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Abstract

This paper presents a novel trust region algorithm that relies on proper orthogonal de-
composition techniques to construct accurate reduced order models during optimization.
The algorithm samples high fidelity snapshots to compute the POD functions that are
used to generate reduced order models. The reduced order models are used to replace
the computationally intensive high fidelity finite element evaluations during optimization.
The proposed algorithm employs a trust region framework to detect loss in predictive ac-
curacy in the reduced order model and automatically update the POD functions during
optimization. The trust region framework allows the algorithm to use sound mathematical
metrics to effectively improve the accuracy and robustness of the reduced order models
during optimization. The algorithm also employs a projected gradient algorithm to model
bound constraints and compute optimal and feasible controls.

This paper also presents an accurate Hessian formulation for topology optimization
problems. The proposed trust region framework relies on a quadratic model to update the
control. This quadratic model needs reliable second order derivative information to predict
the behavior of the objective function within a suitable trust region. If a nonlinear Hessian
formulation is used, the computational effort increases due to additional finite element
evaluations. The proposed linear Hessian formulation reduces the computational effort
and enables the calculation of the second order derivative information without additional
finite element model evaluations. Examples in topology optimization are presented to
demonstrate the applicability of the proposed algorithm and linear Hessian formulation for
large-scale PDE-constrained optimization.
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1. Introduction

High fidelity models have become an integral tool across a range of engineering ap-
plications. Furthermore, large-scale partial differential equation (PDE) constrained opti-
mization problems are essential in many engineering design applications. However, the
iterative nature and computational requirements of optimization problems governed by
PDE constraints limits the amount of optimization iteration that can be preformed. Thus,
the development of faster, accurate optimization algorithms for large-scale optimization is
crucial to meet the pressing needs of high-consequence parts designers. This paper presents
a novel trust region algorithm that relies on proper orthogonal decomposition techniques
to generate accurate reduced order models during optimization. The proposed algorithmic
framework enables the reduction of computational time by replacing high fidelity finite
element model (FEM) evaluations with accurate, low fidelity FEM evaluations.

Proper orthogonal decomposition (POD) is one popular model reduction technique
that is used to construct low fidelity models of high fidelity FEMs [2, 8, 21]. POD is
based on projecting the system response onto subspaces of basis elements that contain
characteristics of the expected state solution [37]. Several approaches have been proposed
in the literature for surrogate-based optimization [28]. Galbally [15] employed masked
projection techniques to compute approximations of nonlinear terms using a subset of
interpolations terms to construct a hyper-reduced order model. The reduced model was
then applied to solve a statistical inverse problems to characterize two control parameters.
In this work, the reduced order model was not updated during optimization. Kahlbacher
[19] applied POD surrogate models to solve an optimal control problem governed by a
bilinear elliptic equation. A sequential quadratic programming (SQP) algorithm was apply
to solve the optimal control problem. The resulting derivative operators were discretized by
a Galerkin-POD approach and a Gauss-Newton approach was applied to approximate the
second order derivative information. The inexactness induced by the reduced solution was
controlled by an a-posteriori error estimate introduced by Tröltzsch [40]. In this work, the
reduced order model was first generated using 441 snapshots computed on an equidistant
grid before solving the optimization problem. The state, control, and lagrange multipliers
were reduced during optimization and the total number of control variables was two. Sachs
[32] used POD a-posteriori error estimates based on a perturbation method to control the
inexactness induced by the reduced solution. A SQP algorithm was applied to solve the
optimal control problem. The number of control variables was four in this work. Bound
constraints were ignored in [19, 32].

Fahl [4, 14] presented a trust region POD (TRPOD) framework that enabled adaptive
updates of the POD functions during optimization. Instead of using a quadratic model to
quantify the ratio between the actual and predicted reduction in the objective function,
Fahl used a nonlinear function for the objective function based on the reduced order model.
This approach required the evaluation of the high fidelity model in every trust region sub-
problem iteration. Kragel [20] extended the work done in [4, 14] by applying a multi-level
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strategy that relied on coarser (low fidelity) FEM evaluations during the trust region sub-
problem iterations. The POD approach was also applied to the coarser FEM evaluations
to further expedite analysis. The TRPOD framework was only applied to small-scale
unconstrained optimization. Fewer than 10 control variables were used the work by Kragel.

Model reduction techniques have not been extensively used in topology optimization
settings. Jensen [18] used Padé approximations to construct reduced order models for
topology optimization of dynamic problems. The proposed approach is specific to dynamic
problems and thus is not applicable to general optimization problems outside the scoop
of topology optimization of dynamic problems. Furthermore, no mathematical metric was
used for the adaptive Padé functions updates during optimization. Yoon [43] studied the
application of mode superposition, Ritz vector, and quasi-static Ritz vector methods in the
context of topology optimization of dynamic problems. In [43], the orthogonal functions are
updated at every optimization iteration. Thus, no adaptive updating scheme is proposed
for the orthogonal functions. Additional computational savings can be achieved in [43]
through the implementation of an adaptive updating scheme.
POD methods have not been explored in the context of topology optimization problems.

However, these techniques have been successfully applied to solve multiple calibration and
shape optimization problems in the literature [3, 44, 45]. Although, the number of control
variables was small in all of these case studies, the POD strategy was successful reducing
computational cost. There are recent efforts towards applying model reduction techniques
for large-scale optimization settings [6]. Lieberman et al. recently combined POD tech-
niques and a greedy procedure to construct a reduced models for both the state (pressure)
and control (spatially varying conductivity) variables to solve a statistical inverse problem
[22]. The reduced order model was generated by randomly sampling 1000 control fields
from the Gaussian prior before solving the optimization problem. These samples were
used to generate the reduced order models for the state and control variables. However,
the state and control reduced order models remained constant during optimization.

This work expands on previous seminal work on surrogate-based optimization and trust
region POD through the development of a trust region algorithm for large-scale PDE-
constrained optimization with bound constraints using reduced order modeling. The pro-
posed algorithm applies the Galerkin-POD approach to generate a reduced order model
that substitutes the high fidelity FEM during optimization. The adaptive updating strat-
egy relies on a trust region framework and a quadratic model to detect loss of predictive
accuracy in the reduced order model during optimization. Based on the ratio between the
actual and predicted reduction in the objective function, the POD functions are automat-
ically updated during optimization. This allows the algorithm to control the inexactness
induced by the reduced order model and adaptively improve its predictive accuracy dur-
ing optimization. Furthermore, the algorithm has dual purpose since it serves as both an
optimization engine and a sampling algorithm. Thus, offline samples are not necessary
to generate the reduced order model. The samples created by the algorithm are used
to generate the reduced order model during optimization. The algorithm also employs a
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projected gradient algorithm to model bound constraints [5]. This feature is crucial for
engineering design as well as other applications in optimization. Is important to emphasize
that the proposed algorithm is not specific to Galerkin-POD methods. Alternative reduced
order modeling techniques can be successfully applied without any changes to the main
algorithmic framework.

This paper also presents an accurate Hessian formulation for topology optimization
problems. The proposed trust region algorithm relies on a quadratic model to predict the
behavior of the objective function during the trust region sub-problem iterations. The
quadratic model relies on accurate second order derivative information to predict the be-
havior of the objective function. If a nonlinear programming Hessian formulation is used,
the computational effort will increase due to additional FEM evaluations during optimiza-
tion. These additional FEM evaluation are necessary to compute the application of the trial
step to the nonlinear Hessian operator. A linear Hessian formulation is proposed herein
to minimize computational effort and thus expedite optimization. This linear Hessian for-
mulation allows the algorithm to compute accurate second order derivative information
without performing additional FEM evaluations.

This paper is organized as follows. A background on reduced space optimization formu-
lation, topology optimization for compliance minimization problems, and POD methods is
provided in Section 2. Section 3 describes the trust region algorithm for PDE-constrained
optimization with bound constraints using reduced order modeling. Here, the trust region
framework for bound constraint optimization and the adaptive POD functions adaptive up-
dating scheme are described. Examples in topology optimization are presented in Section
4 and concluding remarks are provided in Section 5. Finally, the second order deriva-
tive operators used to compute the nonlinear and linear Hessian operator for compliance
minimization topology optimization problems are provided in the Appendix.

2. Background

Let Z, U, and Y be Banach spaces, where both Z and U are reflexive, i.e. ze--,zbzEZ
and u—uVuE U. Furthermore, let J: U x Z —> R and g : U x Z —>. Y. Lets now consider
an optimization problem

minimize J(u, z) s.t. g(u, z) = 0, (1)
(u,z) E UxZ

where u E Uad C U and z E Zad C Z. Uad and Zad denote admissible subsets of the state
and control spaces, respectively. If the following conditions are met:

1. Zad C Z is convex, bounded and closed;

2. Uad C U is convex, closed, and contains a feasible point; i.e. g(u, z) = 0 has a
bounded solution operator, u(z): Z —> U;

3. the mapping (u, z) i— g(u, z) is continuous under weak convergence; and
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4. J is sequentially lower semicontinuous;

there exists a solution to the optimization problem defined in Equation 1 [5, 27]. The above
result ensures the existence of an optimal solution to the optimization problem defined in
Equation 1. However, the uniqueness of the solution is problem dependent.

First order necessary optimality conditions and second order sufficient conditions are
required to find the optimal solution of Equation 1 through Newton's method. These con-
ditions involve the gradient of the objective function being zero at the optimal solution and
the Hessian operator being positive semidefinite at the optimal solution. These conditions
can be derived from Lagrangian multiplier theory [30].

2.1. Reduced Space Formulation

Lets define a Frechet differentiable function J: U x Z -> 11: and constraints g(u, z): U x
Z -> Y with Lipschitz continuous second derivatives. Then, the implicit function theorem
admits the definition of a solution operator ii: Z --- U such that {(ft(z), z) l z E Z} =
{ (u, z) E U x Z 1 g(u, z) = 0} [10]. This allows the redefinition of the optimization problem
defined in Equation 1 as an unconstrained optimization problem of the form

minimize J(a(z), z),
zEZ

(2)

where u(z) is obtained by solving g(u(z), z) = 0. In practice, this formulation is known as
the reduced space formulation for PDE-constrained optimization.

Applying lagrange multiplier theory enables the definition of a Lagrangian functional
G :UxZxY->Roftheform

L(a(z), z, À) = J(ii(z), z) + (À, g(U(z), z))y.,y, (3)

where Y* is the dual space of Y. The first order necessary optimality conditions are derived
from Equation 3 to ensured optimality and are given by

(tu(it(z), z, A), (Su) = (Ja(ft(z), z) + (gu(fi(z), z)*A, 6u) = 0

(Lz(n(z), z, À), 6 z) = (Jz(ii(z), z) + (gz(a(z), z)* À, Sz) = 0,

where Su uz(z)Sz.
The Lagrange multipliers are computed by solving the adjoint system of equations

obtained from Equation 4 as follows

(4)

(5)

À = -(gu(a(z), z)*)-1 Ju(a(z), z). (6)

Substituting Equation 6 into Equation 5 leads to the following reduced gradient operator

V J(a(z), z) = Jz(it(z), z) - (gz(a(z), z)* , (gu(a(z), z)*)-1Ju(a(z), z)). (7)
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If second order derivative information is available, Newton's method can be applied to
the first order necessary optimality conditions. Let E if e satisfy the first order
necessary optimality conditions and

z , V2 J (11(z*), z*)( 5 z) > kll(5 zll2 V (5z E ker gz(ft(z*), z*);

then, the second order sufficient condition is satisfied at z*. Furthermore, z* is a strict
local minimum of Equation 2.

The application of the trial step (5z to the Hessian operator is defined as

V2 J(ii(z), z)(5z = Lzu(u(z), z, A)(571 + Lzz(il(z), z, A)( 5 z + LzA(i),(Z), z, A)SA, (8)

where SA E Y. Notice that Su and SA are required to compute the application of the trial
step to the Hessian operator. These quantities can be obtained by solving two independent
system of equations that are derived for Su and (5A.

Let g(ii(z), z) = 0 V z E Z. Then, gz(ii(z), z)Sz = 0 V (z, Sz) E Z x Z, where

gz(ft(z), z)( 5 z = ga(fi(z), z)(5u + gz(ii(z), z)( 5 z = 0.

Solving Equation 9 gives

(512 = —gu(fi(z), z)-1g,(fi(z), z)(5z.

Next, an explicit expression is derived for SA from Equation 4. By definition, Lu(ii(z), z, À) =
0 V (u, z, A) E U x Z x Y; thus, the derivative of Lu(ii(z), z, A) in the direction of (5z gives

Luu(ft(z), z, A)Su + taz(fi(z), z, A)Sz + LuA(fi(z), z, A)SA = 0, (11)

V (z, (5u, 6z, SA) E Z x U x Z x Y. Solving Equation 11 for SA yields

SA = —40,(11(z), z, A)—l[ruu(it(z), z, A)(5u + ruz(ii(z), z, A)(5z],

where

r.),(71(z), z, A) =.g.(ft(z),z)*

(12)

(13)

Lu.(7-1(z),z, A) = Juu(fi(z), z) guu(fi(z), z)*À (14)

Luz(u(z), z, A) = Juz(ii(z), z) + guz(ii(z), z)* À. (15)

For reduced space optimization, the following sequence of steps are required at each
optimization iteration to compute the application of the trial step to the Hessian operator

1. Solve equality g(i),(z), z) = 0 for u(z) E U

2. Solve gu(it(z), z)* = Thlu(ii(z), z) for A E Y, where {Pk, z) z E Z} = {(A, z) E
Y X Z Lu(u, z, À) = 0}
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3. Compute the reduced gradient operator

VJ(fi(z),z) = ,/,(it(z),z)* gz(ii,(z), z)* (—gu(11(z), z))—* Jz(ii(z), z)*

4. Solve gu(fi(z), z)(5u = gz(ii(z), z)( 5 z for 8u E U

5. Solve gu(u(z), z)* (5À = —[Luu(il(z), z, A)(5u + Luzea(z), z, Agz] for SA E Y

6. Compute the application of the trial step Sz to the reduced Hessian operator

V2 Aft(z), z)( 5 z = Lz.(11(z), z, A)(5u + Lzz(it(z), z, )0(5 z + Lz),(fi(z), z, A)6A.

If first order optimization algorithms are applied to solve the unconstrained optimization
problem defined in Equation 2, only steps 1 through 3 are necessary. Contrary, if second
order optimization algorithms are applied, steps 1 through 6 are necessary.

2.2. Topology Optimization

Let Q C Rd , d E {1, 2, 3} denote the computational domain with boundary aft Lets
now define the Lebesgue space THI = L2(Q;R") of measurable and square intregrable func-

tions endowed with inner product (0, = cb for 0, E H and norml1011u = (0, Ole-
Lets also define finite dimensional spaces U = {span{q}aA-1 E IHI} C U for i E {1, 2, 3},
Z = {spant0b1PJ b-1 E IH[} C Z , and Y = Ispan{x}ec_1 I xi E C Y. This enables the
following finite dimensional approximations for the state, control, and lagrange multipliers
u = /9a(4 I 19i E R, z = _p E R, and v = cfx,c I ci E , respectively.

A topology optimization problem for compliance minimization can be defined as

min J(u(z), z) (16)
z E

for Z = {z E Z : lb < z < ub} and objective function

J(u(z),z) = 
2 
(u,K(z)u)H + ±/E

2
Illi(z) — Vollh R(z). (17)

The state u E U is obtained by solving the linear elastostatic equations

K(z)u = f in Q u = 0 on asiu. (18)

Here, 0Q„ C 8s2 is the boundary where Dirichlet conditions are applied, f denotes an
external excitation (force), and K denotes the stiffness matrix. The parameters lb and
ub respectively denote the lower and upper bounds for the control z. Recall from Section
2.1 that this formulation is known as the reduced space formulation for PDE-constrained
optimization.

The modified solid isotropic material with penalization (SIMP) density-based method
[35] was used to penalized the stiffness of the material. The modified SIMP formulation is
given by

E(z) = Emin e(E0 — Einin) I E(z): 2 —> R, (19)
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where E0 is the stiffness of the material, 0 < Emin < 1 is a small stiffness assigned to void
regions to prevent the stiffness matrix from becoming singular, and p is a penalty parameter
introduced to ensure "black-and-white solutions". The modified SIMP approach differs
from the original SIMP formulation through the introduction of Emin. In the classical
SIMP approach, elements with zero stiffness are avoided only through the enforcement of
the bound constraints during optimization. The reader is referred to [35] for a discussion
on the advantages obtained with the modified SIMP formulation in topology optimization
problems.

The functional V(z) : 2 R in Equation 17 quantifies the volume of the structure and
0 < Vo < 1 is the target volume. The parameters EK E r_p* and Ev E R*+ are weights for
the compliance and volume misfit objective terms, respectively. The following definition
from [1, 13] was used for the regularization functional

R(z) = 12((VZ, vZ)111 V2)T. (20)

This expression gives the flexibility to employ total variation regularization when (7 = 1,
V = 0) and a modified form of total variation regularization when (7- = 1/2, 0 < v < 1). The
parameter 0 < < 1 is a penalty coefficient. In this work, total variation regularization was
preferred over Tikhonov regularization due to its ability to capture sharp discontinuities
in inverse problems settings [41].

The Lagrangian functional £: Ux2xY N for the compliance minimization topology
optimization problem, Equation 16, is given by

r(u, z, v) = J(u(z), z) + (v, Ku — f)y*y.

The first order necessary optimality conditions for Equation 21 are given by

Lu(u, z, v) = SKK(z)u + K(z)v = 0

(21)

(22)

Lz(u, z, v) = —62K u Kz(z)u + v Kz(z)u + Ev(V(z) — Vo)Vz(z) + Rz(z) = 0, (23)

where the subscripts u and z respectively denote derivatives with respect to the state and
control. The derivative operator Rz (z) : Z Z is given by Equation 58, see Appendix.

For compliance minimization problems, the lagrange multipliers are given by

V = (24)

This explicit expression is derived from Equation 22 and it is due to the self-adjoint property
of K. Substituting Equation 24 into Equation 23 yields a reduced gradient operator of the
form

VJ(u(z), z) = --
EK
uKz(z)u + Ev(V(z) — Vo)Vz(z) + Rz(z). (25)

2
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Equation 24 enables the computation of the reduced gradient operator without solving
the computationally intensive adjoint problem needed in PDE-constrained optimization
problems.

The quadratic model

,
m(wk) = (V,I(u(zk), zk), wk)H + 2(Wk, V2J(11(zk), zk), Wk)H. (26)

is evaluated at every k-th trust region sub-problem iteration to decide if the trial control z
is accepted. Notice that the Hessian operator, or an approximation to the Hessian operator,
is required to evaluate Equation 26. To accurately compute the application of the trial
step w to the nonlinear Hessian operator V2J(u(zk), zk), Equations 10 and 12 are solved
during optimization. This will increase the computational effort because the application
of the trial step to the Hessian operator is carry out several times during a trust region
sub-problem iteration.

To minimize the computational expense associated with the solution of Equations 10
and 12, the Hessian operator can be approximated using quasi-Newton methods [5, 11, 27].
Quasi-Newton methods have been successfully used in many applications. However, in this
work, the second order derivative information is approximated by a linear programming
Hessian formulation of the form

V2 Au(z), z) = Lzz(u, z,v) = Jzz(u(z), z) + gzz(u(z), z)v, (27)

where Equation 27 is given by

V2J(u(z), z) = — —62K u Kzz(z)u + Ev-Vz(z)Vz(z) + Ev(V(z) — Vo)Vzz(z) + Rzz(z). (28)

This linear approximation does not require the solution of Equations 10 and 12 and thus re-
duces the computational cost associated with this calculation. Furthermore, this approach
avoids the storage of additional snapshots ensembles as well as symmetric eigenvalue solves,
which further expedites optimization. Results will show that significant speedups are at-
tained by using the linear Hessian approximation for the solution of Equation 16 over its
nonlinear counterpart.

2.3. Proper Orthogonal Decomposition

Let 1.1 = {up}pN11 denote the snapshot ensemble that contains characteristics of the
expected state solution, where Ars denotes the total number of snapshots. This enables the
definition of the finite dimensional linear space U = span{up}pALs1 c HE, where dim(U) < N.,.
Let 1. = {(cop)aeq=1 l cop e IHI denote the eigenvector ensemble associated to the state
ensemble 11. The POD basis can then be computed by solving the following equality
constrained optimization problem

N, £

minimize E Ilfip - E(fip, .g,)ffffI.,Iih s.t. (' q, l' r) H = (5q,,,, (29)
CD q EH

p=1 q=1
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where < dim(0) and 1 < r < e. The solution to Equation 29 yields the POD basis that
is used to generate the reduced order model during optimization.

The optimization problem defined in Equation 29 is equivalent to solving a symmetric
eigenvalue problem or a singular value problem [17, 38]. During optimization, based on the
ratio between the actual and predicted reduction, the POD basis is constructed by solving
a symmetric eigenvalue problem of the form

NS

~pq':1)q = (11 p ~q~up = q(I) q, 1 < q < e,

p=1

(30)

where Tq E R denotes the real-value eigenvalue associated with eigenvector Itq E IHI,

= 1111T : IHI 0 is a bounded linear, compact, self-adjoint and positive operator. The
operator klf is commonly known as the covariance operator.

Lets define a finite dimensional linear space W = span{(coi)q}qNZ1 c IN for 1 < <

and a set of real-value POD coefficients 0 = {(9i)q}qN—wi Oi E I. Then, the POD
method seeks to develop an approximation to the state solution by finding a finite and low
dimensional representation u E W of the form

\ •

U = E(9i)q(c0i)q,

q=1

where the POD function (cpi)q E W is given by

(31)

Ns
(cai) 1;1/2 E(uop(c,p),, (32)for 1 < q < N.

p=1

This POD function ensemble is used to effectively build accurate reduced order models
during optimization. This reduces the number of high fidelity FEM evaluations during
optimization and thus accelerates optimization.

3. Algorithm

The trust region algorithm for PDE-constrained optimization with bound constraints
using reduced order modeling is presented in this section. The trust region Newton's version
of the proposed algorithm was presented by Lin [23]. This works adapts the trust region
algorithm presented by Lin et.al. to PDE-constrained optimization problems where the
PDE is modeled using reduced order modeling techniques. Specifically, the POD-Galerkin
method is used in this work to construct a reduced order model for the high fidelity FEM
during optimization. However, the proposed algorithm is not specific to POD-Galerkin
methods. The proposed trust region algorithm can be effectively implemented to enable
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the used of other reduced order modeling techniques. The main algorithmic framework is
described in Algorithm A.1.

Initialization. Given Zk=O compute J(u(zk=0), Zk=o) and VJ(u(zk=0), Zk=o) and
store initial state solution iip=1 = u(zk=0)
while not converged do

Solve trust region sub-problem as described in A.2.
Update orthogonal basis as described in A.3.
if M < N

Compute VJ(u(zk+l), Zk+1)

else If M > N and pk < v

Compute VJ(u(zk+l), zk+1)

else

Compute VJ(u(zk+l), zk+1)

Check convergence.
k = k + 1

end
Algorithm 1: Main framework

3.1. Trust region sub-problem

At each n-th iteration of a trust region algorithm there is an approximation to the con-
trol zn E Z, a trust region radius An, and a model m(s„) : Z —> 11: of the possible reduction
in the objective function defined by J(u(zn+i), zn+i) — J(u(zn), zn). Here, zn+1 = zn + sn,
such that 11s, l l < An, sn E Z. The proposed algorithm applies a quadratic model of the
form

711(Sn) = (VV-(11(Zn=0), Zn=O), Sn)H 
2

+ —
, 
S71, V2J(1.1(Zn=0), Zn=0), Sn)H,

which was first introduced in Equation 26.
The control zn and trust region radius An are updated through standard rules in trust

region methods for unconstrained optimization [9]. Thus, given a trial step vtrn and a trial
control zn+1 = zn=o + sn, the ratio between the actual reduction in the objective function
and the predicted reduction in the quadratic model

Pn =
ill(sn)

J(11(Zn+i), Zn+i) — J(11(zn=0), Zn=o) 
(33)

is evaluated. A trial step s, with p, > 0 yields a reduction in the objective function. The
trial control zn+i = zn=o+s„ is accepted depending on how well the quadratic model m(sn)
approximates the actual reduction in the objective function within a suitable neighborhood
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or trust region. Given acceptance criterion ni E N±, zr,+1 is accepted if pn > ni.If pn < 771,
zn+1 is rejected, the trust region radius is updated, and a new trial step is computed. The
rules used to update the trust region radius An are given by

An+1 E [0-1 min{ llsn II,, , An}, u20n] if Pn < 771,

An+1 E [QiAn,0-3An] if ion E (771,772),

An+1 E [An, Cr30n] if Pn 772

(34)

where ni,n2 E R'"± and 0 < al < u2 < 1 < a3.
A trial step sn is selected to give as much reduction in the quadratic model as the

Cauchy step wnc(a): RI Z generated by a projected gradient method

wne(a) = Pt [zn — aVJ(u(zn=0),zn=0)] — z,0, (35)

where Pt : Z 2 is the projection to the feasible set. The projection operator is given by

1lb, if z, < lb,

P 2(z,) = z2 if lb, < z, < ub2

ub, if z, > ub2

for 1 < t < nz. The scalar a E N+ is selected such that

m(wn
c 
(a)) 1,10(V1(u(zn=o), zn=o),Avn

c 
(a))H, Ilwn

c
(a)ll 1-t10n,

(36)

(37)

where µI) < 2 and pi E R. The criteria in Equation 37 can be satisfied in a finite number
of iterations [7, 23, 25].

Given the Cauchy step wric wnc(a), a descent direction wn is selected by solving the
trust region sub-problem

minimize m(wn) : w2 = 0, i E A(z), IISAvnII < An,'
wnEZ

(38)

where A(z) is the set of active constraints at z E t defined by

A(z) = {t E i : z2 E {lb,, ub,}} (39)

and S is defined as a diagonal matrix whose diagonal entry is set to one if the constraint is
inactive. The trust region sub-problem is solved using the preconditioned conjugate gradi-
ent algorithm proposed by Steihaug [39]. However, a proper implementation of the trust
region framework described in Algorithm A.2 enables the used of other Krylov solvers
[31]. Furthermore, different trust region methods (dogleg [29] or double dogleg [12]) can
be easily applied to solve the trust region sub-problem in Equation 38.
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Data: If M < N then low fidelity model is inactive else low fidelity model is active
Result: Updated control zk+1
Step 0: Set current control zn=0 = zk and initial trust region radius An=o = Ak
while p <711 do

Step 1: Compute Cauchy step.

w nc (a) = P[zn — aW(11(zn=o), zn=0)]

Step 2: Compute descent direction.
minimize m(wn) (VJ(u(zn=o), zn=o), Swn)+1. 

c-72V J(11(Zn=0), Zn=0)Swn)
wnEZ

Step 3: Compute trial step.

sn = Wn0) = P[Zn )3Wn] Zn=0

such that m(sn) < Ito m (wnc) Ilsn ll < An, and Zn+1 = Zn=O Sn E
Step 4: Acceptance of the trial control.

AU(Zn+1), Zn+1)—srij)(u(zn=0),zn=0)Pn = 771( 

if pn > Th then zk+1 = zn±i else zn+1 = Zn=0
Step 5: Trust region radius update.

1 

,An-F1 E [a]. min{lIwn 11, An}, cs20n] if Pn ni

An+1 = An+1 E [alAn, a30n] if Pn c (7/1,7/2)

An+1 E [An, 0-30n] if Pn ? 772

n = n 1
end

Algorithm 2: Trust region sub-problem
Given the descent direction wn, a projected gradient line search is done to compute a

trial step sn wn((3) = z+ — zn=0 that guarantees that

z+ = P[Zn + )3wn] E llsnll Cit10n, zn+1 E 2 (40)

and
7/2(Sn) < 7/2(Z±C — Zn=o) po min{ V(171(Z±C — Zn=0), Sn)H, 0} (41)

are satisfied. In Equation 41, z_cp = P[z, wnc(a)]. The reader is referred to [26] for a
detailed discussion on the projected searches. Given trial step sn, the ratio between the
actual and predicted reduction is computed to determine if the trial control zn+i is ac-
cepted, if pn > 7/1 then zk+1 = zn±i else zn±i = zn=o. The trust region radius is updated
according to the rules presented in Equation 34. Algorithm A.2 describes the trust region
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sub-problem framework.

Data: 11, A p, Eul EA
Result: (0 i) (c0i) (02),) (CI4)
if M = N then

Construct POD functions for state and lagrange multipliers.
1. Solve kif pq(Dq = Tql.q and knM = 'lCq

2. Truncate orthogonal basis based on Equation 42
A

3. Construct POD functions a = EqNz, (0 i) q(Ciai) q and A = EqN z,(Bf)q(cp^)q

else
if p < v then

Solve high fidelity state and adjoint system of equations.

1. Solve g(u(zk+1), zk+1) = 0 for u(zk+1) E U

2. Solve gu(u(zk+i), zk+i)*vk±i = —Ju(u(zk+1),zk+1) for vk+1 E Y

Update state and lagrange multipliers snapshot ensembles.

Set iip=x9+1 = u(zk+1) and Ap=I\ r .9+1 = vk+1; update N, = p

Construct POD functions for state and lagrange multipliers.

1. Solve qf = T 4) and T TA OApq q q q pA q q = q q
2. Truncate orthogonal basis based on Equation 42

NA
3. Construct POD functions fi = qNZ (0i) q((A) q and A = Eq_wi (q)q(C,-4)q

end

end
Algorithm 3: POD functions update

3.2. Adaptive POD functions update

The proposed trust region algorithm for PDE-constrained optimization with bound con-
straints described in Section 3.1 applies model reduction techniques to construct a faster,
low fidelity FEM during optimization. The goal is to apply model reduction techniques to
accelerate the solution of large-scale PDE-constrained optimization problems and reduce
computational time. The algorithm stores state and lagrange multipliers snapshots from
previous high fidelity FEM evaluations and applies a POD-Galerkin projection method to
generate reduced order models for the state and lagrange multipliers. The proposed algo-
rithm eliminates ineffective sampling of state and lagrange multipliers snapshots before the
solution of the optimization problem (offline). Contrary, the algorithm relies on the trust
region framework to effectively sample state and lagrange multipliers snapshots during op-
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timization (online) and construct/update the reduced order models. The conjecture is
that the optimization algorithm will generate optimal data sets during optimization due to
the explicit enforcement of desired requirements through the problem formulation. Thus,
the snapshots generated by the optimization algorithm will produce optimal reduced order
models.

At each successful k-th iteration of the trust region algorithm, the ratio between the
actual and predicted reduction in the objective function, pk, is computed. This ratio
is used to inform the algorithm how well the reduced order model is performing during
optimization. Base on the ratio between the actual and predicted reduction in the objective
function, the algorithm applies an adaptive POD function updating scheme to enhance the
predictive accuracy of the reduced order model during optimization.

Given an initial number of snapshots Ns, the proposed trust region algorithm relies on
high fidelity FEM evaluations to compute state and lagrange multipliers snapshots while
the algorithm advances towards the optimal control. These high fidelity state and lagrange
multipliers snapshots are stored online until the maximum number of snapshots is reached.
Once the initial state and lagrange multipliers ensembles have been computed, the algo-
rithm generates reduced order models for the state and lagrange multipliers. The advan-
tage of the proposed approach is that high fidelity FEM evaluations are not wasted offline.
Thus, high fidelity state and lagrange multipliers snapshots are computed online as the
algorithm advances towards the optimal control. The proposed trust region algorithm for
PDE-constrained optimization using reduced order modeling completely eliminates time
consuming state and lagrange multipliers snapshot sampling offline.

The proposed algorithm relies on pk to determine if the reduced order models need to
be updated. If pk < v, the reduced order models are not accurate for optimization and a
new set of high fidelity state and lagrange multipliers snapshots are sampled by solving

g(u(zk+1), zk+1) = 0 for u(zk+1) E U

and
gu(u(zk+1), zk+1)*.v.k+1 = —J,i(u(zk+1), zk+1) for vk+1 E Y.

These new high fidelity state u(zk+1) and lagrange multipliers vk+1 snapshots are added to
their respective ensembles ilp=Ns+1 = Ok+1) and Ap=Ns+1 = Vk+1. The new ensembles

fip=Ns+1 and Ap=N3+1 = Vk+1 are used to compute a new set of eigenvalues and eigenvectors
by solving the symmetric eigenvalue problems

kIf pAq = TAq

and
WA (DA = TA4)A•pq q q q 

Here, v E R is a pre-defined threshold used to determine if the reduced order models are
accurate for optimization. The parameter 11', E R denotes the real-value eigenvalue asso-

ciated with eigenvector E IHI. WA = A AT: IHI —> i( is the covariance operator for the
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lagrange multipliers, where 117 = span{vp}pNL5 1 c EI. This approach allows the algorithm to
adaptively update the state and lagrange multipliers eigenvalues and eigenvectors during
optimization.

Step 4: Acceptance of the trial control.

1. Compute Au(zn), zn) and

J(u(zn),zn) — Au(zn=0),z7i=o)
Pn = m(sn) — Qr

Pn
2 
= 

J(11(zn), zn) J(11(zn=13), zn=0) 

m(sn)

and set pn = max[pni , pn2]

if Pn <
Set zn+1 = zn=0 and go to Step 5

else

Set zk+1 = zr, and update a, = m(sn) — ur and a, = m(sn) — ac
end

2. Update best objective function value

if Au(zn), zn) < Jmin
Set = Jmin, Cic = 0, and j = 0 and go to Step 5

else

j = j + 1
end

3. Update Je for the next reference objective function value

if J(u(zn),zn) > J,

Set Jc = J(u(zn),zn) and a, = 0

end

4. Reset reference objective function value if necessary

if j = M

Set Jr = Jc and ar = ac
end

Algorithm 4: Acceptance criteria for a non-monotone trust region algorithm

The number of state eigenvectors (Nv) and lagrange multipliers eigenvectors (/\/,`)
conserved and used to generate the POD-Galerkin basis is based on the amount of energy
captured by each basis function. This energy measures are computed from the eigenvalue
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ensembles ITq e l and {TqA}eqA1 These energy measures are given byq=1 

EqNzi Tq NA AE Tq=1 q
Eu = EA = e A

q=1 T q 2_..q=1 Tq
(42)

where en and eA are the respective energy measures for the state and lagrange multipliers
ensembles. It is often observed that a limited number of eigenvalues and eigenvectors
are necessary to compute the Galerkin-POD functions use to generate the corresponding
reduced order models.

Given finite dimensional linear spaces TV = span{(CA)q}qNZ1 c El and W A = span
NA

{(c4)q}qZ1 C IHI, the Galerkin-POD function ensembles u and A are computed by apply-
ing Equations 31 and 32. Is important to emphasize again that the proposed algorithm
is not specific to POD-Galerkin projection methods. Other projection methods can be
effectively used to generate the reduced order models online. The key is to design a gen-
eral algorithmic framework that enables the used of different projection methods for model
reduction. Algorithm A.3 describes the adaptive Galerkin-POD updating scheme used
by the algorithm to control the inexactness induced by the reduced order models during
optimization.

3.3. Algorithmic Extensions

The trust region sub-problem algorithm proposed in Section 3.1 can be modified to
accept non-monotone steps. The advantage of this strategy is that the algorithm can avoid
getting stranded in local minima when solving highly nonlinear programming problems
The idea of non-monotone trust region algorithms is to modify the update strategy in order
to accept trial controls even if descent in the objective function is not attained, i.e. pk < O.

Let Jmin denote the current best value of the objective function at iteration n, that is

Jmin = min Jmin(u(zj), zj) (43)
jE(0,74

Lets define j successful iterations since Jmin was first computed. The reference objective
function value Jr is updated if j exceeds a predefined constant integer M. The reference
objective function value Jr is reset to the largest value observed over all previous successful
iterations, Jc, since the last best objective function value Jmin was last found. Before
introducing the modified trust region algorithm, lets define parameters a, and ar. Here,
ac denote the sum of predicted model decrease on all previous successful iterations; while,
a, denotes the sum of predicted model decrease on all previous successful iteration since
the reference iteration.

The non-monotone trust region algorithm is a special case of Algorithm A.2. To allow
a non-monotone trust region iteration, two modifications to Algorithm A.2 are necessary.
First, Step 0 is modified to allow the initialization of Jmin = Jr = = J (1(z,=0) zn=0)
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Parameter Value

E0 1 Pa.

Emin 1 x 10-6 Pa.
p 3
v 1 x 10-8
7 0.5
( 0.5*max(Le)
vf 0.3

zo diag(vf ) • 1

EV 1 1 V (ZO)

EK 11 (11(ZOK(Z0)1(z0))

Table 1: Corresponding values for the topology optimization parameters.

and a, = o-, = 0 in addition to zn=o = zk and An=o = Ak. Finally, the acceptance criteria
for the trial control given in Step 4 for a non-monotone trust region algorithm is modified
and described in Algorithm A.4.

In this work, the non-monotone trust region step algorithm was more effective than
the monotone counterpart solving Equation 16. The non-monotone strategy required less
iterations and objective function evaluations than the monotone strategy. This reduce the
number of high fidelity FEM evaluations and thus expedite optimization. Finally, notice
that the proposed trust region algorithm for PDE-constrained optimization with bound
constraints using reduced order modeling, if properly implemented, can easily apply other
trust region sub-problem algorithms without major changes to the main framework. Once
more, the key is the proper implementation of the algorithm.

Algorithm A.2 can be modified to be used as a non-monotone trust region algorithm by
limiting the number of trust region sub-problem iterations. The computed trial control is
then accepted without enforcing descent in the objective function. This simple modification
enables the use of Algorithm A.2 as a non-monotone trust region step. The interested
reader is referred to [9] for detailed discussions on the implementation of non-monotone
trust region steps as well as the related convergence theory.

4. Results

The proposed trust region algorithm for PDE-constrained optimization with bound
constraints using reduced order modeling was applied to three compliance minimization
problems. These case studies are used often to test new formulations and algorithms for
topology optimization applications. Figure 1 shows the design domain, boundary condi-
tions, and external load for each of the topology optimization test problems considered
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Parameter Value

7/1 0.2

in 0.8

crl 1

0-2 0.5

0-3 2

ito 1 x 10-2

/-11 1

v -0.1

en 0.999

Table 2: Corresponding values for the trust region algorithm parameters.

herein. Table 1 shows the corresponding values used for the topology optimization param-
eters. These values will remain constant throughout, unless explicitly specified. In Table
1, max(Le) is the maximum element length and z0 is the initial control. The parameter 1
denotes a vector of all ones and vf is the volume fraction. The parameter diag(vf) denotes
a diagonal matrix with values vf along the main diagonal. The magnitude for each vertical
force in Figure 1 was set to one in all the test problems. Finally, the upper and lower
bounds were set to ub = 1 and lb = 1 x 10-2, repsectively.

The proposed algorithm was implemented in MATLAB scientific package [24]. Table 2
shows the corresponding values used for the trust region sub-problem parameters. The „
parameter is the energy threshold on the POD functions. Recall that et, is used to determine
the number of eigenvectors conserved and used to generate the reduced order model for
the state equation. The computational domain was discretized using piecewise linear finite
elements on a regular grid. The Intrepid PDE discretization package from Trilinos [16] was
used for the implementation of the linear elastostatics equality constraint. This was enable
through MATLAB's MEX Library, which allows the call to external functions from the
MATLAB command line. All calculations were performed on a Linux workstation with a
2.93 GHz Intel(R) Core Xeon(R) processor and 24 GB of RAM.

An advantage of compliance minimization topology optimization problems is that an
explicit expression is derived for the lagrange multipliers. Thus, the reduced gradient
operator can be computed without solving the adjoint system of equations. This reduces
the computational cost associated with the assembly of reduced gradient operator during
optimization. Furthermore, the storage requirements are reduced since only the state
snapshot ensembles are needed to create the state reduced order model.

Several numerical studies were performed to test the feasibility of the proposed trust
region algorithm for PDE-constrained optimization using reduced order modeling. First,
the linear Hessian formulation was applied to a small-scale compliance minimization topol-
ogy optimization problem. Results were compared against the results gathered by applying
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H=1

L=3
(a) Symmetric MBB beam

L=1.5

H=1

L=1.5

1
(b) Mitchell beam (c) Cantilever beam

H=1

Figure 1: Design domain, boundary conditions, and external load for the topology optimization case studies.

the nonlinear Hessian formulation to the same problem. The benefit of the proposed linear
programming formulation is that Equations 10 and 12 are omitted during optimization.
This reduces computational time since only the linear elastostaitcs FEM evaluations are
needed during optimization. Second, the algorithm is applied to three topology optimiza-
tion problems to investigate the robustness and feasibility of accelerating large-scale PDE
constrained optimization through reduced order modeling. Finally, sensitivity of the algo-
rithm to the initial sampling size is studied.

4.1. Linear Programming versus Nonlinear Programming Hessian Formulation
The feasibility of the proposed linear Hessian formulation for the solution of compliance

minimization topology optimization problems is investigated in this section. A simple ex-
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Figure 2: Results for the cantilever beam with the a) linear and b) nonlinear programming Hessian formu-
lations.

ample is presented to show that the proposed linear Hessian formulation produces optimal
topologies. Thus, significant speedups are attained by avoiding the computational effort
associated with the nonlinear Hessian formulation, see Section 2.1.

PDE-constrained optimization problems require nonlinear programming techniques to
compute the derivative information needed to minimize the objective function. If second
order derivative information is available, second order optimization algorithms can be ap-
plied to solve the problem. However, the sequence of steps presented in Section 2.1 are
required to compute the application of the trial step to the nonlinear Hessian operator.
Every time the application of the trial step to the Hessian operator is required, Equations
10 and 12 are solved. This fact increases computational effort since this calculation is
needed multiple times during the trust region sub-problem iterations.

To circumvent having to solve Equations 10 and 12 during the trust region sub-problem
iterations, a linear Hessian formulation is proposed. The advantage of this formulation is
that the solutions to Equations 10 and 12 are not necessary to compute the application of
the trial step to the Hessian operator. However, it is imperative to preserve the robustness
and accuracy that is associated to the nonlinear Hessian formulation. Thus, the linear
Hessian formulation is applied to a simple compliance minimization problem to investigate
the robustness and performance of this formulation.

Figures 2a and 2b show the optimal topology obtained with the linear and nonlinear
Hessian formulations. For this example, 1/ = 1 x 10-2 and Emin = 1 x 10-2. Figures 2a and
2b show that the linear Hessian formulation yield better results than the nonlinear Hessian
formulation. Indeed, the linear Hessian formulation required 36 iterations to converge
to an optimal topology, while the nonlinear Hessian formulation did not converge to an
optimal topology after 36 iterations. The convergence criterion for this example was Ilsk <
1 x 10-3. However, what is more remarkable is the speedups obtained with the linear
Hessian formulation. The algorithm took 32 seconds to perform 36 optimization iterations
with the linear Hessian formulation. Contrary, it took the algorithm 648 seconds to perform
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36 optimization iterations with the nonlinear Hessian formulation. Thus, the linear Hessian
formulation enabled a 20x speedup (S) over the nonlinear Hessian formulation.

The performance of the nonlinear formulation strategy can be further improved. In this
study, the linear system of equations solve were prone to ill-conditioned due to small positive
control values. This affects the performance of the algorithm since the inaccuracies induced
by ill-conditioned system of equations will produce inaccurate solutions to Equations 10 and
12. This promotes inaccurate calculations of the trial step to the Hessian operator and thus
impacts performance of the algorithm. Applying an effective preconditioner can control the
inaccuracies induced by ill-conditioned system of equations [42]. This will produce accurate
solutions to Equations 10 and 12 and thus improve the performance of the algorithm when
the nonlinear Hessian formulation is apply. However, the use of a preconditioner for will
also benefit the linear Hessian formulation strategy. Thus, the linear Hessian formulation
will potentially outperformed the nonlinear Hessian formulation. Effective preconditioning
strategies will be explored in the future to further understand the impact on both linear
and nonlinear Hessian formulations.

4.2. Optimization Using Reduced Order Modeling
The proposed trust region algorithm for PDE-constrained optimization with bound

constraints using reduced order modeling is demonstrated in this section. The algorithm
is applied to three test problems in topology optimization; the symmetric MBB beam,
Mitchell beam, and cantilever beam problems. The linear Hessian formulation is used
in all the test problems. The objective is to investigate if further speedups (S) can be
achieved by applying reduced order modeling techniques for the solution of large-scale
PDE-constrained optimization problems. Furthermore, the sensitivity of the algorithm to
the initial sampling size is investigated.

The algorithm's stopping criteria (C) for this numerical study are given by

1. Nit, > /V,Ptar"

2. (5J <1 x 10-6

3. Ilsk II < 1 x 10-3

4. 111'6'11 < 1 x 10-3

5. max(6z,) < 1 x 10-3.

Here, Nitr is the total number of optimization iterations, Nrx is the maximum number of
optimization iterations allow, and 8J is the change in the objective function between two
subsequent iterations. The parameter max(h1) is the maximum component-wise change
in the control between two subsequent iterations.

Finally, it is important to emphasize that no filtering operator was used to generate the
results presented in this section. Filtering operators are often applied to topology optimiza-
tion problems to avoid numerical artifacts. These numerical artifacts include checkboard
effect and mesh-dependent topologies [33, 34, 36]. Future work will consider the used of
filtering operators and their effect on the performance of the algorithm.
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Parameter HFM N,=13 Ns=14 N5=15 Ns=16

Nztr 100 42 100 84 43

NHFM - 23 38 41 34

NUPD 11 24 26 18
Time (seconds) 1,577 424 1,064 848 450

S 3.72 1.48 1.86 3.5
C N2rtnrax (5,/ /yr ax7-7. max(8z2) max(8z2)

Table 3: Results for the symmetric MBB beam test problem with respect to different initial snapshot
sampling size.

4.2.1. Symmetric MBB Beam
Figure la shows the design domain, boundary conditions, and external load used for

the symmetric MBB beam test problem. The problem was discretized using a regular grid
with 25,600 (160 x 80 x 2) triangles. This discretization lead to 22,082 and 11,041 state
and control variables, respectively. Table 3 shows the results obtained for the symmetric
MBB beam test problem. Notice that the baseline case (the high fidelity model (HFM)
is used throughout the optimization process) took 1,577 seconds over 100 optimization
iterations. The optimal topology for the baseline case is shown in Figure 3a. The baseline
case was compared against the cases where the trust region algorithm for PDE-constrained
optimization using reduced order modeling techniques was applied. Notice that for these
cases the algorithm needed less computational time to produce an optimal topology. Fur-
thermore, in most cases, the algorithm also needed less optimization iterations to produce
the optimal topology. For instance, for cases N, = 13, N, = 15, and N, = 16, significant
speedups were attained, as seen from Table 3. Even for N, = 14, which reached the max-
imum number optimization iterations allow, the computational time was lesser than the
baseline case.

Figure 3 shows the optimal topologies for the symmetric MBB beam test problem.
The optimal topologies obtained using the reduced order modeling techniques match the
expected topology. There is a clear dependence on the initial snapshot sampling size. The
performance of the algorithm as well as the quality of the optimal topology is affected by
the initial sampling size. Notice that different topologies are attained as the initial snapshot
sampling size is modified. However, a robust filtering operator could aid improve the quality
of the solution and minimize numerical artifacts and also minimize the sensitivity to the
initial sampling size. The filtering operator could also improve the predictive accuracy
of the reduced order model during optimization by eliminating these potential numerical
artifacts. This will enable the algorithm to reduce the number of POD function updates
(NupD) and HFM evaluations (NHFAI) done during optimization. Reducing computational
time and improving the robustness and accuracy of the algorithm during optimization.

Regardless of the discernible dependence on the initial sampling size, the proposed
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Figure 3: Results for the symmetric MBB beam test problem using reduced order modeling.
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Figure 4: Objective function values for the symmetric MBB beam test problem.

algorithm produce topologies that match the expected topology. Furthermore, significant
speedups were attained by combining the linear Hessian formulation and reduced order
modeling techniques to solve the compliance minimization problem. For completeness, the
objective function histories for the symmetric MBB beam test problems are provided in
Figure 4.

4.2.2. Mitchell Beam

Figure lb shows the design domain, boundary conditions, and external load used for the
Mitchell beam. The problem is discretized using a regular grid with 22,188 (129 x 86 x 2)
triangles. This discretization lead to 22,620 and 11,310 state and control variables, respec-
tively. Table 4 shows the results obtained for the Mitchell beam test problem. Notice that
the baseline case took 2,542 seconds over 150 optimization iterations. The baseline optimal
topology is shown in Figure 5a. The baseline results were compared against the results
generated through PDE-constrained optimization using reduced order modeling techniques.
The surrogate-based approach produce optimal results while reducing computational time.
Furthermore, contrary to the symmetric MBB beam case study, the algorithm converged
in less optimization iterations than the baseline case for the Mitchell beam example.
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Parameter HFM N8=13 N8=14 Ns=15 Ns=16

Nitr 150 131 98 79 46

NHFM - 53 35 42 25

NUPD 40 21 27 9
Time (seconds) 2,542 1,493 1,202 830 485

S 1.7 2.11 3.06 5.24
C Niirrax 115k11 max(6z,) max(åzi) 11w01

Table 4: Results for the Mitchell beam test problem with respect to different initial snapshot sampling size.

(a) High fidelity model
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Figure 5: Results for the Mitchell beam test problem using reduced order modeling.
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Figure 6: Objective function values for the Mitchell beam test problem.

Significant speedups, 1.7 < S < 5.24, were also attained for the Mitchell beam test
problem. Indeed, the performance of the algorithm improved as the initial sampling size
increased. Once again, the performance of the algorithm was dependent on the initial
sampling size. However, Figure 5 shows that the optimal topologies obtained using the
proposed algorithm match the expected optimal topology. Thus, the results suggest that
the surrogate-based trust region algorithm can be effectively applied for the solution of
large-scale compliance minimization topology optimization problems. For completeness,
the objective function histories for the Mitchell beam test problems are provided in Figure
6.

4.2.3. Cantilever Beam
Figure lc shows the design domain, boundary conditions, and external load used for the

cantilever beam. The problem is discretized using a regular grid with 22,188 (129 x 86 x 2)
triangles. This discretization lead to 22,620 and 11,310 state and control variables, re-
spectively. Table 5 shows the results obtained for the cantilever beam test problem. The
baseline case took 1,081 seconds over 90 optimization iterations. The optimal topology is
shown in Figure 7a. Contrary to the optimal topologies shown in Figure 2, the topology
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Parameter HFM Ns=13 Ns=14 Ns=15 Ns=16

Nitr

NHFM
NUPD

Time (seconds)
S
C

90
-

1,081

max(5z2)

46
32
19
468
2.31

max(Sz2)

58
34
20
632
1.71

max (8z2)

43
31
16
423
2.56

max(8z2)

42
33
17
412
2.62
Ilvvi'll

Table 5: Results for the cantilever beam test problem with respect to different initial snapshot sampling
size.

in Figure 7a shows the emergence of mesh-dependent features as the element size is de-
creased. However, the topologies obtained with the proposed surrogate-based optimization
algorithm converged to the expected optimal topology. These results suggest that the re-
duced order model aid filter mesh-dependent features, improving the quality of the optimal
topologies produced by the algorithm.

The baseline results were compared against the results obtained with the surrogate-
based trust region algorithm for PDE-constrained optimization. Once more, computa-
tional time was reduced due to fewer HFM evaluations during optimization. The proposed
algorithm can be further improve by decreasing the number of POD function updates per-
formed during optimization. Future work will focus on developing a mathematically sound
strategy that enables the reduction of adaptive POD function updates during optimiza-
tion. However, significant speedups, 1.71 < S < 2.62, were still attained for the cantilever
beam test problem. The performance of the algorithm once more depended on the initial
sampling size. Future work will also focus on improving the predictive accuracy of the
orthogonal functions used to generate the reduced order model. This should reduce the
sensitivity of the algorithm to the initial sampling size. Furthermore, the performance of
the algorithm should improve due to the enhance accuracy of the orthogonal functions.
Finally, the objective function histories for the cantilever beam test problems are plotted
in Figure 8.

5. Conclusions

This paper presented a novel trust region algorithm that relies on proper orthogonal
decomposition techniques to construct accurate reduced order models during optimiza-
tion. The algorithm initially samples high fidelity state information to compute the POD
functions that are used to generate the reduced order model. The reduced order model
is then used to replace the computationally intensive high fidelity finite element evalua-
tions during optimization. The algorithm relies on an adaptive updating scheme, which
is based on the ration between the actual and predicted reduction in the objective func-
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Figure 7: Results for the Cantilever beam test problem using reduced order modeling.

tion, to improve the predictive accuracy of the reduced order model during optimization.
Results showed that the proposed algorithm reduces the computational effort required to
large-scale PDE-constrained optimization problems in topology optimization.

The algorithm was applied to three compliance minimization topology optimization test
problems. The algorithm consistently produce optimal topologies in fewer optimization it-
erations. Furthermore, the algorithm reduces the number of high fidelity model evaluations
needed to compute the derivative information during optimization. This produce notice-
able speedups, which is crucial for large-scale PDE-constrained optimization settings due
to the reliance on computationally intensive finite element models. The algorithm is gen-
eral and thus applicable to any PDE-constrained optimization setting. Future work will

29



Ob
je

ct
iv

e 
Fu

nc
ti

on
 V
al

ue
 

10

le
-io°

*

0 Ns=13
* Ns=14

Ns=15
0 Ns=16
— HFIV1

101
Iteration Count

le

Figure 8: Objective function values for the cantilever beam test problem.

investigate if the algorithm can be applied to solve large-scale inverse problems.
This paper also presented an effective linear programming Hessian formulation for com-

pliance minimization topology optimization problems. The trust region framework relies on
a quadratic model to predict the behavior of the objective function within a suitable neigh-
borhood. The quadratic model relies on second order derivative information to improve the
performance of the trust region algorithm. If a nonlinear Hessian formulation is applied,
the computational effort will increase due to additional finite element evaluations done dur-
ing the trust region sub-problem iterations. Replacing the nonlinear Hessian formulation
with its linear counterpart led to significant speedups, 20x. Furthermore, the performance
of the algorithm and quality of the optimal solution were not negatively affected by using
the linear Hessian formulation for the quadratic model.

The algorithm proposed herein can be further improved. First, more work is needed
to enable optimal sampling strategies and reduce the sensitivity of the algorithm to the
initial sampling size. Second, mathematically sounds techniques will be investigated to
improve the predictive accuracy of the orthogonal functions used to create the reduced
order model. This will allow the algorithm to rely longer on the reduced order model
and avoid computationally intensive singular value decompositions or eigenvalue problems
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Finally, further speedups can be attained by applying reduced order models for both state
and control variables. Therefore, expanding the current framework to allow reduction in
both state and control variables will be explore in future work.
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Appendix

Equation 8 shows the second order derivative operators required to compute the appli-
cation of the trial step to the nonlinear Hessian operator. These second order derivative
operators are explicitly defined in this section. These operators were used to solve the
nonlinear programming compliance minimization topology optimization problem during
the high fidelity optimization iterations.

The necessary equality constraint derivative operators are given by

(gz (0), z), (5z)Eff = (u Kz(z)u, ,r5z)H (44)

(gu(u(z), z), (5u)Eff = (u K(z), (5ti Eff (45)

(gu(u(z), z)*, 8-ii)H = (v K(z)*, Sti)H (46)

(guu(u(z), z)*, (511)H = (0, 6u)H (47)

(guz(u(z), z)* , (5z)H = (v(Kz(z)u)*, .5z)H (48)

(gzz (0), z)*, (Sz)H = (v(Kzz (z)u)*, (5z)H (49)

(gzu(z(u), z)* , Su.)H = (v(Kz (z)u)*, (511)H. (50)

The second order derivative operators for the objective function are given by

where

(Juu(u(z), z)* , (5u)H = (K(z), (5u)H

quz (u(z), z)*, (5z)H = ((Kz (z)u)*, (5z)H

(Jzz (u(z), z)*, .5z)H = (u(Kzz (z)u)* + Vzz (z) + Rzz (z), (5z)E1

(Juz (u(z), z)* , Su)H = ((Kz (z)u)*, (Su)H,

(51)

(52)

(53)

(54)

Vzz (z) = 0 (55)

Rzz (z) = ( (7- - 1) ( (Vz, Vz)H + v2)7-2) (Vz, Vz)HT̂C + ((Vz, Vz)H + v2)1-1K. (56)
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Recall that the lagrange multipliers are explicitly given by Equation 24. Thus, the adjoint
system of equations are not solved during optimization. Parameters (-, v, and T were
defined in Section 2.2. Here, K is the scalar stiffness matrix and is given by

K = f v•Ipv,tp as2, (57)
S2

where 12 is the computational domain with boundary .91-2. The basis function '0 was de-
fined in Section 2.2. The first order derivative operator for the modified total variation
regularization functional, Equation 20, is given by

Rz(z) =( (7- - 1)((Vz,Vz)}2 + v2)T-lk z. (58)

Applying steps 4-6 from Section 2.1 and substituting Equations 44-54 into Equations
8, 10, and 12 enables the application of the trial step to the nonlinear Hessian operator.
The reader is referred to Section 2.1 to review the details concerning this calculation.
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