered by exchanging single quanta, and entanglement
can be generated this way, as has been recently demon-
strated for atoms, photons and combinations thereof
[5, 6].

A fundamentally distinct approach for preparing en-
tangled states of systems residing at remote locations is
to perform a joint measurement on them. Most propos-
als for achieving such joint-measurement-enabled entan-
glement interfere photons that are spontaneously emit-
ted by atoms (or artificial atoms) in such a way that
subsequent detection of a photon makes the identity of
the emitter indiscernible, e.g., [7-12], and thus projects
the remote atoms into an entangled state. The degree
of entanglement generated is heavily dependent on the
quality and stability of the interferometer and efficiency
of detection of spontaneously emitted photons. As a re-
sult achieving high fidelity entangled states with this ap-
proach is challenging, although several proof-of-principle
experiments have demonstrated validity of the approach
[13, 14]. An alternate approach is to perform a joint mea-
surement by sequentially interacting two systems with a
coherent light mode. This has been explored as method
for generating entanglement theoretically [15, 16] and ex-
perimentally implemented using collective excitations of
atomic clouds [17]. Most recently, a sequential probe

has been utilized to probabilistically entangle supercon-
ducting qubits in separate microwave cavities [18], and
in this work we develop a theoretical description of that
experiment from first-principles and analyze in detail the
potential and limitations of entanglement generation in
this apparatus.

In the dispersive interaction regime, a coherent mode
reflected off a cavity with an embedded qubit acquires
a phase shift that depends on the internal state of the
qubit. This motivates the essential idea behind the en-
tanglement generation scheme we study here, namely, to
perform a measurement of the parity of the qubit pair
excitation state by sequentially probing the two cavi-
ties that contain them. This is achieved by performing
a homodyne measurement of the total phase acquired
by the twice-reflected probe field, as described in de-
tail in Ref. [18]. Fig. 1 shows a schematic of the ap-
paratus. Ideally, the qubit observable that corresponds
to this measurement, which we shall refer to as a half-
parity measurement, takes the form Ohp = Qz + cr!,
where al is the Pauli-Z operator on the ith qubit. This
observable cannot distinguish between the qubit basis
states 101) and 110) 1. Therefore if the initial state of
the two qubits is the equal superposition state 1To) =
10 + 101) +00) 110) + 111)), the ideal half-parity mea-2
surement will yield the states 100) or 111), each with a
probability 1/4, or the state T-12(101) +110)) with proba-

bility 1/2. This is to be distinguished from the full par-
ity measurement of Of = alz-o-,?, which yields the states

(100) + 100)) and — (101) + 110)) with equal proba-

bilities. In the following we develop a detailed model of
this sequential probe measurement from first principles,
including all non-idealities present in the experiment of
Ref. [18]. Although we develop the model within the
context of the superconducting qubit experiment of Ref.
[18], it applies more generally to any implementation of
cavity-QED, including in the optical domain.

1 Here, and in the following, for conciseness we omit tensor prod-
ucts when writing multiparty states.
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FIG. 1: Sequenctial probe of two spatially separated cavities
with qubits (coupled dispersively to the fundamental cavity
mode with strength xi). The cavities are asymmetric with the
kappa ports being more transmissive than the 'y ports. The
beam-splitter between the cavities models the losses induced
by the circulator that enforces one-way field propagation be-
tween cavities._We allow for arbitrary coherent state drives
(2Ad(t) and 2Bd(t)) into the weakly coupled ports of both
cavities. The field reflected off both cavities is measured by a
homodyne detector with efficiency rim and at a phase 0 with
respect to the probe g(t).

The remainder of the paper is structured as follows.
Section II A presents the dynamical model for full sys-
tem derived from cascaded systems theory [19-21]. Then
in section II B we perform a two-cavity polaron trans-
formation on the model to obtain an exact, dressed de-
scription for the qubits alone that is easier to simulate
than the full dynamical model. This polaron transform
and subsequent derivation of an effective master equa-
tion for the dressed qubits constitutes a generalization of
the methods first presented in Ref. [22]. In Sections II C
and II D we demonstrate the qubit-reduced dynamics in
the laboratory frame, including the loss and revival of
entanglement between qubits. Section III further derives
physical requirements and criteria for generating entan-
glement between the remote qubits. Section IV provides
simulation data for a range of realistic experimental pa-
rameters and discusses the viability of obtaining high-
grade concurrence betwen the qubits. Section V ana-
lyzes the effect population shifts during the continuous
measurement and how to circumvent them. Section VI
provides a summary and assessment of the benefits and
possible extensions of this approach to other quantum
processing tasks for superconducting qubits.

II. DERIVATION OF THEORETICAL MODEL

A. Full model of cascaded cavities

Consider the apparatus shown in Fig. 1. Each cavity
has two ports, with asymmetric transmittivities. The
"input" port on each cavity is low transmitivity (-y,) and
the "output" port is high transmittivity (KO. The probe
field (t) interfaces with the output ports of both cavities
a distance L apart (in [18] a distance L = 1.3m was

achieved), before impinging on the homodyne detector.
The cavities are operated in the dispersive regime, where
the Hamiltonians in the two cavities are given by

H A = Alat a Xlat aCri z

HB = 02btb + x2btba!, (1)

respectively, where a(b) is the annihilation operator for

the mode in cavity 1(2), criz(2) is the Pauli z operator
for qubit 1(2), A, wd — wr is the detuning of cavity i
from the probe field (t), and xi is the qubit-cavity cou-
pling in the dispersive regime. These Hamiltonians are
in the interaction frame with respect to the free Hamil-
tonians for the qubits: — w 

2
0.2z. The input ports

for the two cavities can also be used for driving the cav-
ity or qubits at their respective frequencies (with fields
Ad(t) and Bd(t), respectively), for state initialization and
tomography. We will see that the coherent drive Bd(t)
will be useful for compensating against asymmetries in
the parameters between the two cavities and qubits. To
minimize back-reflection of the probe field and ensure its
unidirectionality, a circulator is inserted between the two
cavities. Losses associated to this circulator will be in-
cluded in the model developed below. The parameters of
the system, including cavity transmitivities, losses, cav-
ity coupling, are labeled in Fig. 1.
The dynamical model for the apparatus described in

Fig. 1 can be derived using the cascaded cavity theory
of Gardiner and Carmichael [19, 20], or by the modern
SLH quantum network theory [21, 23]. We utilize the
latter here and Fig. 2 presents an SLH network diagram
that is equivalent to the apparatus in Fig. 1. G1, G2 and
G3 represent coherent displacements of the input vacua,
G4 and G6 represent the cavity-qubit systems, and G5
represents a beamsplitter modeling the lossy circulator.
The output field z(t) emerges from the output port of
cavity 2 and is monitored by homodyne detection (see
below). The SLH triples (S, L, H) [21, 23, 24] for these
blocks are

G1 = (1,20), 0)

G2 = (1, 2Ad(t), 0)

G3 = (1,2Bd(t), 0)

G4 =(-12)[A1:] Atata+ xiatacriz)

G5 
—
[ \/T/1

A/Tii
0 0)
"—

G6 = (-121[ 2T,21133 A2bIrb + x2btbcrz)

where 12 is a 2 x 2 identity matrix and in is the effi-
ciency of the circulator between the cavities (i.e., = 1
implies no loss). The SLH model for the entire system
is formed by performing the following concatenation and
series products:

(Go 11 4-) 11 Go 11 G 2)) < (G5 11 Go EU Go) <

(Go EH G4 EH Go) < (Go EH Gi EH G2 EH G3), (2)
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FIG. 2: SLH network decomposition of the apparatus in Fig.
1. The SLH triples (S, L, H) for each block are specified in the
main text, together with the efficiencies of the relevant compo-
nents. All inputs are in the vacuum state and the monitored
output is z(t). All other outputs are not monitored: this is
indicated above by their termination.

where Go = (1, 0, 0) is a pass-through component, and
we have split the two ports of the second cavity as

4) = (-1, ,\/ 2b, 02btb + x2btba-2,)

4) = (-1,  -/T2b,

for convenience (without this splitting, we would have to
insert an routing element to swap the third and fourth
signal lines after G4 in Fig. 2). The key assumption in
this SLH representation of the entire network in terms of
its components is that the fields propagate with negligible
time delay between the components, which we assume to
be true.

Evaluating the series and concatenation products
above using the rules specified in Refs. [21, 23] yields
an equation of motion for the two qubits and inter-cavity
modes. Adding phenomenological Markovian dephasing
terms for the qubits then results in the following mas-
ter equation for the cavity mode and qubit degrees of
freedom:

do
= —i[H1 , g] + Lcg + Lqg

dt

Lcg = D[\ / K1(1 — rii)a] + -yiD[a]g + -y2D[b]g

+D[—Oclma + ,\/c213]0
2

Lqg = E-ydD[crz]g, (3)

where g is the combined density matrix of the two cavity
modes and qubits, -ycii and -4, are the dephasing and relax-
ation rates of qubit i, and D[A]B AB At — Z At AB —
1 B At A. The effective Hamiltonian for the coupled sys-2
tem is

H' = HA+HB+H'e+H:i

= i IT (a tb — bta),

Hd = i (Ad(t)at — AXt)a + Bd(t)bt — B:j(t)b) , (4)

where 1ci2 = OciK2711 and the effective drives are

Ad(t) = \/-TiAd(t) + \/(t)

Bd(t) = AtT2Bd(t) 0C2711W) (5)

describes effective direct coupling of the two cavity
modes due to the net field (Ad(t)) that is interacting with
both cavities. Similarly, the effective drives for the cavity
modes in .1-// are composed of the probe field and the drive
fields entering the input ports. Note that the coupling
in is reduced by the factor VT/ , due to losses in the
circulator. Although the Hamiltonian form of this cavity
coupling looks reversible, the irreversibility enforced by
the circulator is nevertheless captured in the model when
the dissipative dynamics modeled by Le is also included.
We shall see the effects of this explicitly below (see also
Ref. [20]).
We assume that the qubits have T1 times that are

much longer than the timescales of interest for establish-
ing entanglement by continuous joint measurement, and
thus Lq only accounts for environmental dephasing of the
qubits and not relaxation. This is a reasonable assump-
tion for superconducting qubits, e.g., [18]. Relaxation is
discussed in Sec. V.
Each dissipator term in L, takes into account the ef-

fect of a field  irreversibly coupling out of the combined
system. D[0c1(1 — Oa] accounts for photons lost be-
tween the two cavities, D[a] accounts for the field emit-
ted from the input port of cavity 1, D[b] accounts for
the field emitted from the input port of cavity 2, and
D[— Kinia + 1~2b] accounts for the probe field that is
reflected off the output ports of cavities 1 and 2. This
final output channel is the only one that is monitored,
and to complete the full model in the presence of mea-
surement, we must describe the evolution of the system
conditioned on homodyne measurement of the output
field z(t). The homodyne measurement is implemented
by mixing the signal field with a local oscillator of fixed
phase reference, 0, with respect to the initial phase of the
probe field. This phase reference sets the measurement
quadrature. The corresponding time evolution is given
by [25]

L
g 
= —i[H' , g] + Lcg + Lqg + Lmg

dt

Lme = viim0)7[e2(1)(—Ociina+ K2_ )] e, (6)

where 0 < < 1 is the efficiency of the measurement,
q5 defines the measurement quadrature, and (t) is Gaus-
sian white noise due to the measurement. This equation
is in Ito form [26] and therefore (t)dt = dW (t), where
dW (t) is a Wiener increment satisfying E{dW (t)} = 0
and E{dW (t)dW (s)} = (5(t — s) (E denotes expectation
value). The nonlinear conditioning superoperator 7-1 is
defined as: 7-1[A]B AB + B At — Tr(AB + BAt)B.
Eq. (6) describes the conditioned state of the system un-
der a homodyne measurement trace of the voltage

v(t) = ovRi, e(eio(—vKima + .\/c2b)) + (t), (7)
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where (A) tr (Ag). Eq. (7) expresses the monitored
voltage in terms the measured observable, which is a lin-
ear combination of intra-cavity field operators, a and b.
The Heisenberg equations of motion for expected val-

ues of the intra-cavity fields, under the unconditioned
evolution described by Eqs. (3)-(4) are:

= -iAi(a) - ixi(criza)  
± 71 

(a) + Ad(t)
2

(b) = —i02(b) — iX2(0"2,13) K12(a) 
K2 + 

(b)
2

Bd(t).

These evolution equations make explicit the fact that
the second cavity (b) is driven by the first (a) but
not vice-versa (i.e., the irreversibility of the coupling
between cavities). We assume that the driving fields

, A d (t) B d(t)) are all coherent states and therefore
these expectation values are simply the coherent state
amplitudes of the intra-cavity fields. We can write these
coherent state amplitudes conditioned on the qubits be-
ing in specific states as:

b(rs)

+Bd(t) + K12 A(r)

= -iAiA(r) - (-1)rixiA(r)  
2 

A(r)

Ad(t)

-i02B(") - (-1)8 iX2B(rs) K2 + 
2 

B(r8)

(8)

Here A = (a), B = (b) and the superscripts r, s c {0, 1}
indicate the conditioning on the state of the first and
second qubit, respectively. The state of the second cav-
ity is conditioned on the states of both qubits but the
state of the first cavity is only conditioned on the state
of the first qubit, since there is no information flowing
from the second to the the first cavity. In other words,
A(11) = A(10) = A(1) and A(m) = A(oo) = These
conditioned equations for intra-cavity amplitudes are lin-
ear and can be solved exactly (first solving for A and then
for B) for any values of the driving fields. Their exact
solutions will be used below.

B. Dynamics in the polaron frame

While the conditioned dynamical equation in Eq. (6) is
a full model of the experiment in Ref. [18], it is difficult to
simulate since it involves both qubit and cavity degrees
of freedom. Therefore it is convenient to derive an effec-
tive SME for the qubit degrees of freedom only. For this
purpose, in this section, we develop an SME in a polaron
frame where the average state of both intra-cavity fields
is displaced to the vacuum. This SME is exact within the
RWA and dispersive approximation implicit in Eq. (1),
and becomes easy to simulate since the intra-cavity fields
are always in the vacuum state.
The polaron transformation provides a representation

in which the cavity modes are effectively removed from

the real time qubit dynamics. The correct transform in
this two cavity case is e(t) = U (t)t p(t)U (t), with

U(t) = Ei ni3 D1 [A(i) (t)] D2 [B(i3)(t)] , (9)

where nu = li>1 (il 1./)2 (./1 are projectors onto qubit
states and Di(2) [X] is a displacement operator for cavity
field 1(2) by coherent state X , i.e.,

= exat-x-aDi [X]
= ex-bt-x*b

D2[X]

For convenience, we define the following time-dependent
qubit operators that depend on the intra-cavity field
states:

na(t) = n0A(°) (t) + niA(1)(0,

nb(t) E n„B(u)(t), (10)
i,j=0,1

where no = noo + nol and n1 = n10 + n11. These
can also be viewed as operator-valued coherent states of
the intra-cavity fields and arise as a consequence of the
hybridization of cavity and qubit degrees of freedom in-
duced by the polaron transform. The temporal evolution
of the joint density matrix in this polaron frame is given
by

dgP

dt
= —

d 
U(t)tg(t)U(t)

dt
= -4111P , gP] + LeP gP + C!1,' GmP gP

-ut(10P - 0P(rfu,

where H'P, GP, rqP, GP,, are as defined in Eq. (3) and
Eq. (6), but with each operator transformed into the po-
laron frame. For example, transforming the field annihi-
lation and creation operators yields

U(t)taU(t) = a + na(t)

U(t)tbU(t) = b+ flb(t). (11)

Performing all the polaron transformations, the SME de-
scribing conditioned evolution in this frame takes explicit
form (for an unnormalized density matrix in the polaron
frame):

Pd g 
= i[HA + HB + + Hq,

-hcce Lqe Lme £m"
+a[e, rita + Ki2litb] + [Fall, + Ki2 rib, gP]at
+b[gP, rbntb + Ki2nta[ + [rbnb + Ki2na, eP]bt,

(12)

dt

with Falb = "Ya/b + Ka/b. The new terms above are:

Hq = (Ad(onta - ivd(ona + Bd(ontb - B:i(onb)

cm,q = D[- + N/r1b]

+(Ki(1 - 711) + 71)D[na] + 'y2D[nb]

+.\/1/..W)N[e24(-VKilnna + ,/c2nb)], (13)
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with 7-t[A]B AB + BAt. We sacrifice normalization
in the following for simplicity and the normalizing fac-

tor can always be added back in by computing tr (  dt ).
In this polaron frame, the drive of the cavity modes (by
Ad and Bd) is absent, because we are dynamically shift-
ing the cavity states back to the vacuum. As a result,
if the cavities are unpopulated initially, they remain un-
populated at all times. A way to see this is that all field
operators annihilate el' in Eq. (12), and therefore there
is no change in the states of the two cavity modes. As
a consequence, all terms involving cavity modes a, b in
Eq. (12) have no effect and can be dropped, which leaves
an equation of motion for the qubit degrees of freedom
in the polaron frame:

deP

dt
= -i[H-q,g1+Lge -Ern)" (14)

The terms in Hq represent Stark shifting of the energy
levels due to the interaction with the measurement tone
at wd. The terms in Lmq (Eq. (12)) represent information
about the qubits leaking out (and dephasing the qubits)
with the light being carried through various outputs of
the system. The last term in Lmq represents informa-
tion that we gain from stochastic selection of one of the
measurement outcomes.

It is important to note that Eq. (14) contains no addi-
tional approximations other than the RWA and the ap-
proximation of the Jaynes-Cummings interaction by the
dispersive interaction between qubits and cavity modes.
However, due to the polaronic frame transformation, as
long as the cavities are initially unpopulated, this equa-
tion efficiently simulates the coupled qubit and cavity
quantum degrees of freedom without the cost of keeping
track of the field states in the cavity (their influence is
captured by the time-dependent operators 11,,, and Hb in
Eq. (14)).

C. Transforming back to the lab frame

In order to make predictions with respect to the lab
frame, we transform the density matrix that results from
Eq. (14) back into the lab frame. We can achieve this by
first noting that the state of the system at an arbitrary
time in the polaron frame takes the form:

oP (t) = E rijkl(t)lij) (kll 100) (001. (15)
ijkl

The ijkl indices run over {0,1} and index the qubit
states. The second term in the tensor product, 100) (001,
is the state of the intra-cavity fields. Both modes are in
the vacuum state since in the polaron frame the cavities
remain unoccupied. Then the state of the entire system
in the lab frame is given by g(t) = U(t)0P (OW (t), and
the state of the qubits in the lab frame is given by

p(t) = tr e1,e2 (U (t)gl (t)Ut (t)) , (16)

where the trace is over both cavity modes. If we let

p(t) = E pijkl(t)lij) (kll
ijkl

(17)

we can compute the relation between pia kl (t) and ri3k1(t),
using the definition of the polaron transform in Eq. (9)
and computing Eq. (16). Doing this tells us that the
diagonal elements remain unchanged,

piiii (t) = riiii (t),

but, the off-diagonal components are modified as

pijkl(t) = r jkl(t)erijkl(t)

where the compensation factor is

(18)

Tijkl (t) = iIm{A(k)* A(i)} 
i/m{B(kl)* B(ij)}

IA(i) A(k) 12 1B(ij) B(kl)12

2 2 
. (19)

These relations suggest that an efficient method for
simulation of the system in the lab frame is to com-
pute the time dynamics in the polaron frame according
to Eq. (14) (giving riakl(t)), and then at each time, to
compute the compensation to the off-diagonal elements
given by Eq. (18) to get the reduced state of the qubits
in the lab frame.

D. Reduced equation of motion for the qubits

Another approach for obtaining the state of the two
qubits at any time is to formulate an equation of motion
for just the qubit degrees of freedom in the lab frame.
We begin with the expression for a general two qubit
state in the lab frame given in Eq. (17). Taking the time
derivative of this state yields:

d „
dt (t) iTt

for the diagonal elements, and

d

dt 
Pijkl = (cri

j
kl(t)) e'rxjkl(t) +Pijkl 1 —

dt
(20)

The time derivative of rijkl is determined by the polaron
frame SME in Eq. (14), and the time derivative of the
compensation factor can easily be found from its defi-
nition in Eq. (19) and the equation of motion for the
conditional intra-cavity fields, Eq. (8). This is similar to
the approach taken in Ref. [22] for a single cavity setup.
Computing the derivatives required in Eq. (20) and

canceling common factors yields the following equations
of motion for the on- and off-diagonal components of the
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(unnormalized) lab frame qubit density matrix:

Pijkl Pij kl [i2X1(1 5i,k) ((-1)a 11(k)* A(i))

▪ i2)(2(1 — j1) 1)j B(kl) B 7,3 )

— 271 (1 — 6 ik) — 273(1 — 6 j1)

▪ 07,1 ) ( ) b(k1)*}] (21)

with kij) eiO (— A(i) - .\/B(ii)). This evolution
can also be represented in matrix form (for an unnormal-
ized qubit density matrix) as:

dp 
2

dt

with

= E aijk/ (t)nijP(t) +E-riip[al]p
ijkl i=1

01m0)1-1[6"I' (— a + Vic2 rib)], (22)

ai jk1(t) = i2xi (1 — 61k) ((-1)i A(k)* A(i))

+i2x2(1 — 6 1) ((_1)3 B(k1)* B(ij))

Eq. (22) should be treated with care because although
it looks like an SME with deterministic component in
Lindblad form, it is not strictly in Lindblad form since
the coefficient matrix defined by aijk1(t) is not neces-
sarily positive. Hence this equation can result in non-
Markovian evolution of the qubit, which is physically a
result of tracing out the intracavity degrees of freedom
that are strongly entangled with the qubit states. There-
fore physical interpretations of Eq. (22) are difficult, but
it generates the correct qubit evolution in the lab frame,
and presents an alternative to simulating the qubit evo-
lution in the polaron frame according to Eq. (14).

E. Simulation in different frames

The derivation of a reduced equation of motion for
the qubit degrees of freedom only under the contin-
uous weak measurement allow us to identify the ex-
act qubit observable being monitored by the sequential
probe: Re{eiO(m/kinl na + \/M1b)}.
Let us examine this observable under ideal conditions,

where there are no losses and the two sets of cavities
and qubits are identical; i.e., in = 1, = = IC) X1 =
X2 = Xl O1 = A2 = O. In this ideal scenario, there is
no need to apply compensating tones through the input
ports of the cavities (as we shall see below), and so we
shall_additionally set 71 = 0,2 = 0, whereby Ad(t) =

(t) and Bd(t) = —Ad(t).
In this subsection we present an example time evo-

lution that illustrates the points raised in the deriva-
tion above of equations of motion for the qubits in the
lab frame. We again assume no loss and identical cav-
itites, with simulation parameters: ig = 1, = /C2 =

015 1.5 2 2.5 3

—polaron

compensated polaron
—reduced

FIG. 3: (Color online) A sample trajectory of Ipono(t)1, the
absolute value of an off-diagonal qubit density matrix element
simulated using the three dynamical equations derived in Sec.
II B, II C and II D. The parameters used in the simulations
are described in the main text. The top panel of the figure
also shows the measurement pulse A d (t) .

14MHz, xl = x2 = 1MHz, Ol = A2 = 0 and yl = -y2 = O.
Fig. 3 shows the polio off-diagonal component of the
qubit density matrix under a particular measurement tra-
jectory, simulated using the three dynamical equations
derived above: polaron Eq. (14), compensated polaron
Eq. (14) with Eq. (18), and reduced Eq. (22). The top
panel of the figure also shows the measurement pulse
Ad(t) that produced the trajectory. As this figure shows,
and as expected from the derivation in II D, the com-
pensated polaron and the reduced evolution equations
produce exactly the same results. However, they both
differ from the polaron frame evolution equation unless
the photon population of both cavities is zero. Finally,
another interesting feature is revival of coherence pro-
duced by the two lab frame SMEs (polaron compensated
and reduced) between 2 and 2.5µs, after the pulse has
decayed to zero. This is evidence of the non-Markovian
nature of the evolution equations due to the elimination
of the strongly entangled cavity states. Note that a sim-
ilar effect should be expected even in the single cavity
case [22], and even in this case the stated lab "dephasing
rate would be expected to be non-Markovian.

III. CONDITIONS FOR GENERATING
ENTANGLEMENT

In this section, we demonstrate how the sequential co-
herent probe and subsequent homodyne detection can
result in a half-parity measurement of the qubits, which
can probabilistically entangle the qubits. In particular,
we will specify in Sec. III D how the parameters that
can be controlled in-situ (e.g., frequency, amplitude and
phase of drive tones Ad(t), Bd(t)) can be tuned to gener-
ate entanglement between the qubits even whenever the
system parameters are not ideal.
The key fact that the probabilistic entanglement
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scheme relies on is that under the half-parity measure-
ment, the states 101) and 110) are indistinguishable. Then
starting in the initial separable state

1410) = —2 (100) +101) +11o) + (23)

for entanglement to be generated by measurement the ini-
tial coherence between 101) and 110) must be preserved
(or at least not decay substantially). For this to hap-
pen, the indistinguishability between these states must
be maintained at all times, i.e., it is not sufficient that
the measurement voltage be the same for both states at
the final time. In this section, we will examine this con-
dition more carefully.
As derived in the previous section, the homodyne

measurement effectively observes the qubit observable:
Re{ ei4'(— fla VM1b)}. For indistinguishability
we require that this quantity is equal when the qubit is
in state 101) or 110). Equivalently, we require that for all
t,

tr • na(t) + vk2nb(t))101) (011]
= tr [(— Vrcoilla(t) + v—k2nb(t))110) (iol]
tr • na(t) + N/nb(t))n-L,s] = o, (24)

where ni:IFS —101) (101-110) (101, is a projector orthog-
onal to the subspace that we desire to be decoherence-
free (or more accurately, measurement-induced dephas-
ing free). We note that derivatives (with respect to time)
of the expression on the left must also be zero ideally.
To obtain a prescription for tuning the experimental

parameters (specifically the compensating field, Bd(t)),
we substitute the value of flb(t) given by the equations
of motion (8) and (10) into Eq. (24), obtaining

A R2 — iX2Gr! tr [((ki2na + Bd ,
2t5,2 + X22

ViC1111 
na) = O. (25)

c2

This is a general dynamical condition for the parameters
in the system to meet as the system evolves. However,
it is a self-consistency equation for Bd because the oper-
ator Hb depends implicitly on Bd. In the following, we
discuss simple solutions for three limiting, but physically
relevant, regimes, as well as the more complex general
solution that requires pulse-shaping.

A. Adiabatic regime

In the regime where the probe fields vary very slowly
or not at all (e.g., steady-state or continuous-wave mea-
surement) it is sufficient to solve for the instantaneous
eigenstates of the evolution operator. Physically, this is
the limit where Ad, Bd < ki, K2. We can approximate
Ad(t) and Bd(t) as constant fields for short times and

solve for the "adiabatic valuee of the hybridized field
operators by setting the derivatives in equations Eq. (8)
to zero. This was done for the special case of identical
cavities and no loss in Eq. (??), but the general solution
for fla is

na,db (t) A d (t)(kl 

W12 + X12

nclt,db(t)

(26)

(k12nVb(t) + Bd(t))(R2 JX2O-!)  (27)

fi'22 + X22

with ki = ki/2 + 7i/2 + iAi. Substituting Ha —> rycld in
Eq. (25) and dropping the Elb term (since this is small in
this regime), and then solving for Bd (t) in terms of the
other quantities yields

—adb (X1R2 X2R1)
-add (t) = kl2Ad(t) 

— (W22 + X22)X1R2 

X2 (W12 + X12)
(28)

This equation defines the value of the compensation
field driving the second cavity, Bd(t), that acheives indis-
tinguishability of the states 101) and 110). Equivalently,
another approach to achieving indistinguishability, with-
out using the compensating drive (i.e. Bd(t) = 0), is to
tune the frequency of the drive Ad. This gives a condition
on Ai (t) in order to meet Eq. (28), and was the approach
chosen in Ref. [18] due to its simplicity, though it is only
possible for certain parameter ranges. In both cases, con-
dition Eq. (28) can be met by tuning the parameter(s)
in-situ to obtain the same measurement statistics when
the qubits are in states 101) and 110).

B. Large cavity-decay regime

The adiabatic approach works best in the limit of very
large cavity decay rates tz,„ where the transient-evolution
time periods leading up to and following the steady-state
are short enough enough to be entirely negligible. In such
a case, we can instead simply use square pulses for the
measurement tone Ad, as well as for the compensation via
auxiliary measurement drive Bd or frequency calibration
Al •

Additionally, if we assume kJ., K2 » Xi, X2, Eq. (28)
simplifies to

Br (t) = TPC1  
Ad (t)

(R2(A2(t) IC212)X1 + RlIC2X212)

k2 W12X2
(29)

where the time dependence is left in for generality but
is not typically needed. This simplicity of this approach
is of practical utility and was used in Ref. [18]. Note
however, that the cavity decay rates can only be increased
up to a certain point imposed by physical constraints and
so a small transient error will remain.

Fig. 4 shows the degradation of coherence as a re-
sult of transient populations in the cavities (that is us-
ing Eq. (28) only for calibration). This figure shows
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time(p)
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FIG. 4: (Color online) Coherence between the 101) and 110)
states (top) and field amplitudes for 101) (solid) and 110)
(dashed) (bottom) for different values of the cavity decay rate

The different lines are Ki = {3.9, 4.5, 5.1, 5.8, 6.4}MHz ,
with k2/27 = 0.9tci. Other parameters are listed in the main
text.

the decay of the off-diagonal element 
p

I while the
lmeasurement tone is applied for various values of cav-

ity transmittivity. The parameters are the same as in
Fig. 3, except with xi /27 = 1.2MHz, Ki takes on the
values {27, 5 x 27, 17 x 27}, with K2=ici + 2.5 x 27. With
Ad = \/0.91c1/27 and using the same pulse shape as in
Fig. 3, the total needed measurement time is kept ap-
proximately fixed. The initial state is 1 kilo), and the dy-
namical equation is given by Eq. (14), averaged over 1500
trajectories. The bottom panel of the figure also shows
the conditional output fields corresponding to the qubits
being in state 101) and 110), Re{B01)} and Re{B(1°)}
(i.e. 0=0). As expected, since the simplified compen-
sation prescribed by Eq. (28) (or Eq. (29) for the larger
values of K) is utilized the qubit states are distinguish-
able by the output fields during the pulse transients, and
the greater this distinguishability, the greater the loss
of coherence. The point here is that with larger decay
factors, these transients become smaller. Thus, a cavity
decay rate of K = 3.9MHz causes 40% loss of coherence,
while in contrast K = 6.4MHz causes negligible loss.

C. Ideal system parameter regime

In the ideal case, when the transmission is lossless
(7p=1) and the cavities are identical (k1=K2, Xi —X2,
=02,71=0/2 )1 Eq. (28) reduces to

Pu
ls
e 
Am

pl
it

ud
e 

0.0 0.5 1.0 1.5 2.0

Time (ps)

2.5 3.0

FIG. 5: (Color online) Example of a measurement pulse and
compensation. The solid blue line is the pulse A d (t) . The
compensation pulse B d (t) is shown in dotted orange when the
adiabatic approximation is used (Eq. (28)) while the dotted
red shows the exact solution given by Eq. (32). The param-
eters are the same as in Fig. 3 but with Ki=3.9MHz and
ic2=3.5MHz.

This is equivalent to driving only using the reflection
mode of the cavities such that the compensations fields
are not needed (Ad(t)=Bd(t)=0 in Eq. (5)). Alterna-
tively, the same result is obtained if the cavities are
driven only through their input ports such that (t)=0
and V-T2Bd(t) = 2V .Ad(t).
In both these cases, there is a benefit that for all pa-

rameter values, the transients will exactly cancel and the
indistinguishability condition (Eq. (24)) will be met at all
times. This is apparent in Sec. II E and Fig. 3 where we
see that for identical parameters the coherence of the en-
tangled state does not decrease at all during the periods
of transient evolution of the cavities.
The reason for this can easily be understood by looking

at the equations of motion for the cavities (Eq. (8)) in the
limit of identical cavity parameters and using Eq. (30).
The qubit quantity being measured becomes proportional
to Re{ eich(11b (t) — Ila(t))1, and taking the second deriva-
tive of Eq. (24) yields the following condition on the in-
distinguishability:

tr [(hb(t) — na(t)) nbL„] = 0
tr [(x2 (111 b — 111 a (t)) (n b na(t))) ribLFs]

From the second line it is clear that if the condition is met
initially, it is met also at all later times. This motivates
attempting to obtain parameters that are as similar as
possible between the two cavities.

D. General dynamic condition

To fully eliminate the effect of transients, shaping of
B d (t) = — A d (t) . (30) the measurement pulses is necessary. In particular, the
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compensation field B d (t) should be shaped to ensure that
the indistinguishability condition, Eq. (24), is met at all
times.
In the following, we leave Ad(t) unchanged (thus fully

specifying fla(t)) and shape Bd(t) = BV(t) + ABd(t)
so that it enforces the entanglement criteria at all times.
To derive the result, we supplement Eq. (24) with its
first and second derivative, which must also hold, and
relate the derivatives of flb(t) using Eq. (8) and its first
derivative.
The second derivative of Eq. (24) gives, upon inserting

the derivative of Eq. (8),

tr  na /C121la + (R2 + iX2Cr!)11b kFS =

while the first derivative of Eq. (24) gives simply

2k2tr [(\/kill1 na - nb) nbLFs] = 0,
C 2

Adding these to (4 + A) times Eq. (25) yields

ABd(t) = -it12tr
2X2

(31)

[((k2 2X20.! 
W22 ± X22 )Ana

+(1 - 2 -R2 ) 1.1 a - 
1 
-ha) nbFS]

/C2
(32)

which fully specifies the shape parameterization of the
compensation field, where fla (t) = a(t) - Vb (t)
Note also that the derivative of fla is proportional to
its deviation from the adiabatic value (fla(t) = (R1 -

iXicrzl)Ana(t)). Thus, in the limit of small dispersive
coupling (lc » x), we have that the change in the com-
pensation field relative to its adiabatic value is simply
proportional to the first cavity's average deviation from
its adiabatic value.

This is shown in Fig. 5 where the solid blue line is
the pulse A d (t) . The compensation pulse B d (t) is shown
in dotted orange when the adiabatic approximation is
used (Eq. (28)), while the dashed red line shows the ex-
act solution given by Eq. (32). The parameters used for
this simulation are specified in section IV, with the only
difference that ici=3.9MHz and tc2=3.5MHz here. The
compensation field is seen to change only slightly during
the transient periods and is otherwise very similar to the
original pulse.

Iv. RESULTS FOR LOSSY TRANSMISSION

In this section we describe the results from simulat-
ing the dynamics of the system in Fig. 1 using the
theoretical description developed in section II and ex-
perimentally realistic parameters. We use the polaron
frame reduced master equation, Eq. (14), with a large
number of random realizations of dW (t) (60000 trajec-
tories). The choice of this frame is for computational

cna)
8100

11 80

W 60

20

To a

0

w

414 aft w16,1

I I I I I I
:I I • 4 1111

0.8 
0.8 0, -1 1111111 411111111*1 I I I P ,MeaS urement0. 

0.2 0.

Normalized homodyne voltage

0.9

0.8

55 0.7_oo 0.6
6. 0.5

2 0.4

.2 0.3
-0 0.2

0.1

0.5

pulse width (us;

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Normalized homodyne voltage

FIG. 6: (Color online) Distribution of qubit state populations
(over 60000 trajectory simulations) as a function of normal-
ized homodyne voltage and measurement pulse width. Black
represents 100) population, blue 111), red 101) +110) and green
represents 101) - 110). The top panel plots relative popula-
tion expectations conditioned on the initial state, Eq. 23. The
bottom panel plots normalized populations conditioned on the
measurement voltage value from the x-axis. The bottom plot
is essentially a slice of the top panel taken at a measurement
pulse duration of 1µs. Simulation parameters are specified in
section IV.

efficiency since we will only study observable values at
the end of a measurement, when the cavities are unpopu-
lated, and hence the polaron and lab frames coincide. For
these simulations we use the parameters xi = 1.2MHz,

X2 = 1.0MHz, = 18MHz, N2 = 16MHz, O1 = A2 = 0,

1/1 = ki/20,1,2 = K2/20, and \/-TiAd(t) = 10MHz. These
parameters are representative of the parameter regime
currently accessible in superconducting cavity-QED ar-
chitectures [18]. The compensation field, Bd(t), is cho-
sen according to Eq. (28) to ensure the distinguishability
of the states in the single-excitation subspace, except for
during transients (we made this choice instead of com-
pensation according to Eq. (32) since this full compen-
sation requires complex pulse shaping and hence is less
practical).

In a pulsed measurement setup the width of the mea-
surement pulse dictates how resolved the qubit states be-
come. In Fig. 6 we show the how the state populations
are distributed as a function of the (normalized) homo-
dyne voltage and the measurement pulse width over the
60000 trajectories that were simulated. In the bottom
panel, which is a slice at measurement pulse width of
liLs. We see that for short pulse widths little informa-
tion is carried out of the cavities, and all qubit states are
equally likely (low SNR). For all pulse widths, due to the



10

compensation pulse we see that the 101) and 110) states
are indistinguishable by the homodyne voltage value. In
addition, beyond pulse widths of about 1ps, homodyne
voltages near the center predict that primarily the single
excitation subspace is populated. The presence of the

v 2 101) + 110) state indicates that the indistinguishabil-

ity condition has been satisfied between 101) and 110).
However, even if this is the case, other sources of dephas-
ing can result in a mixed state with no entanglement
even when the homodyne voltage is near its center value.
For this reason we also plot the population of the state

1-4 ( 01) — 110)) that would indicate a mixture with no
v2

entanglement and we see that this is not the case for
measurement pulse widths 1ps, but that the popu-
lation of this antisymmetric state increases as the mea-
surement pulse width increases as a result of intrinsic
dephasing becoming significant at longer times. There-
fore, this plot shows the tradeoff between achieving high
SNR with long measurement pulses and compensation
for indistinguishability, but avoiding intrinsic dephasing
at longer timescales.

To explore the influence of the two primary detrimen-
tal effects to achieving entanglement between qubits in
separate cavities, namely loss between cavities (iii) and
measurement inefficiency (1 — rim), we quantify the max-
imum achievable entanglement (as quantified by concur-
rence [27]) for a range of these parameters in Fig. 7.
The maximal achievable concurrence (maximized over
the measurement pulse width, over a range 0.1 — 4p,$) is
plotted as a function of both loss of photons between the
cavities (in dB) and measurement efficiency. Not surpris-
ingly, losses between the cavities leads to dephasing of the
first qubit and hence degrades the entangled state formed
with the second qubit. At the same time, decreased ef-
ficiency does not by itself lead to lower coherence, but
instead necessitates longer measurement pulse widths or
larger probe field amplitudes (i.e., use more photons to
obtain the same amount of information). However, low
efficiency combined with loss between cavities is detri-
mental because even though one can increase the number
of photons used to probe the qubits, this results in more
photons being lost between cavities and thus greater de-
phasing. Thus, a combination of low efficiency and large
loss between cavities is most unfavorable.

V. POPULATION TRANSFER IN THE
POLARON FRAME

The reduced model developed above and the analysis
that followed are only valid when there are no terms in
the original master equation Eq. (3) that do not commute
with the polaron transformation. Thus, if we choose to
use the reduced model (to gain computational efficiency)
we must be careful that effects such as qubit relaxation
and qubit driving are taken into account. That is we

0
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0 0.1 0.2 0.3 OA 0.5 0.6 0.7 0.8 0.9
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FIG. 7: (Color online) Maximum concurrence versus measure-
ment efficiency (rim) and photon loss in the channel between
the cavities (1 — Tit, in dB). Simulation parameters are spec-
ified in section IV. Entanglement maximum is calculated by
propagating the simulation for different measurement pulse
widths and selecting the maximal concurrence achieved for
the given parameters.

consider the more general cases where

B;1 = Hq + 521(t)oil) + SI2 (t)o-2) , (33)

2

Gqg= E (0P[criz]g + D[cri ,
i=i

(34)

For applications such as qubit measurement in the
presence of relaxation, qubit manipulation during
continuous-wave measurement, and feeback-control ap-
plications, it is typically expected however that the am-
plitude of such effects will be small and can be treated
perturbatively.
The hybradization of the qubits and cavities will result

in the cavity also being driven. That is, the two-cavity

polaron transformation, Eq. (9) tilts the cr i) axes as

(0-(1))P = D2 [11b] Dl [na] 0-TDI [na] D2 [flb]
(0-nP = D2 [rib] (7 ).D1 [rib] . (35)

For simplicity, we consider adiabatic measurement.
Using the parameterization of Eq. (27) we obtain to first
order in Adx ic2

(0,(1))p = cr(1) (1 — Ad(1 (2)1-tla + A:1(1 +
(0,(2)).p = (7(2) (1 — (Bd + Ac1(1),a2a ild(i)14at),

(36)

where pi = X2,/((ki/2 + iA7,)2 + X?) an = k12(ki,/2 +
iA,)/((tc,12 + iAi)2 + xD. Thus, we see that, in the
polaronic frame, qubit driving and relaxation will also
lead to sideband transitions involving the cavity.

AFor _iqudbxit driving, we note that these will be small
when < ic3 where C2 is the Rabi frequency. In such
a limit, the off-resonant sidebands will mainly result in
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shifting the energies of the qubit and cavity. The qubit
equation can be rewritten as

= Hq C2icr el) — 2Al2  2°1-2°-1-) °iXicr(zi) 

(K1/2 + i01)2 — xj.2 
4c212

+ C220?) — 2A22 
2922172) 02X20(2) 

(IC2/2 i02)2 — X22 — 4022

(37)

with Ai = Aol (1 + (2), A2 = B02 + A026, and
which can be used with the effective qubits-only mas-
ter equation, Eq. (14). However, effects outside of the
qubit subspace will also remain, such as sideband heat-
ing of the cavity. Much like the relaxation operators, it
seems difficult to decouple the qubit and cavity dynam-
ics completely, as they form a complex non-Markovian
environment, which is out of the scope of this article.
Nonetheless, it is evident from Eq. (37) that the same
control pulses imposed in the frames corresponding to
the laboratory and polaron frames will result in different
angles of rotation and will only agree in the limit of zero
photons in the cavities. In the steady state and disper-
sive limit, the axes of rotation are constant and it is then
easy to calibrate the X and Y rotation angles resulting
from a given control pulse in either frame.
The dressed frame also effects the dynamics of popu-

lation transfer. It results in the pinning of population
due to measurement thereby suppressing the coherent
dynamics. This is known as the quantum Zeno effect
[28]. For qubit manipulation, we are most interested
in the weak limit of this effect, where the measurement
timescale is long (weak pinning) relative to the qubit
driving. Fig. 8 shows how the fidelities of a 7/2 gate
vary as the measurement strength is increased, for two
different gate times (a lOns and 40 ns pulse). We see that
the fidelity decreases slower with the shorter (higher en-
ergy) pulse, consistent with the axis of rotation being
less affected by the measurement. Increasing the driv-
ing strength can also reduce this effect, though spectral
crowding issues such as the cavity sideband driving il-
lustrated above and other experimental constraints will
place a limit on how hard one can drive.

VI. DISCUSSION AND CONCLUSIONS

We have derived a framework for describing joint dis-
persive measurement of qubits in separate cavities. The

description shows how populations of the qubit levels
evolve diffusively as a function of a cascaded measure-
ment, and how calibrating the amplitude or frequency
of the field(s) enables preservation of the coherence be-
tween the single-excitation states during the measure-
ment. The static and dynamic entanglement conditions
derived in the energy basis of the system give a simple
prescription for ensuring this indistinguishability at all

1.0
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FIG. 8: (colour online) Gate fidelity for a 7r/2 us pulse as
a function of the number of photons in a given cavity. The
measurement dephasing rate k is calculated from the photon
number using k = 41',,12,x2  The blue line corresponds to a
lOns pulse while the red is for 4Ons.

times. Moreover, the simulations show the tolerance of
the entanglement to imperfections in the measurement
and loss channels along the probe field path. Finally,
single trajectory analysis and simulations show that the
cascaded probe field provides a non-Markovian environ-
ment resulting in suppression and revival of coherence of
the bare laboratory qubit states.

These results not only provide a theoretical framework
for the remote probabilistic entanglement achieved exper-
imentally in [18] but motivate other schemes. Of partic-
ular importance is continuous wave measurement, which
is needed for longer and more complicated applications
such as error correction protocols and feedback control.
We have shown that in the weak coupling limit the main
effect of simultaneous measurement and coherent control
is a rotation of the axes of rotation and a weak decay
channel. These are balanced by the need to rotate the
qubits quickly in order to avoid pinning of the compu-
tational states due to measurement. Generalizations of
this scheme to create multi-qubit entangled states and to
generate entanglement deterministically using feedback
will be addressed in future work.
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